
R. Nkambou et al. (Eds.): Advances in Intelligent Tutoring Systems, SCI 308, pp. 249–264.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Chapter 12
Using Drawings in Knowledge Modeling and
Simulation for Science Teaching

Wouter R. van Joolingen, Lars Bollen, and Frank A.J. Leenaars

University of Twente, Faculty of Behavioral Sciences, P.O. Box 217, 7500 AE Enschede,
The Netherlands
{w.r.vanjoolingen,l.bollen}@utwente.nl,
f.a.j.leenaars@student.utwente.nl

Abstract. Modeling knowledge in simulation-based inquiry learning requires a
model of the domain that is executable, as well as a model of the learners’ knowledge
about the domain. An intermediate level is formed by models of the domain that are
created by students as is done in modeling environments. An approach is presented
for generating student created models from drawings. This approach requires drawing
segmentation, shape recognition and model generation, which is done based on den-
sity-based clustering, elementary shape recognition combined with a shape ontology
and model fragment composition respectively. The final result is an executable model
that can be used to generate simulation outcomes based on learners’ conceptions. The
role of such a system is discussed, especially with respect to the diagnosis of miscon-
ceptions and the generation of tutoring interventions based on confronting learners
with the consequences of their conceptions.

12.1 Introduction

In inquiry learning with the help of simulations and modeling, knowledge is mod-
eled at three levels. First there is the level of the authored simulation (van
Joolingen and de Jong 2003) in the form of an executable model that drives the
simulation as a main resource for inquiry. The second level is that of models cre-
ated by students, in the form of concept maps, system dynamics models or stated
hypotheses and conclusions (Novak 1998; Penner 2001; Schwarz et al. 2007;
Wilensky and Reisman 2006; Wilensky and Resnick 1999). The third level is that
of models the system makes of learners’ knowledge. Although these levels of
knowledge modeling serve different purposes and therefore need to satisfy differ-
ent requirements, they also have much in common as they rely on similar repre-
sentations representing relations between variables in the domain. In many cases
representations at all three levels need to be simulated. At the level of the simula-
tion this is obvious. It has also been known that for the level of learner created
models a simulation based on a learner generated model can have a beneficial
effect on the learning process (Alessi 2000; Bliss 1994; Ergazaki et al. 2007;

250 W.R. van Joolingen, L. Bollen, and F.A.J. Leenaars

Feurzeig and Roberts 1999; Sins et al. 2005). At the level of the model of learn-
ers’ knowledge simulation of a model can help to identify conflicts between learn-
ers’ hypotheses and predictions on one side and the model that the learner is
studying on the other. Differences in models generate difference in simulation re-
sults which are opportunities to confront and discuss with learners in the knowl-
edge building process.

In the current chapter we focus on the middle level, the representation of mod-
els by learners. As noted, learners can use many different kinds of representation
to express their own models. Some of those representations, such as system dy-
namics models allow to be simulated right away, but have the drawback of being
quite formal and requiring prior knowledge of the variables and relations in the
domain, as well as knowledge about the notation and syntax of system dynamics.
Other representations such as concept maps can be helpful, but cannot be simu-
lated. Moreover, concept maps are good for building conceptual structures, but
they are not really geared towards representing computational operations. Finally,
concept maps also impose a kind of formalism on the kind of representations to
use by students. Learning environments such as Cool Modes (Bollen et al. 2002)
try to combine different visual languages like system dynamics, UML diagrams,
freehand drawing etc. in one workspace, but these languages rarely interoperate,
and especially freehand-drawings are only integrated on a visual level.

We try to address the problem for representing learners’ models by letting learners
make drawings representing their understanding of the domain. Using freehand draw-
ings and sketches provides the most representational freedom, but it usually lacks any
form of operational semantics. Recent sketch recognition systems try to include this
kind of modeling support to drawings, e.g., for drawing logic diagrams (Alvarado and
Lazzareschi 2007) or for recognizing mathematical expressions (LaViola and
Zeleznik 2004), but they also inherit the limitations and restriction from the domain
they are trying to support and from the language they try to recognize.

