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ABSTRACT
Web search has been a reactive scenario for decades which
often starts by users issuing queries. By studying the user
behavior in search engine logs, we have discovered that many
of the search tasks such as stock-price checking, news read-
ing exhibit strong repeated patterns from day to day. In
addition, users exhibit even stronger repetition on mobile
devices. This provides us chances to perform proactive rec-
ommendations without user issuing queries. In this work, we
aim at discovering and characterizing these types of tasks so
that we can automatically predict when and what types of
tasks will be repeated by the users in the future, through an-
alyzing search logs from a commercial Web search engine and
user interaction logs from a mobile App that offers proac-
tive recommendations. We first introduce a set of novel fea-
tures that can accurately capture task repetition. We then
propose a novel deep learning framework that learns user
preferences and makes automatic predictions. Our frame-
work is capable of learning both user-independent global
models as well as catering personalized models via model
adaptation. The model we developed significantly outper-
forms other state-of-the-art predictive models by large mar-
gins. We also demonstrate the power of our model and fea-
tures through an application to improve the recommenda-
tion quality of the mobile App. Results indicate a significant
relevance improvement over the current production system.

Keywords
Web log analysis; User behavior; predicting future events

1. INTRODUCTION
Since the emergence of search engines in the 1990s, Web

search has remained as a user-initiated paradigm for the past
two decades. Essentially, it begins with a user first issuing a
query to express her information need. Search engines then
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try to parse the query to understand user’s underlying intent
and provide a ranked list of results based on their relevance
to the user query. Finally, the user elects to click some re-
sults and/or reformulates the query to repeat the process as
needed. Modern Web search engines have evolved recently
by better understanding user intent based on their search
history, and therefore provide more customized results for
individual users, which is often referred to as contextual
search [13, 24] or personalized search [26, 21, 25, 20].

Nevertheless, as the world is becoming more mobile-centric,
this old-fashioned query-driven search scenario and click-
based evaluation mechanism can no longer catch up with
the rapid evolution of user demand on mobile devices. On
one hand, the limitation of smaller screen sizes, restricted
typing area and pre-matured input methods has refrained
users from expressing needs and thus discovering informa-
tion as easily as they used to do on desktop computers [19].
On the other hand, users also demand more contextual in-
formation as mobile devices can grant easy access to the
Internet and online services virtually anytime anywhere.

Therefore, a more user-friendly, mobile-centric and scenario-
driven search paradigm that requires minimal user inputs
is ready to come out. Recently, both Google and Microsoft
have introduced their personal assistant tools on mobile clients,
namely Google Now and Microsoft Cortana. Both tools pro-
vide proactive services and recommendations such as stock
quotes and nearby restaurants. Figure 1 illustrates a mocked
example of such tool where three services (weather, stock
and traffic) are shown, in which, the tool learns from past
user behavior that the user might get off work soon and
head home given the current context (time, location), and
thus ranks the traffic information on top to help navigation.

In this work, we aim at learning user preferences and inter-
ests based on their past search history. Specifically, we focus
on extracting user search tasks that have regular repeated
patterns and predicting when users will perform those tasks
again in the future. One of the immediate application of
our model is to improve the triggering and ranking of the
proactive personal assistant. However, the significance of
our work is far beyond that. For example, the learnt model
can be directly applied to improve search personalization,
guide the caching and pre-fetching services for search engine
backends, or design better query classifiers for tail queries.

More formally defined, we address the problem of predict-
ing task repetition in this paper, that is:
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Figure 1: A simple demo showing the interface and
some functionalities of the mobile personal assistant.

Given a user’s past search history, organized as search
tasks, determine which tasks will be repeated during what

hour of the day (e.g, whether a user will perform a stock-

related task between 5pm and 6pm today).

Previous research has studied Web page re-visitation [10,
1, 2, 4] and recurrent event queries [29] and demonstrated
that repeated patterns indeed exist in both Web page visits
and user queries. Those work often examine the patterns by
aggregating data across different users and domains, which
makes the discovery difficult to adapt to individual users. In
comparison, our work differs significantly from all previous
efforts in that we target at individual users, where the user-
level data is much sparser and thus poses greater challenges
to the methodologies.
To be concrete, we make the following contributions:
• We leverage a structured learning framework to extract

long-term user search tasks from logs. These search tasks
allow us to efficiently identify user repeated search patterns
(Section 4.1).
• We propose a novel information-theoretic approach to

determine the predictability of user tasks, i.e., whether a task
represents one-time information need or exhibits recurrent
patterns. This helps filtering out non-repeatable tasks and
allows training models with less noisy data (Section 4.2).
• We introduce a set of novel features to characterize user

behaviors and task repetition patterns for this new problem
(Section 4.3).
• We introduce a deep learning model for prediction. We

propose to train global prediction models and then adapt to
individual users using model adaptation (Section 4.4, 4.5).
• We perform extensive empirical evaluation using real-

world search engine logs to demonstrate the superiority of
our DNN models over the state-of-the-art models in predict-
ing the task repetition, and show that our novel features and
models can help significantly improve the ranking of proac-
tive recommendations (Section 5).

2. RELATED WORK
In this section, we briefly review previous research on (1)

user re-visitation patterns, (2) search task continuation, and
(3) personalized search.
Adar et al. [1] analyzed Web page re-visitation patterns

from a large collection of Web logs. The authors discov-
ered the relationship between re-visitation frequency and

the amount of changes of different pages which showed a
positive correlation. Furthermore, the authors provided a
deeper analysis on four different re-visitation patterns [2],
namely fast, medium, slow and hybrid revisits. The study
indicated that Web pages can be clustered based on the user
re-visitation patterns using a hierarchical clustering method.
From the perspective of user queries, Zhang et al. [29] pro-
posed to learn recurrent event queries from search engine
logs. The authors first identified repeated user events by
different time intervals from weekly to bi-annually. They
then proposed a predictive model using a set of query-based
and click-based features. They compared the performance
of several machine learning methods and showed that the
ranking of recurrent queries can be improved substantially.

