Projets de recherche en
cours |
ü
A Neural Control of Cognitive and Emotional
Interactions for Intelligent Immersive Environments (CRSNG-RDC, PROMPT,
2018-2020) ü
Methods and Tools for Active Adaptation in
Serious Games Based on a Rich User Model (CRSNG, 2017-2022) ü Jeux sérieux adaptatifs utilisant l'analyse
des réactions cognitives et émotionnelles pour favoriser l'apprentissage (FRQSC
– Équipe de recherche, 2016-2019) ü Algorithmes d'apprentissage profond pour la
classification et la prédiction de comportements à partir de données
multimodales (CRSNG – BMU) ü Technologies éducatives pour l'enseignement
en contexte: Systèmes tutoriels intelligents sensibles au contexte. Subvention
de recherche conjointe de la France et du Québec, du programme ANR-FRQSC no
2017-QF-210862, pour 3 ans (2016-2019). |
Publications (extrait) Livres 1.
P.
Fournier-Viger, C.-W. Lin, R. Nkambou and B. Vo (2018). High-Utility Pattern Mining:
Theory, Algorithms and Applications. Springer 2.
R. Nkambou, R. Azevedo, J. Vassileva
(2018). Intelligent Tutoring Systems - 14th International Conference, ITS
2018, Montreal, QC, Canada, June 11-15, 2018, Proceedings. Lecture Notes in Computer Science 10858,
Springer 2018, ISBN 978-3-319-91463-3 3. J. Bourdeau, J, Hendler,
R. Nkambou, I. Horrocks,
B. Zhao (2016). Proceedings of the 25th International Conference
on World Wide Web, WWW 2016. ACM 2016., ISBN 978-1-4503-4143-1 4. J. Bourdeau, J, Hendler,
R. Nkambou, I. Horrocks,
B. Zhao (2016). Proceedings of the 25th International Conference
on World Wide Web, WWW 2016, Companion Volume. ACM 2016., ISBN 978-1-4503-4144-8 5.
R. Nkambou, J. Bourdeau & R. Mizoguchi
(2010). Advances in
Intelligent Tutoring Systems. Springer.
ISBN: 978-3-642-14362-5 6.
B.P.
Woolf, E. Aïmeur, R. Nkambou
& S. Lajoie (2008). Intelligent Tutoring
Systems. LNCS No.
5091, Springer. ISBN 978 -3-540-69130-3 Apprentissage machine et
modélisation de l’apprenant 7.
A. Tato, R. Nkambou, A. Dufresne and C. Frasson (2018). Semi-Supervised
Multimodal Deep Learning Model for Polarity Detection in Arguments. International Joint Conference on Neural
Networks (IJCNN), IEEE, 8p. 8.
A.
Tato, R. Nkambou and C. Frasson
(2018). Predicting Emotions From Multimodal Users'
Data. In Proceedings of the 26th Conference on User Modeling, Adaptation and
Personalization (UMAP'18). ACM, pp. 369-370. 9.
A. Tato, R.
Nkambou, J. Brisson, S. Robert (2017). Predicting Learner's Deductive Reasoning
Skills Using a Bayesian Network. Artificial
Intelligence in Education, AIED 2017, pp. 381-392.
Springer 10.
A.A.
Nyamen Tato, R. Nkambou
and A. Dufresne (2017). Convolutional Neural Network for Automatic Detection
of Sociomoral Reasoning Level. In: X. Hu, T. Barnes, A. Hershkovitz, L.
Paquette (Eds), Proceedings of the 10th International Conference on
Educational Data Mining (EDM'17), pp. 284-289. 11.
R. Yapan Dougnon, P. Fournier-Viger, J. Chun-Wei Lin,
R. Nkambou (2016). Inferring social network user
profiles using a partial social graph. J. Intell. Inf. Syst. 47(2): 313-344 12.
Y.R. Dougnon, P. Fournier-Viger,
R. Nkambou (2015). Inferring User Profiles in Social Networks using a
Partial Social Graph. Proc.