The approach presented in this paper brings together representational freedom
and operational semantics. This approach allows learners to externalize and visu-
alize their ideas on a phenomenon by using freehand drawings, which can be used
to intelligently support the creation of a quantitative model by means of segmenta-
tion support to recognize coherent components in a drawing, sketch recognition
for detecting basic shapes (e.g. arrows, links between components) and labeling to
provide a means to the user to identify and tag relevant characteristics and proper-
ties of sketch components.

12.2 Modeling with Inaccurate Drawings

In this section we will describe the main properties of the system to generate models
from drawings. We start with describing the context and rationale, and proceed with
describing the necessary steps to move from drawing to model. In subsequent sec-
tions, the first results of implementing the approach will be presented.

When creating a model, many people, including experts, start by making a
drawing that is a more or less schematic representation of the system that is being
modeled. Drawings help identifying the main components that need to be included

Using Drawings in Knowledge Modeling and Simulation for Science Teaching 251

in a model and be represented as one or more variables (Van Meter and Garner
2005). Therefore, drawings can form a bridge between initial ideas and a formal
model of a system. An example may make this clearer.

Suppose learners study the water cycle, that represents the origin of rainfall
(water evaporates from the sea, condensates, flows to land where it forms rain-
drops and it starts to rain). Rain water comes together in rivers that feed back to
the sea. A drawing of such a system could look like Fig. 12.1. Such a drawing by
no means qualifies as a computational model as it is inaccurate and ambiguous
(for instance there are several arrows that all have different meanings, and impor-
tant concepts, such as the temperature of the water, are not represented. However,
the drawing does represent relevant components of the system – sea, water in
various states, wind, the sun as energy source – as well as processes (evaporation,
flow, condensation) and could help in arriving at a model such as the system dy-
namics model represented in Fig. 12.2, that can be used to simulate the water cy-
cle and investigate the influence of parameters such as the intensity of the Sun’s
radiation. On the other hand, the drawing conveys concepts and details that may
not be included in a formal system dynamics model, like spatial relations between
components (e.g. mountain, river, sea).

Fig. 12.1 Possible drawing to start modeling the water cycle.

The basic idea of our approach is to support learners in transferring their ideas,
as expressed in a drawing, into a formal model; either by translating the drawing
into a formal language such as system dynamics, or by adding information to the
drawing in such a way that it becomes a computational model.

In the first case, a model such as the one presented in Fig. 12.2 would be cre-
ated using the drawing as a means of support for creating the model elements, in

252 W.R. van Joolingen, L. Bollen, and F.A.J. Leenaars

Fig. 12.2 Possible system dynamics model of the water cycle (created with Co-Lab (van
Joolingen et al. 2005))

the second case, the drawing itself could be the model, meaning for instance that
the drawing elements could be animated, based on the state of the model. For in-
stance, the cloud could grow as more water evaporates and it could move onto the
land area.

In order to make this work, the drawing must be used to identify objects, vari-
ables and processes that will be components of the model. In our drawing there are
objects recognizable as containers of water (the sea, clouds above the sea, clouds
above the land, the river). Each of these objects has a pictorial representation.
Moreover, there are processes such as heating the sea water, transporting water
through wind or flow, and rain. These processes are represented as arrows (such as
the wind) or icons (such as the raindrops). An executable model would require
formulation in terms of variables and relations (such as computational functions or
differential equations). In the system dynamics formalism, this would come down
to stocks (variables that represent a state of a container (e.g. the amount of water in
a cloud), a flow, representing the rate of change of one or two states (e.g. water
evaporating from the sea influences the amount of water in the sea as well as the
amount of water in the clouds), or an influence, such as the temperature of the sea
water influencing the evaporation rate.

Understanding learners’ drawings can be supported by a system that under-
stands the drawing to a certain extent. For such support to work it is necessary that

Using Drawings in Knowledge Modeling and Simulation for Science Teaching 253

the system (1) recognizes elements in the drawing, (2) enters a dialogue with the
learner about the meaning of these elements and helps formalizing them into a
model and (3) supports the simulation based on the model. The purpose of such a
support system would be to bring modeling approaches within the reach of stu-
dents that have not been trained in formal modeling techniques. Also drawings
can support beginning modelers in learning such a formalism and potentially also
help experienced modelers in dealing with models of complex systems. The next
section will elaborate on the details of this support.