Long-term search task segmentation has recently emerged
as a hot topic for user modeling. Wang et al. [22] proposed
a structural learning algorithm to find the best links among
user queries. Gupta et al. [7] developed a binary classifier
to determine whether two queries belong to the same infor-
mation need. Lucchese et al. [16] constructed task-to-task
transition graph to make predictions for new queries. Sim-
ilarly, the authors in [9] built a task graph to link similar
tasks to recommend related tasks in the exploratory search
scenarios. On the other hand, task continuation aims at
predicting future events. Wang et al. [23] tried to predict
search task continuation when the users switch devices from
PC to tablet using binary classifiers. The most related work
to ours is from [3], where Agichtein et al. proposed to predict
whether a searcher will continue an unfinished task within
the next few days. The authors introduced a feature-based
predictive model that was able to outperform human predic-
tions. Comparatively, task segmentation can be formulated
as P (T = Ti|Qnew) where a new given query Qnew is to be
linked with previous tasks Ti. Task continuation prediction
is instead to predict P (T = Ti) without any given queries.
Our work is much more challenging by adding the time re-
quirement to the prediction, i.e., P (T = Ti|hour), but also
makes the results more useful in practical applications.

Personalization is at the core of proactive recommenda-
tions. In literature, personalized search is the most related
area for this aspect, to which much research work has been
devoted. For example, White et al. [25] addressed the is-
sue of identifying valuable user groups, namely cohorts by
implicitly modeling user search tasks and discovering users
who often issue similar tasks. The users were then grouped
based on their task similarity so that other users’ search
behavior can be leveraged to enhance the relevance for the
current user. Yan et al. [26] extended the previous work by
constructing both predefined and dynamic cohorts from user
behavioral data. They proposed to model query acronyms
so that new, unseen queries from a user can also be modeled.
From a modeling perspective, Wang et al. [21] proposed a
model adaptation framework to suit different users’ infor-
mation need. The authors claimed that users have differ-
ent bias when viewing search results. e.g., some users prefer
well-known domains, while others focus more on title match.
They introduced operations to transform the feature matrix
according to individual users search history. The authors in
[20] also addressed the modeling issue by introducing deep
learning for model adaptation. The authors argued that
by performing continue-train on global models using user-
specific data, it can easily adapt a user-independent model
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to different user preferences which lead to better relevance
than previously proposed methods.

3. DATA DESCRIPTION
There are two types of data that we use in this paper: (1)

Web search logs, and (2) mobile App usage logs.
We collected a large sample of user search logs from a

commercial Web search engine. The timespan of the logs is
approximately three months (May 1st to July 31st, 2014).
We selected users within the US search market and filtered
non-English queries. The search logs contain user interac-
tions with the search engine, including a user’s anonymized
identifier (UID), the event timestamp, raw queries the user
issued, URLs the user clicked on as well as some geographical
information about the user. These events were grouped into
sessions where each session contains one or more events. A
session ends when a 30-minute inactivity period is detected.
A sample of search logs can be seen in Table 1. Overall, we
sampled roughly 1 million users with 80 million sessions.
We also collected a sample of user logs from a personal

assistant App on a major mobile platform. The App makes
proactive recommendations to users. The recommended ser-
vices include weather, stock, traffic, places nearby and so
on. To align with the Web data, we also collected three-
month App logs during the same time period. Specifically,
each entry of the App logs contains the user interaction
with the App, which contains the user’s anonymized ID,
the event timestamp, the name of the services the user in-
teracted with, the type of interaction, and some additional
information such as the link of the URL for News. For the
type of interactions, we recorded several activities includ-
ing user clicks and the dwelltime on the recommendation.
This is because services like stock and weather often receive
much less clicks than others. Instead, users may acquire
sufficient information by simply viewing the recommenda-
tion. Thus, the dwell time information provides important
implicit relevance feedback [8]. To calculate the dwell time
on viewing a recommendation on the proactive impression,
we insert Javascript to each impression, which records the
viewport changing events as well as the positions and sizes
of the recommendations in the impression, and sends the
buffered events as HTTP requests to our server. The right
part of Figure 1 shows examples of user activities. In total,
we collected 60K user sessions from 50K sampled users.

4. METHODOLOGY
This section introduces our methods. We first review the

algorithm used for extracting user tasks. We then propose a
way to determine the predictability of the tasks. After that,
we introduce the features and learning method for prediction
and discuss how we adapt it for individual users.

4.1 Get long-term user tasks
Since search engine logs are often ordered based on the

event timestamp, previous research has shown the draw-
backs of such ordering that can cause suboptimal under-
standing of user’s underlying search intent [14, 15]. In prac-
tice, user’s information need indeed spans multiple search
sessions, or even multiple days which may contain many
search queries and result clicks. Table 1 shows an exam-
ple of search logs that contains 9 search sessions in three
days from the same user. It is quite evident that there ex-

Time Query SessionID TaskID

07/01/2014 08:07:05 tsla 1 1
07/01/2014 19:09:33 facebook 2 2
07/01/2014 19:33:04 free games 2 3
07/01/2014 23:11:25 facebook 3 2
07/02/2014 08:33:25 tsla 4 1
07/02/2014 13:22:17 tsla 5 1
07/02/2014 19:06:15 free online games 6 3
07/03/2014 08:55:53 tsla 7 1
07/03/2014 15:56:19 facebook com 8 2
07/03/2014 16:23:22 facebook 8 2
07/03/2014 19:21:05 free games 9 3

Table 1: An example of user search sessions and
the tasks segmented by the learning algorithm. For
space concern, the clicked URLs are omitted here.

ists three major tasks within these sessions: (1) checking
the stock price of tsla, (2) navigating to facebook.com, and
(3) playing online games. Note that all three tasks spaned
multiple sessions.