28th Canadian Conference on Artificial Intelligence (AI), LNAI 9091,
Springer, pp. 84-99. 13.
T. Gueniche, P. Fournier-Viger, R.
Nkambou, V.S. Tseng (2014) WBPL: An Open-Source Library for Predicting Web Surfing Behaviors.
Proc. 21st Inter. Symposium on
Methodologies for Intelligent Systems, LNAI, pp. 524-529. 14.
Y.R. Dougnon, P. Fournier-Viger,
J.C.-W. Lin, R. (2015). Accurate Social
Network User Profiling. Proc.
38th German Conference on Artificial Intelligence (KI 2015), Springer
LNAI 9324, pp 264-270 Extraction de
connaissances et Data Mining 15. P. Fournier-Viger,
C.-W. Wu, V.S. Tseng, L., Cao, R. Nkambou, R.
(2015). Mining Partially-Ordered
Sequential Rules Common to
Multiple Sequences. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 27(8): 2203-2216. 16. E. Kenmogne, R. Nkambou, C. Tadmon, E. Mephu (2017). A heuristic to predict the optimal
pattern-growth direction forthe pattern
growth-based sequential pattern mining approach. Journal of Advanced Computer Science & Technology.
5(2): 20-32. 17. E. Kenmogne, C. Tadmon, R. Nkambou (2017). A
pattern growth-based sequential pattern mining algorithm called prefixSuffixSpan. EAI Endorsed Trans. Scalable Information Systems. 4(12) Systèmes Tutoriels
Intelligents: Contexte 18.
C. Anjou, T. Forissier,
J. Bourdeau, Y. Mazabraud, R. Nkambou,
F. Fournier (2017). Elaborating
the Context Calculator: A Design Experiment in Geothermy.
CONTEXT 2017, pp. 513-526, Springer. 19.
J. Bourdeau, T. Forissier, Y. Mazabraud, R. Nkambou (2015), Web-Based
Context-Aware Science Learning. WWW (Companion Volume) 2015, pp. 1415-1418, ACM 20.
T. Forissier, J. Bourdeau, Y. Mazabraud,
R. Nkambou (2014). Computing
the Context Effect for Science Learning. In Context in Computing, Springer,
New York, pp. 255-269. Ingénierie
des connaissances, Génie-ontologique Ontology Refactoring 21.
M. Héon, R. Nkambou,
M. Gaha (2016). OntoCASE4G-OWL:
Towards a modeling tool for G-OWL a visual syntax for RDF/RDFS/OWL2. The 15th
International Semantic Web Conference (Posters & Demos) Proceedings, 4
pages. 22.
S. Fennouh, R.
Nkambou, P. Valtchev, M. Rouane-Hacene (2015). On the Assessment of Concept
Relevance in FCA-based Ontology Restructuring. Full paper to appear in the Proceedings of the 27th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2015), IEEE
Press. 23. S. Fennouh, R. Nkambou,
P. Valtchev, M. Rouane-Hacene
(2015). Stability-Based Filtering for Ontology Restructuring. Studia Universitatis Babes-Bolyai, Informatica, 59: 8-44. 24.
E. Tawamba, R. Nkambou, B. Batchakui, C. Tangha (2014). MS-ONTO - Model and System for
Supporting Ontology Evolution. Proceedings
of the International Conference on Knowledge Engineering and Ontology
Development (KEOD 2014), pp. 319-326, SciTePress 25.
M. Rouane Hacene, P. Valtchev, R. Nkambou (2011). Supporting ontology design through
large-scale FCA-based ontology restructuring. Proc. of the 19th International
Conference on Conceptual Structures (ICCS 2011), LNCS No. 6828, pp. 257-269. 26.
M. Rouane Hacene, S. Fennouh, R. Nkambou, P. Valtchev (2010). Refactoring
of Ontologies: Improving the Design of Ontological Models with Concept
Analysis. IEEE ICTAI
2010: 167-172 Ontology Learning from Text 27. A. Zouaq et R. Nkambou (2009). Evaluating the Generation of
Domain Ontologies in the Knowledge Puzzle Project. IEEE
Transactions on Knowledge and Data Engineering,
21(11): 1559-1572.