12.2.1 Converting a Drawing into a Model

To achieve the kind of support mentioned in the previous chapter, and to integrate
sketching and modeling, a number of different approaches are being implemented
and evaluated. As we aim for a generic, domain-independent modeling support,
there will be no single, ideal solution, but a number of different approaches will
act together to provide flexible, yet powerful assistance to the learner. In the fol-
lowing, various approaches are introduced and discussed. Together they form a
step-by-step plan to generate a model out of a learner’s drawing.

12.2.2 Segmentation and Grouping

To identify distinct objects in a drawing, clustering algorithms or Bayes classifica-
tion constitute appropriate techniques. Taking into account information on time,
location, color and thickness of each stroke, collections of strokes that belong to-
gether can be automatically detected.

This can be regarded as a preparatory step and support for the learner to
identify relevant objects in a sketch. First experiences, which are described and
illustrated in detail in the next chapter, showed that the results of automatic seg-
mentation approaches are promising, but that this approach is also dependent on
the learner’s individual drawing style and needs to allow for users’ interaction and
intervention, e.g. by querying for ambiguous parts of a drawing or by providing
manual segmentation and grouping features.

12.2.3 Sketch Recognition and Labeling

A number of sketch recognition systems have been developed and are used in
learning and teaching settings) (Alvarado and Lazzareschi 2007; Hammond and
Davis 2003; LaViola and Zeleznik 2004), and the increased spreading of pen-
based devices, like Tablet PCs, PDAs and smartphones, recently promoted their
usage. However, the available applications either focus on recognizing elements
from specific domains, like logic diagrams (Alvarado and Lazzareschi 2007), let-
ter recognition (Koile et al. 2007) or they aim at the beautification of strokes as in
(Paulson and Hammond 2008).

When dealing with arbitrary sketches of varying domains, no currently
available approach would be able to recognize elements of domain-independent

254 W.R. van Joolingen, L. Bollen, and F.A.J. Leenaars

drawings. For example, the trees, the sea and the clouds in Fig. 12.1 are not identi-
fiable with reasonable effort. Still, sketch recognition approaches as proposed in
(Tracy Hammond & Davis, 2003) are expected to be helpful to find basic and
typical elements like arrows, geometric shapes, connecting lines, etc. that can be
used in combination with grouping and labeling approaches as described in the
next sections.

Labeling is a manual way to add descriptive tags to elements of a drawing, as
shown in Fig. 12.3 below. Adding labels serves two purposes: (1) It helps a
learner to externalize his ideas and to think about the meaning and characteristics
of his sketch, and (2) it may be used to automatically deduce initial, draft models
from a drawing, using the labels as variables and parameters. A leaner may be in-
structed to use labels in a specific way, as mentioned above.

12.2.4 Model Generation

Once recognized, either through automatic recognition or manual labeling by the
learner, the various components need to be converted into elements of a computa-
tional model, and be connected in such a way that an executable model emerges.
Such an approach has been already used in the qualitative modeling system GARP
(Bouwer and Bredeweg 2001) that employs the idea of connecting model frag-
ments into complete models. Using a model fragment for each of the identified
sketch components, qualitative or quantitative attributes can be assigned to each of
them. For instance, to the component representing the sea in Fig. 12.1, a tempera-
ture and an evaporation rate can be assigned. Arrows in the figure can be used to
identify the way the fragments need to be linked together.

12.2.5 Integration of Modeling and Drawing

The techniques mentioned in the previous sections aim at facilitating a tight inte-
gration of drawing and modeling. Elements from a learner’s drawing are used to
create an initial model and serve as a starting point for the learner’s modeling ac-
tivities. In reverse, a drawing illustrates a model and is able to provide additional
information that cannot be expressed in a formal modeling language. Furthermore,
first study results indicate that creating a drawing in addition to modeling or text-
writing activities can particularly activate learners’ prior knowledge.