Therefore, in order to extract the underlying user search
tasks from logs, we propose to leverage a structured learn-
ing framework [22] to find the optimal hidden structure
within user sessions. Specifically, the authors in [22] in-
troduced a supervised learning framework that makes use of
the bestlink support vector machines (SVM) to minimize the
error between the predicted task partition and the ground-
truth partition, as well as maximizing the margin between
them. Thus, given a set of query logs with ground-truth,
{Qn, yn}

N
n=1, where each query sequenceQn = {qn1, ..., qnm}

corresponds to a user un’s history and yn are the annotated
task IDs, the optimization framework is specified as:

min
w,ξ

1

2
||w||2 + C

n
∑

i=1

ξ2i (1)

s.t. ∀i, max
h∈H

wTΦ(Qi, yi, h) ≥

max
(ŷ,ĥ)∈Y×H

[wTΦ(Qi, ŷ, ĥ) + ∆(yi, ŷ, ĥ)]− ξi

where ∆(yi, ŷ, ĥ) specifies the error between the prediction

ŷ (assigned by ĥ the latent structure) and the ground-truth
yn, {ξi}

n
i=1 a set of slack variables for relaxation in training

and C the balancing factor. Φ(Q, y, h) is a set of feature
vectors. The above equation is solved by an iterative algo-
rithm that constructs a sequence of convex problems during
each iteration so that the objective function is guaranteed
to decrease [5].

The features used in this model include the cosine simi-
larity between query terms, the edit distance between two
query strings, the domain similarity between the clicked
URLs and etc. In total, a set of 26 features are used.

4.2 Predictability of Task Repetition
Once the user tasks have been segmented, the next step

is to determine whether a specific task has regular repeated
patterns so that its next occurrence can be reasonably pre-
dicted. Some tasks are in nature more regular in repetition
(e.g., stock-price checking) while some others are more arbi-
trary (e.g., social network site checking) or rarely re-occur
(e.g., hotel booking) on a daily basis. Thus, filtering those
non-repetitive tasks out can ensure a more consistent and
less noisy set of data for model training. Note that some task
repetition patterns may share across different users while
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Figure 2: The probability distribution of the three
tasks and their predictability scores pd with λ = 0.5.

some other task repetition patterns are more personalized.
Again, take Table 1 for example, it is evident that task 1 and
task 3 exhibit regular repetitions: the user routinely checks
stock prices around 8am in the morning (with only one ex-
ception) and plays online game during 7pm in the night. On
the other hand, task 2, the navigation to the social network
site, is less regular and predictable for the user, as she tends
to issue the query at arbitrary times of the day. Since our
objective is to perform hourly predictions of the occurrences
of daily routines, we propose an information-theoretic met-
ric to measure the predictability of user tasks. Given a task
Tnm from user un, the probability p(t) that the user issues
a query at hour t is defined as the normalized score of the
query count during hour t, |T t

nm|, divided by the total query
count in that task |Tnm|. The predictability of the task is
then specified as

pd(Tnm) = exp

(

∑

t

p(t) log p(t)

)

+ λ log (|Tnm|) ,

p(t) =
|T t

nm|

|Tnm|
, t ∈ [0, 23], λ ≥ 0 (2)

where the first part inside exp(·) is essentially the negative
entropy of the probability distribution, while the second part
regularizes the length of the task. This equation reflects our
intuition that, longer tasks with lower entropies are generally
more predictable since they often show consistent repetition
patterns. As we show later in Section 5.1, these two factors
are indeed good predictors of predictability of task compe-
tition, and combining the two results in better correlation
with predictability and helps remove data noise and improve
model accuracy.
Figure 2 shows the probability distribution in bar plots for

the three tasks in Table 1. We also show their predictability
scores by setting λ to 0.5. It can be observed that the game

task, which has clear repetitive patterns, has the highest
score (1.55). On the other hand, the facebook task that ex-
hibits uniform probability distribution, gets the lowest score
(0.94). Later, we will show that the optimal value of λ is set
by using cross validation on a held-out data set.

4.3 Feature Generation
To accurately capture the characteristics of task repeti-

tion patterns, we introduce a set of features constructed
from user’s behavioral histories. The high-level description
of the features is listed in Table 2. Compared to features
proposed in similar work [29], our features are more focused
on individual tasks and users and thus can capture the char-
acteristics of repetition better for personalization.
(Query-level Features) query-level features include sev-

eral time-based features like the day of the week, hour of the
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Figure 3: An illustration of a task time series and
its corresponding autocorrelation function. The two
dashed lines show the rejection region for α = 0.05.

day etc. These categorical features are transformed into bi-
nary features using corresponding number of bins. Three
click-based features are also included to identify user ac-
tivities during the past few days/months. Notice that the
particularly useful clicks for prediction are those same-hour
clicks in user click history. That is, to predict whether a user
will issue a stock query between 8am and 9am for a given
day, a useful feature would be the total number of clicks of
stock queries between 8am and 9am of the same user during
the past few days. To determine the category of a query, we
built a set of binary classifiers using human-labeled data for
the following 12 categories: news, shopping, stock, weather,

travel, local, food, sports, games, movie, tech.
(Task-level Features) task-level features include the length

of the task that indicates how likely the task is repeated by
the user. The category of a task is assigned using majority
voting of all queries in the task. In addition, to measure
the task repetition frequencies at daily or longer period of
intervals, we apply autocorrelation to calculate the intervals:

ACF (k) =

∑T−k

t=1 (yt − ȳ)(yt+k − ȳ)
∑T

t=1(yt − ȳ)2
, k ∈ [1, T ) (3)

where yt = |T t
nm| is the query count at the tth hour, T the

total number of hours the task spans, ȳ the mean of the time
series. The denominator of eq. (3) is the unscaled variance
of the data. ACF (k) measures the autocorrelation of a task
at lag k. Figure 3 shows the example for the previous tsla

task. The top figure plots the time series of the task where
each bar indicates a query issued during that hour. The
bottom figure shows the autocorrelation function from lag 1
to 55 hours. We can clearly observe a peak at lag 24 (lag at
1 always equal to 1) which is exactly one-day apart, showing
a strong daily repetition pattern.

(User-level Features) user-level features measure how
actively the users have been using the services in the recent
days. These features include total query count, same-hour
total query count, as well as the number of active days (days
that a user issued at least one query). In addition, user
activity during the immediate past hour is also considered
as a feature due to its time proximity.