28. A. Zouaq & R. Nkambou (2009). Enhancing learning objects with an ontology-based memory. IEEE Transactions
on Knowledge and Data Engineering, 21(6): 881-893. 29.
P. Fournier-Viger,
R. Nkambou & A. Mayers
(2008), "Evaluating Spatial Representations and Skills in a
Simulator-Based Tutoring System," IEEE Transactions on Learning
Technologies, Jan-Mar 2008, pp. 63-74. 30. A. Zouaq, R. Nkambou (2008),
"Building Domain Ontologies from Text for Educational Purposes" IEEE
Transactions on Learning Technologies, Jan-Mar 2008, pp. 49-62. IEEE Computer
Society 31.
A.
Zouaq,
R. Nkambou, C. Frasson
(2007). An Integrated Approach for
Automatic Aggregation of Learning Knowledge Objects. Interdisciplinary
Journal of Knowledge and Learning Objects, 3: 135-162. 32.
A.
Zouaq,
R. Nkambou and C. Frasson
(2008). Bridging the Gab between ITS and eLearning: Towards Learning
Knowledge Objects. LNCS
No 5091. ITS’2008, pp. 448-458,
Springer. 33.
A. Zouaq, R. Nkambou and C. Frasson (2007). Building Domain Ontologies from Text for
Educational Purposes. LNCS No
4753. EC-TEL 2007, pp. 393-407,
Springer 34.
A. Zouaq, R. Nkambou and C. Frasson (2007). Using a Competence Model to Aggregate Learning
Knowledge Objects. In Proceedings of the 7th IEEE conference on Advanced
Learning Technologies (ICALT 2007), pp. 836-840. 35. A. Zouaq, R. Nkambou and C. Frasson (2007). Une
architecture d’acquisition et d’exploitation des connaissances pour les EIAH.
In Proceedings of the Third
Conference on « Environnements
Informatiques pour l'Apprentissage Humain » (EIAH 2007), pp.
131-136, Lausanne, Switzerland, June 27-29, 2007. 36.
Amal Zouaq, Roger Nkambou, and Claude Frasson
(2007). Towards Learning Knowledge
Objects. In Proceedings of The 13th International
Conference on Artificial Intelligence in Education (AIED 2007), pp.
674-676, IOS Press. 37.
A. Zouaq, R. Nkambou and C. Frasson (2007). Learning a Domain Ontology in the Knowledge Puzzle
Project. In Proceedings of the Workshop on the Semantic Web for e-Learning
(SWEL 2007), Marina Del Rey, USA, July 9-13, 2007. 38.
A. Zouaq, R. Nkambou and C. Frasson (2007). A Framework for the Capitalization of e-Learning
Resources. In C. Montgomerie & J. Seale (Eds.), Proceedings of World Conference on
Educational Multimedia, Hypermedia and Telecommunications 2007
(pp.
1241-1247). Chesapeake,
VA: 39.
A. Zouaq,
R. Nkambou, C. Frasson
(2007). Document Semantic Annotation for Intelligent
Tutoring Systems: a Concept Mapping Approach. In
proceedings of The 20th International Florida
Artificial Intelligence Research Society Conference (FLAIRS 2007), pp.
380-385, AAAI Press, USA 40.
A. Zouaq, R. Nkambou and C. Frasson (2006). The Knowledge
Puzzle: An Integrated Approach of Intelligent Tutoring Systems and Knowledge
Management, IEEE ICTAI’2006, pp. 575-582, 18th IEEE
International Conference on Tools with Artificial Intelligence, IEEE press. 41. A. Zouaq, C. Frasson,
R. Nkambou (2006). An Ontology-Based Solution for Knowledge Management and E-Learning
Integration. Proceedings of the 8th International Conference on
Intelligent Tutoring Systems (ITS’2006). LNCS No. 4053, pp. 716-718. Springer-Verlag, Berlin. Systèmes Tutoriels
Intelligents : Applications Muse-Logique 42.