Fig. 12.1 and Fig. 12.2 intuitively illustrate this argumentation: The drawing, as
an external representation of a learner’s knowledge, depicts a complex phenome-
non and “tells a story”. It could be used in a presentation, for own recollection or
to explain the issue to peers. Even more, the drawing contains elements that are
relevant for the water cycle and weather in general, e.g. the trees and the moun-
tains, but that are lacking in the model. In the system dynamics model, though,
other (quantitative and temporal) aspects are represented, e.g. the simulation and
the graphs explain why it is raining periodically and not permanently, as could be
guessed from the drawing.

Using Drawings in Knowledge Modeling and Simulation for Science Teaching 255

A complementary approach to the one outlined above is CogSketch by Forbus
(Forbus & Usher, 2002). In contrast to the approach proposed here, in CogSketch the
learner explicitly indicates the individual objects in the drawing by creating so-called
“glyphs”. A glyph can then be labeled and assigned to pre-defined objects from a
given knowledge-base. As there is no sketch-recognition feature in CogSketch, it is
possible to have large discrepancies between the sketched glyph and the assigned ob-
ject, that is the glyph does not have to look like the object represented.

CogSketch, however, provides interesting capabilities in terms of reasoning
with spatial relationships between drawing elements. Such relationships can be
exploited in identifying relations between objects that need to be included in the
model. As a consequence, it is possible to provide tutorial support in the form of
prompts based on spatial features of the sketch. In a nutshell, we expect that a
strong integration of drawing and modeling is beneficial for prior knowledge acti-
vation, knowledge externalization and modeling activities.

12.3 Supportive Technologies and First Results

In the current section, the above mentioned supportive technologies for segmenta-
tion, labeling, sketch recognition, and model integration will be picked up again
and first results will be described.

12.3.1 Grouping and Labeling

For grouping and labeling we performed an exploratory study to gain insight into
the way students represent real world systems as freehand drawings. The study
deals specifically with drawings created for the purpose of answering questions
about certain variables and relations in the described system. Results of this study
lead to the following questions:

• How are described systems commonly represented by students?
• How do students use labels in their drawings and how could these labels be

used by the system?
• Can these drawings be automatically segmented?

12.3.1.1 Study Setup

Ten participants used a graphics tablet to create their drawings. They worked in a
specifically created sketch collection environment, which integrates drawing, la-
beling and simulation tools. The simulation tool was based on SimQuest (van
Joolingen and de Jong 2003; van Joolingen et al. 1997). Descriptions of real world
systems were presented to participants as short case texts along with a simulation
that allowed participants to manipulate a number of variables. Extensive logs were
kept of all the participants’ actions in this application. This environment also of-
fered tutorials to familiarize participants with both the graphics tablet and the
software. Figure 12.3 shows a screenshot of this environment.

256 W.R. van Joolingen, L. Bollen, and F.A.J. Leenaars

When participants felt comfortable working in this environment, they were
asked to create sketch representations of two real world systems. The first system
consisted of a toy car with a small engine that was connected to a table with a rub-
ber band. The second system concerned a house, leaking energy to its environ-
ment, heated by a radiator that was controlled by a thermostat. Participants were
then asked to add labels to those parts of their drawing that they believed had an
effect on a specified variable. An English translation of the first case text is given
below. The second case text was similar in length and amount of detail.

“A toy car is connected to a table leg with a rubber band. The car contains a
small engine that produces a constant forward force on the car. The engine is
switched on and the car starts to move away from the table leg, causing the rubber
band to be pulled tight. Because the rubber band pulls the car backwards, the car
may start to oscillate, but it is also possible that it slowly comes to a halt without
oscillating. Make a sketch of this situation and use labels to identify those parts of
your drawing that have an effect on whether or not the car will oscillate. Decide
whether the variables mentioned below are relevant, and try to think of as many
other relevant variables as possible.”

An implementation of the locally scaled density based clustering (LSDBC) al-
gorithm, as described in (Biçici and Yuret 2007), was used to locate clusters in the
participants’ drawings. Each point in the drawing was defined by its X, Y and time
coordinates.