Notice that the above description of features measure user
activities based on their query history, which is primarily for
the search logs. For the mobile App logs, since users do not
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issue any search queries, the measurement of user activities
is replaced by the name of the services that users interacted
with (e.g., view, swipe, click etc.). To be concrete, the pre-
vious mentioned category of queries is replaced by a set of
services, namely local, weather, traffic, finance, sports, map,

news and travel. Overall, a set of 96 binary and numerical
features are generated for each training instance.

4.4 Task Prediction via Classification
Although it seems tempting to predict task repetition us-

ing time-series prediction models given the temporal nature
of the data, it turns out to be sub-optimal to do so due to
discontinuity of the repetitions. In other words, there are
excessive zeros in the temporal activation function of a task
in the data. Take Figure 3 for example, the task tsla is only
active at 4 timestamps with 56 zeroes in the 60-hour time
window. Due to such level of sparsity, even the most sophis-
ticated time-series models are incapable of making reliable
predictions, as we shall see in the experiment section.
Consequently, we formulate the prediction problem as a

binary classification task. Specifically, a deep neural net-
work (DNN) is used to train a probabilistic classifier with
the features defined in Table 2. DNN has emerged to be a
powerful tool for scalable learning tasks such as personal-
ized search [21, 20]. It is also a natural choice for perform-
ing adaptation as we shall see in the next section. Given
an input feature vector xi with its label yi, the neural net-
work passes the input into a set of hidden neurons by per-
forming a weighted sum of the inputs using a non-linear
activation function a, which is usually a sigmoid function
a(x) = 1

1+e(−x) , and the output ŷi is calculated as ŷi =
∑

j a
(
∑

k a(wkxi + bk) + bj
)

, where wk is the weight vector
for the kth hidden neuron and bk the bias term. The net-
work updates the weights by calculating the error between
the prediction ŷi and the true label yi and back-propagate
the errors to each neuron using stochastic gradient descent.
For training, each query within a task is treated as a pos-

itive instance (+1). To generate negative training exam-
ples (-1), we randomly select hours between the first and
last event within the task where the user did not issue any
queries. Take the facebook task for example, as illustrated
in Table 3, this task consists of four positive examples from
four different hours. For simplicity, we use an index to track
the time of each instance where 07/01/2014 00 : 00 : 00 has
index of 0. The index increases by 1 for each hour. The
largest index for the task is then 64. Then, four negative
examples are generated by randomly choosing four indices
between 19 and 64. To alleviate the class imbalance issue,
we generate roughly the same number of negative examples
as the number of positive examples for training, while keep
the test data with the original imbalanced class distribution.
To train a global model for prediction, we remove the

user IDs by aggregating all positive and negative training
data into one training set. This essentially ignores the user
preferences among tasks by considering each type of task as
a single classification problem. In the next section, we show
how to address this issue.
4.5 Model Adaptation for Personalization
A global model is essential to capture the overall char-

acteristics for different types of tasks. However, users may
exhibit distinct behaviors that cannot be accurately cap-
tured by a user-independent global model. For example,
while most of the users tend to check stock prices during

Time Index Query Label

07/01/2014 19:09:33 19 facebook +1
07/01/2014 21:00:00 21 <no query> -1
07/01/2014 23:11:25 23 facebook +1
07/02/2014 05:00:00 29 <no query> -1
07/02/2014 11:00:00 35 <no query> -1
07/02/2014 18:00:00 42 <no query> -1
07/03/2014 15:56:19 63 facebook com +1
07/03/2014 16:23:22 64 facebook +1

Table 3: An example of the training data generation
for the facebook task. The four negative examples
are randomly picked hours within the task events.

normal financial operation hours, one particular user may
elect to perform such action during midnight every day. In
machine learning, such scenario is often referred to as model
mismatch, which often happens when a model is trained on a
source domain while the target domain exhibits different fea-
ture distribution. A common approach to address this issue
is to apply model adaptation from the source domain(s) to
the target domain(s). In the information retrieval commu-
nity, researchers have recently discovered that by performing
continue-train on a DNN model to user-specific data [20, 21],
the adapted models perform significantly better than the
global model for most users. Adaptation to individual users
have two advantages over re-training a global model: first, it
is much more computationally efficient to perform continue-
train since the number of user-specific training points tends
to be very limited compare to the user-independent data;
in addition, continue-train puts more emphasis on user data
so that the user preference is not overwhelmed by the much
larger size of global training data.

In this paper, we perform two types of adaptations. The
first one is within-domain adaptation, which adapts a globally-
trained model from search logs to individual user’s search
tasks. Due to the extremely large size of the search logs,
it is infeasible to train a global model based on all labeled
data. Instead, a small sample of randomly selected train-
ing data is more preferable to train a model in reasonable
time. The model can then be adapted to user-specific tasks
by training models for each task of a targeted user.

The second type of adaptation is cross-domain adaptation,
which adapts the global model from search logs to mobile
App logs. Compared to search logs, the size of App logs is
much smaller and thus creates challenges in modeling indi-
vidual user’s preferences. Instead, we have discovered strong
correlation between the usage of Web search and mobile App
[18], so that adapting from the model trained on Web log
can alleviate the sparcity issue.

4.5.1 Mining Cohort Behavior
To further address the sparseness issue in training data, we

propose to enrich the user training data by leveraging behav-
iors from similar users (cohorts). The underlying assump-
tion is straightforward: similar users often perform similar
activities at similar time. It has been shown that leveraging
cohort behavior can significantly improve the quality of per-
sonalization [25]. In this work, we leverage both task-based
features and behavior features to discover cohorts. Specifi-
cally, the task-based features are binary indicator variables
where 1 indicates a user has performed a particular task dur-
ing hour h of the day (h ∈ [0, 23]). For behavior features,
we include users’ geo-location (at State level), types of Web
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Type Feature Description

Query-level

DAY-OF-WEEK the day of the week when the query was issued, between [0, 6]
IS-WEEKDAY whether the query was issued during weekday (1) or weekend (0)
HOUR-OF-DAY the hour of the day when the query was issued, between [0, 23]
TIME-OF-DAY the time period of the day: morning (0), afternoon (1), evening (2) or night (3)
IS-WORKHOUR whether the query was issued during work hours between 9am and 5pm
TOTAL-CLICK-1 total clicked URLs in the previous day during the same hour
TOTAL-CLICK-7 total clicked URLs in the past week during the same hour