A. Tato, R. Nkambou,
J. Brisson, C. Kenfack, S. Robert, S., & P. Kissok (2016). A Bayesian Network for the Cognitive
Diagnosis of Deductive Reasoning. Adaptive
and Adaptable Learning - 11th
European Conference on Technology Enhanced Learning (EC-TEL2016), pp.
627-631. Springer
International Publishing. 43.
C. Kenfack, R.
Nkambou, S. Robert, A. Tato, J. Brisson, & P. Kissok (2016). A Brief Overview of Logic-Muse, an
Intelligent Tutoring System for Logical Reasoning Skills. In Intelligent
Tutoring Systems (ITS'2016), LNCS 9684, pp. 511–513. Springer International
Publishing. 44.
R. Nkambou, A.
Tato, J. Brisson, C. Kenfack, S. Robert, & P. Kissok, P. (2016). On the Evaluation of the Expert and
the Learner Models of Logic-Muse Tutoring System. In Intelligent Tutoring
Systems (ITS'2016), LNCS 9684, pp. 506–508. Springer International
Publishing. 45.
R. Nkambou, J. Brisson, C. Kenfack, S. Robert, P. Kissok, A.
Tato (2015). Towards an Intelligent Tutoring System for Logical Reasoning in
Multiple Contexts. Design
for Teaching and Learning in a Networked World, LNCS 9307, pp 460-466, Springer 46.
R. Nkambou, C.
Kenfack, J. Brisson, S. Robert, P. Kissok, A. Tato (2015). The
Participatory Design of Logic-Muse, an Intelligent Tutoring System for
Logical Reasoning in Multiple Contexts. In S. Carliner,
C. Fulford & N. Ostashewski (Eds.), Proceedings of EdMedia:
World Conference on Educational Media and Technology 2015 (pp. 1710-1719). Association for the Advancement of Computing in Education (AACE). 47.
R. Nkambou, C. Kenfack, S. Robert, J. Brisson (2015). The Design Rationale of
Logic-Muse, an ITS for Logical Reasoning in Multiple Contexts. Artificial Intelligence in Education (AIED2015), LNAI 9112, pp. 738-742, Springer ISLA 48.
A.L. Mondragon, R. Nkambou, P.
Poirier. (2016). Evaluating the Effectiveness of an Affective Tutoring Agent in
Specialized Education. Adaptive and
Adaptable Learning - 11th European
Conference on Technology Enhanced Learning (EC-TEL2016), pp. 446-452. Springer International Publishing. 49.
A.L. Mondragon, R. Nkambou, P.
Poirier. (2016). Towards an Effective Affective Tutoring Agent in Specialized Education. LNCS 9684. 13th
International Conference on Intelligent Tutoring Systems, pp. 402-408. Springer 50.
A.L. Mondragon, R. Nkambou,
P. Poirier (2015). Towards an Integrated Specialized Learning Application (ISLA) to
Support High Functioning ASD Children in Mathematics Learning. Design for
Teaching and Learning in a Networked World, LNCS 9307, pp 225-239, Springer
Roman & Canadarm Tutors 51.
K. Belghith, R. Nkambou, F., Kabanza and L.,
Hartman (2011). An Intelligent Simulator for Tele-robotics Training. IEEE
Transactions on Learning Technologies
(TLT) (in press). 52.
R. Nkambou, K. Belghith, F. Kabanza (2006). An
Approach to Intelligent Training on a Robotic Simulator using an Innovative
Path-Planner. Proceedings of the 8th International Conference on
Intelligent Tutoring Systems (ITS’2006).
LNCS No.4053, pp. 645-654, Springer-Verlag,
Berlin. 53.
K. Belghith, F. Kabanza, L. Hartman, R. Nkambou
(2006). Anytime Dynamic Path-Planning with Flexible Probabilistic Roadmaps.
Proceedings of ICRA’2006 (IEEE International Conference on Robotics and
Automation), pp. 2372- 2377. IEEE press. 54.