TOTAL-CLICK-30/90 total clicked URLs in the past 1(3) months during the same hour
QUERY-CATEGORY category of the query (e.g., finance, weather)

Task-level
TASK-LENGTH total number of queries in the task

TASK-AC the autocorrelation function of the task
TASK-CATEGORY category of the task (see text for details)

User-level

USER-QCNT-1/3/7 total number of queries issued by the user during the last 1/3/7 day(s)
USER-QCNT-HOUR-3/7 total number of queries issued during the last 3/7 days at the same hour
USER-ACTIVE-DAY-3/7 total number of active days in the past 3/7 days

USER-LAST-HOUR-QCNT total number of queries issued during last hour

Table 2: List of features used for training classification models.

...

...

...

...

...

...

{

Task 1

Clicks

Figure 4: The user-behavior matrix used to discover
similar users (cohorts).

browsers (IE, Chrome, etc.) and search entry points (front
page, MSN, toolbar, etc.). We further transform these cat-
egorical features into binary features.
The resulting binary-valued matrix M ∈ Rm×n is a sparse

matrix with around 600 columns as shown in Figure 4. We
perform dimension reduction using SVD to choose k1 hidden
dimensions (M = UΣV T , M̃ = UΣ[1:k1]V T ), and then use

the k-means algorithm on matrix M̃ to find k2 user clus-
ters. Within each cluster, majority vote is performed for
each task to fill in the zero values, i.e., determine whether
a user will issue the task during a certain hour. Those en-
tries that are predicted to be 1 are used as enriched positive
training examples during model adaptation, which we dis-
cussed previously. In our experiment, k1 and k2 are set as
20 and 200 empirically using cross validation.

4.5.2 Truncated Gradient to Prevent Model Over-fitting
It has been shown that performing continue-train on neu-

ral network can lead to model over-fitting if the parameters
are not well-tuned[20]. Such an issue often happens in on-
line learning where the weights are sparse due to the large
number of parameters and features. Traditional approaches
to tackle this issue including Lasso (L1 regularization) often
failed to work in an online setting. Recently, researchers
have found that using truncated gradient to update the
weights tends to work very well for deep neural networks
[12]. Specifically, a function T with parameter θ is used to
control the weight updates during back propagation for the

kth neuron, wk → wk − ηT
(

∂C
∂wk

, a(k), θ
)

, where a(k) is the

output from the sigmoid, C the cost function. The gradient
is truncated when the output is within the range of [−θ, θ]
according to T .

x1 xs xk... ...

a1 aj

y

...

Input

Hidden

Output

Figure 5: The illustration of truncated gradient for
a single hidden-layer DNN.

Specifically, each neuron has its own θk which is often
estimated from a held-out validation set and thus having
different truncation criteria. Figure 5 presents an example of
how truncated gradient works. In this example, the output
layer sends back the error to the hidden layer. The first
neuron is truncated because the gradient is within [−θ1, θ1]
and therefore no further back propagation is performed to
the input layer. On the other hand, the jth neuron continues
to propagate the error back to the input layer since ∂C

∂wj
is

greater than θj .

5. EXPERIMENT
In this section, we present empirical study on the meth-

ods proposed in this paper. Overall, we perform two sets
of experiments to assess our methods: (1) predicting Web
search and mobile App task repetition and (2) improving
the ranking of mobile proactive recommendations.

5.1 Experimental Data Preparation
The evaluation objective for prediction experiments is that

given the first two-month data for training (from May 1st to
June 30th, 2014), we want to assess the predictive quality for
individual user’s tasks issued during the third month (July
1st to July 31st, 2014). First, we use the technique proposed
in Section 4.2 to filter out non-repeatable tasks. To do so, we
first determine the optimal value of λ in eq.(2). We asked
a human judger to manually label 100 randomly selected
tasks from the training data as either predictable or non-

predictable. Table 4 shows the statistics. It is evident that
both the length and entropy exhibit different distributions
for the two classes. The p−val from the t-test confirms that
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Table 4: Length and entropy distribution (mean ±
std) for 100 manually labeled instances.

Predictable (+1) Non-Predictable (-1) p-val
Length 32.02 ± 58.65 18.4 ± 24.02 0.017
Entropy 1.36 ± 0.54 1.97 ±0.69 0

Table 5: Statistics of experimental data sets.

# Users # Tasks # Train Instances

Prediction Set 184,219 368,914 1,026,213
Ranking Set 12,131 113,369 49,456

the differences are statistically significant. We then deter-
mine the value of λ by maximizing the correlation between
the human labels and the predictability scores, which turns
out to be around 2.0 as shown in Figure 6(a). Compara-
tively, the correlation between label and task length (0.59),
label and entropy (0.65) are much lower, showing the effec-
tiveness of combining two variables. Consequently, we filter
out the bottom 5% non-predictable tasks, which roughly
corresponds to tasks with predictability score ≤ 5. We fur-
ther divide the predictability into tasks categories as shown
in Figure 6(b), where we observe that news and stock tasks
have the highest scores among all types of tasks.
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Figure 6: Predictability breakdown. (a) Correlation
between λ and human labels. Optimal correlation
achieved at λ = 2. (b) Predictability by task cate-
gories. News & stock tasks have the highest scores.

After filtering, we split both data sets into two halves
based on timestamps, where first half in each data set is
used to train user-independent global models. We further
split the second half into halves based on timestamps for
adaptation and test, respectively, so that the obtained 25%
user-specific data can be used to perform model adaptation
on top of the trained global model using the first half of the
data. Figure 7 illustrates the data splitting process.
For the second experiment, the goal is to improve the

ranking of proactive recommendations. Specifically, we aim
at improving the NDCG score of the ranked services by in-
troducing our models and features into the existing produc-
tion ranker. To do so, we randomly sample a subset of users
from the entire App user base between August 2nd and 15th,
2014, where the data from August 2nd to 10th is used for
training and validation, and the rest for testing purpose.
Table 5 lists the statistics of the experimental data.

5.2 Methods Compared
We compare with several baseline systems:
• Always Majority: always predicts the majority class,

which is the negative class in our problem, i.e., the task does
not repeat at any point in time.

User

Data

50% 25% 25%

{ { {Train

global models

User

Adaptation Test

{ Train user-level

target-only models

Time

Figure 7: This figure shows the data splitting pro-
cess for training, adaptation and testing.

• Always Positive: always predicts the positive class,
i.e., the task repeats at every point in time. This is to com-
plement the majority baseline.

• Maximum Likelihood Estimation (MLE): this ap-
proach estimates task repetition with only user previous his-
tory. Specifically, it estimates the most likely time based on
the summation of user previous queries during each hour,
and choose the hours with the most queries issued to be the
predicted hour.

• Zero-inflated Poisson Autoregression (ZIM): the
ZIM model [28] is introduced to model time-series data that
contains excess zeros, which is applicable to our situation.
The model is extended from the zero-inflated Poisson (ZIP)
distribution, with probability mass function defined as

FYt(yt|Dt−1) = wtI(yt = 0) + (1− wt) exp(−λt)λ
yt
t /yt!,

so that when yt = 0 (the count is zero), FYt(yt|Dt−1) =
wt + (1 − wt) exp(−λt) where zeros are generated from a
Bernoulli distribution. On the other hand, the counts data
are generated from a Poisson distribution when yt > 0, with
FYt(yt|Dt−1) = (1 − wt) exp(−λt)λ

yt
t /yt!. In our experi-

ment, we use the standard R package1.
• Recurrent Neural Networks (RNN): RNNs have

shown to perform well on time-series data prediction [6].
Among them, one type of RNNs is referred to as Echo State
Network (ESN) where a large set of dynamical reservoir is
randomly constructed from many neurons with fixed struc-
ture and input weights. The model is efficient in training
since the back-propagation only needs to be performed be-
tween the output layer and the reservoir layer. In order for
ESN to work, the reservoir needs to satisfy the echo state
property where the spectral radius of the reservoir weight
matrix must be less than unity. ESN has shown better pre-
dictive power on time-series data like stock data [17] than
similar models (e.g., Kalman Filters).

•Adaptive Support Vector Machines (aSVM): SVM
has shown to be a powerful tool for classification. The adap-
tive SVM method works by adapting one or multiple exist-
ing SVM models to a new domain, which has shown suc-
cessful applications on both classification [27] and ranking
[21]. The underlying assumption is that the original domain
shares some similarity with the target domain, while the
target domain exhibits certain characteristics different from
the original. Due to the data sparsity of the target domain,
adaptation often outperforms the model trained only on the
data from target domain. We use the aSVM package2.

1http://cran.r-project.org/web/packages/ZIM/index.html
2http://www.cs.cmu.edu/∼juny/AdaptSVM/index.html
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Table 6: Comparison of predictive performance for
the five models. *-G = Global Only models. *-T =
Target Only models. *-A = Adaptation models. **
= statistical significance with p−val < 0.01. †A global
model using 75% of training data is also trained to
show fair comparison to adaptation models.

Web-Web Web-App

Models Precision Recall Precision Recall
Always Majority 0.0000 0.0000 0.0000 0.0000
Always Positive 0.0403 1.0000 0.0105 1.0000

MLE-G 0.3146 0.3507 0.2853 0.3085
ZIM-G 0.2957 0.3387 0.2745 0.3272
RNN-G 0.3046 0.3365 0.2659 0.2912

aSVM-G 0.4621 0.6082 0.4511 0.6065
DNN-G 0.5164 0.6805 0.4271 0.6176

†(75%) DNN-G 0.5377 0.6811 0.4695 0.6199
MLE-T 0.3397 0.3647 0.2856 0.2676
ZIM-T 0.2231 0.2584 0.2197 0.2099
RNN-T 0.2587 0.2636 0.252 0.2576

aSVM-T 0.4291 0.4463 0.4046 0.3739
DNN-T 0.4595 0.4698 0.4319 0.3767

DNN-T(c) 0.4587 0.4922 0.4285 0.3972
aSVM-A 0.5725 0.6831 0.5035 0.6034
DNN-A 0.6163** 0.7265 0.561** 0.6469

DNN-A(c) 0.6151 0.7489** 0.557 0.6596**

5.3 Predictive Performance
We present the experiment setting and results in the fol-

lowing section.

5.3.1 Parameter Settings
Before proceeding, we briefly discuss the parameter set-

tings in the experiments. We tested various architectures
for both neural networks using 10% hold-out data. Due to
the large amount of experiments, we fixed the training itera-
tions to be 2000 without performing early stopping. For the
baseline RNN method, we found that with a reservoir size of
200 and an additional 10-node hidden layer between reser-
voir and the output, the model tends to perform the best.
For our DNN method, the best performed model includes a
hidden layer of 20 neurons with a fixed learning rate of 0.01
and a 0.1 momentum. For the aSVM model, RBF kernel
with default parameters performs the best.
Note that among all methods compared, only aSVM and

our DNN approach can perform model adaptation. There-
fore, for all other methods, we train two models for each of
them: Global Only: for each type of tasks, aggregate data
across all users and train a single model; and Target Only:
for each user, train individual models for each tasks using
only that user’s data.

5.3.2 Overall Performance Comparison
We use the precision and recall for the positive class as

our metrics. Table 6 shows the overall predictive perfor-
mance of the five models in terms of precision and recall.
The Majority baseline (always predict -1) gets 0 for pre-
cision and recall for obvious reason. The Always Positive
baseline reaches 1.0 for recall but very poor precision due to
the imbalance of the test data set. The best performance is
achieved by our DNN model with adaptation (DNN-A), fol-
lowed by the aSVMmodel. The baseline RNNmethod which
treats the data as time-series performs relatively poor com-
pared with our model. The same observation can be found
for the zero-inflated model ZIM, where the model performs
worse than MLE. Although ZIM is designed to handle data

with excessive zeros, previous studies have primarily focused
on data such that the number of zero entries is typically no
more than 50%. While our data, expressed as time-series,
usually consists of 80% or more zero entries. These results
have confirmed our assumption that time-series predictions
do not suit our data well, but instead classification-based
approach should be employed.