R. Nkambou, K. Belghith, F. Kabanza (2006).
Generating tutoring feedback in an intelligent training system on a Robotic
Simulator. Proceedings of the 19th International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert System,
LNAI No 4031, pp. 838-847. 55.
F. Kabanza, R. Nkambou, K. Belghith, L.
Hartman (2005). Path-Planning for Autonomous Training on Robot Manipulators
in Space. Proceedings of IJCAI’2005 (International Joint Conferences on
Artificial Intelligence), pp. 1729-1732. 56.
R. Nkambou, K. Belghith, F. Kabanza, M. Khan
(2005). Supporting
Training on Canadarm Simulator using a Flexible
Path Planner. In: Artificial
Intelligence in Education, IOS Press, Amsterdam, pp. 953-955 (2005). 57. J. Roy, R. Nkambou, F. Kabanza (2004).
Supporting Spatial Awareness in Training on a Telemanipulator
in Space. In: J.C. Lester et al. (Eds.): ITS 2004, LNCS 3220, pp. 860-863,
2004. Springer-Verlag
Berlin Heidelberg 2004 58.
R. Nkambou, F. Kabanza (2001). “Planning Agents in a Multi-agents
Intelligent Tutoring System”. In: Engineering of Intelligent Systems. LNCS/LNAI
no. 2070, pp. 921-930. Springer-Verlag, Berlin. 59. R. Nkambou, F. Kabanza. Designing
Intelligent Tutoring Systems: A multiagent Planning Approach. ACM SIGCUE Outlook, 27(2), pp.
46-60. ACM Press (2001). Prolog Tutor 60. J. Pelle, R. Nkambou,
J. Bourdeau (2007). Explicit Reflexion in Prolog-Tutor. International
Journal of Intelligence Intelligence in Education (IJAIED).
Vol. 17, No. 2, pp. 169-215. IOS.
61.
Pelle, R. Nkambou, J.
Bourdeau (2005). Supporting Student Reflection in an Intelligent
Tutoring System for Logic Programming. In: Proceedings of the AIED’2005
workshop on Learner Modeling for Reflection, pp. 42-51. Amsterdam. 62.
J. Tchetagni, R. Nkambou and F. Kabanza (2004). Epistemological Remediation in
Intelligent Tutoring Systems. In : proceedings
of the 17th International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert System, pp. 955-966. LNAI 3029, Springer. 63.
R. Nkambou, J. Tchetagni
(2004). Diagnosing Student Errors in E-Learning Environment Using MPE Theory.
In Proceedings of the International Conference on Web-Based Education,
pp. 249-254. Agents
cognitifs & Modèles cognitifs 64. O.
Larue, P. Poirier, R. Nkambou (2013). Hypothetical-thinking based on cognitive
decoupling and thinking dispositions in a dual cognitive agent. Biologically Inspired
Cognitive Architectures, 6: 67-75. Elsevier. 65. O.
Larue, P. Poirier, R. Nkambou (2013). The emergence of (artificial) emotions from cognitive
and neurological processes. Biologically Inspired Cognitive Architectures, 4:
54-68. Elsevier. 66. U. Faghihi, P.
Fournier-Viger & R. Nkambou
(2012). A
Computational Model for Causal Learning in Cognitive Agents. Knowledge-Based Systems, Elsevier. Elsevier Science (In press). 67.
U. Faghihi, P. Poirier, P., Fournier-Viger
& R. Nkambou (2011). Human-Like Learning in a Cognitive Agent. Journal of Experimental & Theoretical
Artificial Intelligence, Taylor & Francis (in press). 68.
U. Faghihi, P. Fournier-Viger, R. Nkambou & P. Poirier (2011). Identifying Causes
Helps a Tutoring System to Better Adapt to Learners During Training Sessions.
J.
of Intelligent Learning Systems & Applications, 3(3). 69.
U. Faghihi, P. Fournier-Viger
& R. Nkambou (2011). A Cognitive Tutoring
Agent with Human-Like Learning Capabilities. Proc. of the 15th International. Conference on Artificial
Intelligence and Education (AIED 2011). Springer, 8 pages 70.
R. Nkambou, P. Fournier-Viger, E. Mephu Nguifo (2009). Improving the Behavior of Intelligent Tutoring
Agents with Data Mining. IEEE
Intelligent Systems, 24(3):46-53. 71.
P.
Fournier-Viger, R. Nkambou,
A. Mayer, U. Faghihi (2008). A Framework
for Evaluating Semantic Knowledge in Problem-Solving-Based Intelligent
Tutoring Systems. FLAIRS’2008. AAAI press. 72. P. Fournier-Viger, R. Nkambou, A. Mayers and D. Dubois (2007), “Automatic Evaluation of Spatial Representations for Complex Robotic
Arms Manipulations”. Proceedings of the 7th IEEE
International Conference on Advanced Learning Technologies (ICALT 2007), pp.
279-281. 73.
P. Fournier-Viger,
M. Najjar, A. Mayers, R. Nkambou (2006). A Cognitive and Logic based Model for Building Glass-box Learning
Objects. Inter. Journal of Knowledge and Learning Objects,
2: 77-94. 74.
Faghihi, U., Dubois, D. & Nkambou, R. (2007). Learning Mechanisms
for a Tutoring Cognitive Agent. In C. Montgomerie & J. Seale (Eds.), Proceedings of World Conference on Educational Multimedia,
Hypermedia and Telecommunications 2007 (pp. 3106-3114). Chesapeake, VA: 75.
D. Dubois, R. Nkambou, P. Hohmeyer (2006). How ‘Consciousness’ Allows a Cognitive
Tutoring Agent Make Good Diagnosis During Astronauts’ Training. Proceedings
of the 8th International Conference on Intelligent Tutoring Systems
(ITS’2006). LNCS No 4053, pp. 154-163, Springer-Verl. 76.
D. Dubois, R. Nkambou, P. Hohmeyer (2006). The Role of «Consciousness» for the
Diagnosis Process in a Tutoring Agent. Proceedings of the Florida Artificial
Intelligence Research Society (FLAIRS’2006), pp. 539-540. AAAI
press. 77.
D. Dubois, R. Nkambou, P. Hohmeyer (2006). Supporting Simulation-Based Training
Using a «Conscious» Tutoring Agent. Proceedings of the IEEE-ICALT’2006, IEEE press. 78.
P. Fournier-Viger, M. Najjar, A. Mayers, R. Nkambou (2006). From Black-box Learning Objects to
Glass-Box Learning Objects. Proceedings of the 8th International
Conference on Intelligent Tutoring Systems (ITS’2006). LNCS
No 4053, pp.
258-267. Springer-Verlag,
Berlin. Systèmes
auteurs 79. J.
Pelle, R. Nkambou, J. Bourdeau (2006). A framework to help instructional designers to specify cognitive
diagnosis component in ILEs. Journal of Interactive Learning Research, 17(3): 269-293. AACE 80.
J. Pelle, R. Nkambou (2006). Elaborating the context of interactions
in a tutorial dialog. Proceedings of the 19th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert
System, LNAI No 4031, pp. 848-858. Springer-Verlag, Berlin. 81.
V. Psyché, J. Bourdeau, R. Nkambou,
R. Mizoguchi (2005). Making Learning
Design Standards Work with an Ontology of Educational Theories. In: Artificial
Intelligence in Education, IOS Press, Amsterdam, pp. 725-731 (2005). 82.
J. Bourdeau, R. Mizoguchi, V.
Psyché, R. Nkambou.
Selecting
Theories in an Ontology-Based ITS Authoring Environment (2004). In: J.C.
Lester et al. (Eds.): ITS 2004, LNCS 3220, pp. 150–161, 2004. Springer-Verlag
Berlin Heidelberg 2004 83. R. Nkambou, C. Frasson and G.
Gauthier (2003). “CREAM-Tools : An Authoring
Environment for Knowledge Engineering in Intelligent Tutoring Systems”.