On the other hand, it can be seen that performing adapta-
tion significantly boosted the performance from the global-
only models, which in turn outperforms the target-only mod-
els. This gives us three implications. First, the same types of
tasks indeed bear common repeated patterns across different
users, which is why global models can capture most of their
characteristics. Second, using only user’s own data to train
individual models does not perform as well as we expected,
due to the sparcity of user-level data. Finally, users’ unique
characteristics that cannot be captured by global models can
be better-explained after performing model adaptation.

By enhancing user-specific training data with cohorts (DNN-
T(c) and DNN-A(c)), we notice that recall can be further
improved while precision gets some negative impact. This
indicates that more over-triggering can happen with artifi-
cial adaptation data. Whether or not this benefits the users
depends heavily on the end-to-end scenarios. For example,
in our later experiment of proactive recommendation, over-
triggering seems to work better than under-triggering.

Note that global-only models use 50% data for training
while the adaptation models benefit from additional 25%
user-specific data, which may cause bias in performance
comparison. To remove such bias, we re-trained a best-
performing global-only model, namely DNN-G, using both
parts of data (so now 75% training data) and evaluate on the
same 25% test data, as shown in Table 6. We can observe
that by using more data, the global DNN model indeed im-
proves its own performance by about 4%. Nevertheless, we
can still observe significant gap between the global models
and the adaptation models even with the same amount of
training data.

5.3.3 Performance Breakdown
Comparatively, Web-Web adaptation gives more promis-

ing results than Web-App adaptation. The DNN-A model
shows 5% relative difference in precision. After deeper anal-
ysis of the data, two reasons are identified. The first reason
that causes the discrepancy is due to the amount of adap-
tation data. In general, we have much more user-level data
from Web search than mobile App. This creates certain dif-
ficulty in model adaptation that sometimes causes overfit-
ting during adaptation. In addition, we discovered that sev-
eral types of tasks demonstrate different patterns between
Web and App, which causes the adaptation to be inefficient.
Thus, it is important to breakdown the performance by task
types for further analysis.

Table 7 shows the model performance for the top-4 task
types (weather, stock, news and traffic) due to space con-
cern. In general, both aSVM and our DNN model make
good prediction on the news and stock tasks, while rela-
tively poor on the weather and traffic tasks. Particularly,
DNN-A was able to achieve 66% precision and 83% recall for
the news tasks. For stock tasks, we observed that most users
show consistent repeated patterns during regular stock mar-
ket hours (10am to 4pm EST). Many users often repeatedly
check stock quotes within some particular hour of their fa-
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Figure 8: Task predictability vs accuracy. R2 score
indicates a strong correlation between them.

vorite which made the prediction easy. For news tasks, users
tend to follow their day-to-day reading habit that usually oc-
curs during morning, lunch break and evenings. Among all
other categories not shown here, games and sports were also
quite predictable. Note that the discovery here also con-
firms our previous finding in Figure 6(b) where news and
stock tasks showed higher predictability scores.
Among three groups of models, we observe that target-

only models in general incur much higher variance than the
other two. The underlying reason is quite evident: target-
only models often perform well given enough user-level data
but fail miserably if there is not enough training data, which
is exactly what happened to both aSVM-T and DNN-T
models. In comparison, global-only models demonstrate the
highest consistency across all tasks with competitive perfor-
mance against target-only models on stock and traffic tasks.
Figure 9 shows an example task where our DNN approach

outperforms the best time-series baseline (RNN). The task
has five queries. Due to its sparsity, the time-series model
made numerous error for both positive and negative classes
while our DNN method only has two false positives.

5.3.4 Predictability vs. Accuracy
Finally, we revisit our proposed technique of calculating

task predictability as discussed in Section 4.2 and 5.1. Fig-
ure 8 shows the scatter plot of task predictability and pre-
diction accuracy for a sample of 3,000 tasks. We can eas-
ily observe that higher predictability indeed corresponds to
higher accuracy, which shows the usefulness of the proposed
technique. We calculate the correlation by randomly sam-
pling the same amount of tasks for each length. This gives a
0.7843 R2 score between predictability and accuracy, which
indicates a very high correlation between these two variables.
In addition, we want to confirm our assumption that us-

ing predictability to filter out non-repeatable tasks indeed
creates a cleaner training corpus. To this end, we add back
those 5% tasks with low predictability scores to the train-
ing corpus and re-train a global DNN model using the Web
data. We notice that both the precision and recall dropped
by more than 7%, showing the crucialness of data filtering.

5.4 Ranking Performance
With the promising predictive performance of our mod-

els, we seek to apply the predictors to improve ranking in
this section. Specifically, we integrate the proposed novel
features and models into the production proactive system
[18] to improve its ranking. Since our DNN model is opti-
mized for classification, it is not directly applicable to com-
pare across different types of tasks. Hence, we compare
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Figure 9: An Example Task and the prediction re-
sults from two models. Ground Truth = Queries
issued by the user during that hour.

three ranking models: (1) the baseline production system
using a machine learning model (Production), (2) combine
the features from production and the scores of DNN model
to retrain a ranker (Production+Model), and (3) combine
the features from production and the model and the raw
features of DNN model (as shown in Table 2) to retrain a
ranker (Production+Model+Feature).

Table 8 summarizes the overall performance. Besides NDCG,
we also employed a metric named First Success Position
(FSP), where the success is defined as either a successful
click (> 30 seconds on landing pages), or a successful view
on a task (dwell time above certain threshold on a proac-
tive recommendation). Note that, according to previous re-
search, the viewport-based dwell time is a good indicator
of relevance for mobile devices [8] and correlates well with
user eye movements [11]. For brevity, we only include re-
sults for a threshold of 10 seconds as the other thresholds
(e.g., 15 seconds, 30 seconds) we tried did not make signif-
icant differences and we leave the determination of an op-
timal threshold as future work. In general, combining the
prediction scores for each tasks with production shows no-
ticeable performance improvement, indicating the usefulness
of the proposed models. On the other hand, using only the
scores of the DNN classifier for ranking turns out to be a
complete failure, which supports our initial assumption that
the scores are not directly applicable for ranking purpose.
In addition, combining the proposed features with produc-
tion also greatly improves the performance, showing that
the features are capable of capturing user behavioral char-
acteristics. Finally, by combining both the proposed model
and features together with the production features, the best
performance was achieved with a 14.32% improvement of
NDCG@1, which is statistically significantly better than the
second best-performing model with p− val < 0.05.