In : Murray et al. (Eds) :
Authoring Tools for Advanced Technology Learning Environments : Toward
cost-effective adaptative, interactive, and intelligent educational software.
Pages 93-138. Kluwer Publishers.Kluwer Publishers. 84. R. Nkambou, C. Frasson, G.
Gauthier and. Rouane.
An Authoring Model and Tools for Knowledge Engineering in ITS. Journal of Interactive Learning Research,
12(4), pp. 323-357 (2001). Fouille
de données et extractions de connaissances (2) 85. P. Fournier-Viger, U. Faghihi, R. Nkambou & E. Mephu Nguifo (2012). CMRules: Mining Sequential Rules Common to Several Sequences. Knowledge-Based Systems. 25(1): 63-76.
Elsevier Science. 86.
R. Nkambou, P. Fournier-Viger & E. Mephu Nguifo (2011). Learning Task Models in Ill-defined Domain Using an
Hybrid Knowledge Discovery Framework. Knowledge-Based Systems, 24(1): 176-185.
Elsevier. 87.
P. Fournier-Viger,
U. Faghihi,
R. Nkambou & E. Mephu
Nguifo (2010). Exploiting
Sequential Patterns Found in Users’ Solutions and Virtual Tutor Behavior to
Improve Assistance in ITS. Educational Technology & Society, 13(1): 12-24. 88. P. Fournier-Viger, R. Nkambou & V.S. Tseng (2011). RuleGrowth: Mining Sequential
Rules Common to Several Sequences by Pattern-Growth. Proceedings of the 26th ACM Symposium on Applied Computing (SAC
2011). ACM
Press, pp. 954-959 . 89.
P. Fournier-Viger.,
R. Nkambou, E. Mephu Nguifo & A. Mayers (2010). ITS in Ill-defined
Domains: Toward Hybrid Approaches. Proceedings of the 10th International
Conference on Intelligent Tutoring Systems (ITS 2010), LNCS 6095,
Springer, pp. 749-751. 90. P. Fournier-Viger.,
R. Nkambou, E. Mephu Nguifo (2009). Exploiting
Partial Problem Spaces Learned from Users' Interactions to Provide Key
Tutoring Services in Procedural and Ill-Defined Domains. Proceedings of
the 14th International. Conference on Artificial Intelligence and Education
(AIED). IOS
Press. pp. 383-390. 91. P. Fournier-Viger,
R. Nkambou,U. Faghihi & E. Mephu(2009).
Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies. In Cao, L.(Ed.) Data Mining and Multiagent
Integration, Springer, p. 77-92. 92.
P. Fournier-Viger, R. Nkambou & E. Mephu
Nguifo (2008), A Knowledge Discovery Framework for
Learning Task Models from User Interactions in Intelligent Tutoring
Systems. Proceedings of the 7th Mexican International Conference on
Artificial Intelligence (MICAI 2008). LNAI 5317, pp. 765-778, Springer, Best
Paper Award (1st place / 368 submissions / 25.6% acceptance rate). 93.
R.
Nkambou, E. Mephu Nguifo, P.
Fournier-Viger (2008). Using
Knowledge Discovery Techniques to Support Tutoring in an Ill-Defined Domain. LNCS No 5091. ITS’2008, pp. 395-405. Best
paper award nom. (top 5 papers). 94.
R. Nkambou, E. Mephu Nguifo, O. Couturier & P. Fournier-Viger (2007). A Framework for
Problem-Solving Knowledge Mining from Users' Action. In Proceedings of The 13th International Conference on Artificial
Intelligence in Education (AIED 2007), pp. 623-625, IOS Press. 95.
R. Nkambou, E. Mephu Nguifo, O. Couturier & P. Fournier-Viger (2007). Problem-Solving
Knowledge Mining from Users’ Actions in an Intelligent Tutoring System. Canadian AI’2007, LNAI No. 4509, pp.
393-404. Springer-Verlag, Berlin 96.
E. Mephu and R. Nkambou
(2006). Enhancing Tutoring Intelligence Using Knowledge Discovery Techniques.
Proceedings of the IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology – Workshops; pp. 7-10. Informatique
affective et Agents émotionnels 97. R. Nkambou,
E. Delozanne & C. Frasson
(2008). Les dimensions émotionnelles de l’interaction dans un EIAH. Sciences
et Techno. de l’Information et de la Communication
pour la Formation (STICEF), 14: pp. 205-216. 98. M. Gaha, D. Dubois & R. Nkambou
(2008). Proposition d'un traitement émotionnel pour un STI
"conscient". Sciences et
Technologies de l’Information et de la Communication pour la Formation(STICEF),
14: 239-264 99.
R. Nkambou (2006).
Managing Student Emotions in Intelligent Tutoring Systems. Proceedings of the
Florida Artificial Intelligence Research Society (FLAIRS’2006), pp. 389-394. AAAI press. 100.R. Nkambou,
V. Héritier, C. Frasson (2005). Plate-forme pour
agents pédagogiques affectifs : expression et reconnaissance des
émotions. In : Samuel Pierre (Eds). Développement,
Intégration et Évaluation des Technologies de Formation et d’Apprentissage.
Chap. 9, pp. 247-292. Presses
Internationales Polytechniques. 101.R. Nkambou, Y. Laporte, R. Yatchou
et G. Gouradères (2002). “Embodied
Emotional Agent and Intelligent Training System”. In: Abraham, A., Jain, L.,
& Kacprzyk, J. (Eds), “Recent Advances in
Intelligent Paradigms and Applications”. Chapter 11, pp. 233-253. Springer-Verlag. 102.R. Nkambou (2006). Managing Student Emotions in Intelligent
Tutoring Systems. Proceedings of the Florida Artificial Intelligence Research
Society (FLAIRS’2006), pp. 389-394. AAAI
press. 103.Y. Laporte, R. Nkambou,
R. Yatchou
(2004). Prototypage d’un agent émotionnel d’interface pour les laboratoires
virtuels. Proceedings de TICE’2004; pp. 198-204, Compiègne
(France). 104. R. Nkambou,
V. Héritier (2004).
Reconnaissance émotionnelle par l’analyse des expressions faciales dans un
Tuteur Intelligent Affectif. Proceedings de TICE’2004; pp. 147-155, (France). 105.J. Faivre, R.
Nkambou and C. Frasson
(2003) “ Toward Empathetic Agents in
Tutoring Systems”. In: Proceedings of the Florida Artificial
Intelligence Research Society, pp. 161-165, AAAI Press. 106.R. Nkambou, Y. Laporte
(2001). “Producing Non-Verbal Output for an Embodied Agent in an
Intelligent Tutoring System”. In:
Proceedings of ICCS’2001, LNCS no.
2074, pp.366-376. 107. Laporte, R. Nkambou (2001). “Simulating emotional response for an
Intelligent Tutoring System”. In:
Artificial Intelligence in Education, pp. 568-570. IOS Press,
Amsterdam. Architecture
de distribution de ressources d’apprentissage 108.R. Nkambou, G. Gouardères, B.P. Woolf.
Toward
Learning Grid Infrastructures. Applied Artificial Intelligence
: An international journal. Vol 19, No. 9, pp. 811-824. Taylor & Francis Group, 2005. 109.G. Gouardères, M. Saber, R. Nkambou
and Yatchou. “The Grid-e-Card: An Architecture for
Collective Intelligence Sharing on the Grid”. Applied Artificial Intelligence : An international journal. Vol 19, No.
10, pp. 1043-1073. Taylor & Francis Group, 2005. 110.R. Yatchou, C., Tangha, R., Nkambou,
F., Tietche (2006). Grid-Based Virtual Clinic for
Medical Diagnosis Tutoring. Journal des Sciences Pour l’Ingénieur, 7:72-78. 111.R. Yatchou, G. Gouardères, R. Nkambou (2004). GRID-e- 112.
R. Nkambou. A Framework
for Distributed Didactic Resources in |