Next, we break down the ranking performance by service
types for our best-performing model. Figure 10 shows the
relative improvement in terms of FSP, sorted by the margin
of improvement. We see that the majority of improvements
lie in weather, traffic and news, while sports, local and travel
services often got lower ranking in the new ranker. The rea-
son for overall performance improvement comes from the
bias towards different services. In general, users pay much
more attention to news, weather and finance than other ser-
vices. Therefore, improving the ranking position of these
services results in better overall user experiences.

For the weather service, we further analyze its improve-
ment in Figure 11, where the average success position delta

551



Table 7: Web to App adaptation performance breakdown for the top-4 types of tasks with standard deviation.
*-G = Global Only models. *-T = Target Only models. *-A = Adaptation models.

Weather Stock News Traffic

Methods Precision Recall Precision Recall Precision Recall Precision Recall
aSVM-G 0.42 ± 0.16 0.45 ± 0.17 0.46 ± 0.18 0.48 ± 0.13 0.53 ± 0.14 0.54 ± 0.11 0.40 ± 0.12 0.449 ± 0.12
DNN-G 0.44 ± 0.13 0.48 ± 0.13 0.48 ± 0.19 0.49 ± 0.18 0.53 ± 0.15 0.55 ± 0.13 0.40 ± 0.11 0.45 ± 0.13
aSVM-T 0.38 ± 0.29 0.43 ± 0.11 0.47 ± 0.22 0.48 ± 0.33 0.56 ± 0.10 0.59 ± 0.26 0.40 ± 0.17 0.38 ± 0.27
DNN-T 0.40 ± 0.19 0.44 ± 0.14 0.47 ± 0.28 0.48 ± 0.31 0.55 ± 0.17 0.58 ± 0.20 0.42 ± 0.18 0.40 ± 0.21

aSVM-A 0.47 ± 0.18 0.46 ± 0.14 0.53 ± 0.15 0.59 ± 0.11 0.63 ± 0.14 0.77 ± 0.12 0.48 ± 0.15 0.60 ± 0.12
DNN-A 0.50 ± 0.11 0.51 ± 0.15 0.56 ± 0.14 0.62 ± 0.13 0.66 ± 0.21 0.83 ± 0.12 0.51 ± 0.18 0.63 ± 0.18

Table 8: Comparison of App ranking performance
over several models. FSP = First Success Position.
For NDCG, higher numbers indicate better perfor-
mance. For FSP, lower numbers are better. * =
statistical significance with p− val < 0.05.

∆NDCG ∆FSP
Production [18] / /

Model-Only -26.28% 41.38%
Production+Model 3.07% -5.82%

Production+Feature 9.31% -10.95%
Production+Model+Feature 14.32%* -18.97%*
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Figure 10: Relative position improvement break-
down by service types.

is shown for each hour. The Service count is also plotted to
show the volume. It can be clearly seen that we promote the
service to have gains for hours with higher success volumes
(between 12pm and 23pm) and demote the service when its
success is rare (between 4am and 8am).
Table 9 shows the most important features in the ranker,

where Rank indicates the relative position of our proposed
features among all production features. We can see that the
new ranker picks one of our query-level features to be the
most important feature, which measures the same-hour total
number of clicks during the last day. It can be clearly seen
that many of our features are indeed quite effective and thus
treated important by the new ranker. Overall, click count
from tasks and query count from users are the most useful
features that improves the ranking relevance.

6. CONCLUSIONS AND FUTURE WORK
We have presented a study on understanding, character-

izing and predicting user repeated search tasks in this work.
We discovered from search logs and mobile App logs that
certain types of user tasks such as stock-price checking of-
ten exhibited strong repetition patterns. We proposed a set
of novel feature and models to predict when and what types
of tasks will users issue in the near future. Despite that
many previous research has been devoted to predict query
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Figure 11: Weather service improvement by hour.

Table 9: Feature importance in the ranking experi-
ment. TC = Total Clicks. TQ = Total Query Count.

Feature Name Type Importance Rank

Same-hour TC past 1-D Query-Level 1 1
TQ past 7 days User-Level 0.065 12
TQ past 3 days User-Level 0.033 21
Same-hour TC past 90-D Query-Level 0.020 36
TQ past today User-Level 0.017 43
Same-hour TC past 30-D Query-Level 0.016 44
Time of the day Query-Level 0.014 51

or task repetition, we were among the first to take the time
dimension into consideration and perform time-series predic-
tion. In addition, we were also among the first to introduce
personalized predictive models, while previous research of-
ten aggregated data across users due to insufficient user-level
data. We were able to address the data sparcity issue by per-
forming model adaptation by learning individual deep learn-
ing models for each user task. We proposed a novel metric
to measure the predictability of tasks which turned out to be
very effective for noise filtering of non-repeatable tasks. Ex-
periments on a large-scale data set indicated significant per-
formance improvement of our model when compared with
other state-of-the-art time-series prediction methods. We
applied the model and features to improve the recommen-
dation of the mobile App, which showed substantial ranking
improvement over the production system.

We believe that our current effort is just a small step to-
wards a promising future of queryless search and recommen-
dation engines. With more and more user search and in-
teraction data becoming available, we will be able to make
machines more intelligent so that less and less user effort
needs to be spent for information discovery in the foreseeable
future. Our future research directions include making pre-
diction for a larger categories of tasks with longer timespan,
leveraging similar users’ behavior for new user (cold-start)
prediction, as well as designing more sophisticated machine
learning models for better predictive performance.
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