Fig. 12.3 Screenshot of the sketch collection environment. The right side of the picture
shows a short case description and a simulation, the left side shows a labeled sketch that
was drawn based on this information

Using Drawings in Knowledge Modeling and Simulation for Science Teaching 257

12.3.1.2 Results

First results show that although there was quite some variety in the way partici-
pants represented the described systems, there were many similarities as well.
About half the participants drew a solid house, while the other half drew a house
that was ‘see-through’, so they could show the thermostat and radiator. Another
interesting pattern was that all participants represented the table / rubber band / toy
car system with the table on the left side and the car driving away to the right.
While interesting in itself, this is the kind of result that could be very useful for
distinguishing and identifying objects in an automated system.

Participants used labels to indicate which parts of their drawings they believed
had an influence on a specified variable. Labels were not used to identify other ob-
jects that were drawn. For example the tree in Figure 12.3 is not labeled because it
is not believed to influence the temperature in the house, but the window (specifi-
cally the surface area of the window) is labeled. During the course of the study
participants were asked to give more information in the labels. E.g. instead of just
mentioning that the surface area of the windows affects the temperature in the
house, participants were later asked to write in more detail about the direction of
this effect. When labels are used to identify as many objects as possible in the
drawing, this can be of great help during clustering and sketch recognition. During
the clustering phase, the labels can serve as seed points for the clustering algo-
rithm and the text in the labels can be scanned for domain specific words to help
in the sketch recognition phase. For instance, if a label containing the string ‘win-
dow’ is used to identify a rectangular shape; this is quite strong evidence that this
shape in fact represents a window. A drawback of this approach is that it would
require domain specific lexicons containing description strings of the objects to be
recognized.

Other interesting results have already been found by the clustering algorithm,
which was at times able to very accurately detect different parts of the drawing.
Figure 12.4 shows the results of applying the LSDBC algorithm to four different
drawings of a toy car connected to a table with a rubber band. The clustering algo-
rithm accurately detected different parts of the sketch in all but the bottom-right
drawing. The algorithm was able to distinguish the rubber band from the table by
using time information. While this leads to good results when the drawing order is
table – car – rubber band, it fails when the drawing order is table – rubber band –
car, as it was in the bottom-right drawing. The current clustering algorithm could
be further improved by using color and stroke information.

Recent developments used the participants’ drawings as training data for a Na-
ïve Bayes Kernel Distribution approach, using the RapidMiner / YALE libraries
(Mierswa et al. 2006). This approach turned out to be more accurate than the
LSDBC clustering approach to identify distinct objects in a sketch.

12.3.2 Sketch Recognition

Once partitioned into separate segments, the objects that have been found need to
be identified as components of a model. The approach used for this is based on

258 W.R. van Joolingen, L. Bollen, and F.A.J. Leenaars

Fig. 12.4 Four drawings of a toy car connected to a table by a rubber band. The colors were
added by the clustering algorithm, with each color representing a different cluster.

creating a large library of model elements that can cover a number of domains. In
the examples listed above, elements could be, for instance, house, car, or cloud.
Apart from manual labeling by students, there are two ways in which shapes can
be recognized. The first is based on the sketch recognition algorithm as devised by
Hammond (Hammond & Davis, 2005; Paulson & Hammond, 2008). This algo-
rithm identifies elementary shape elements such as lines, ellipses and spirals.
These elements can be combined into more complex shapes such as squares, ar-
rows and more by specifying rules in the LADDER language (“Language for De-
scribing Drawing, Display, and Editing for use in sketch Recognition”). LADDER
rules use concepts such as above/below, perpendicularity of lines, joint points etc.
These complex shapes can again be reused to define even more complex shapes.
For instance, a house can be defined in terms of a rectangle, with a triangle on top
of it. A rectangle in its turn is defined as four lines, that meet in four points under
straight angles. As we are dealing with freehand drawings, all rules include an
amount of tolerance. However, as a trade-off, the more objects you define, the less
tolerant your rules have to be to avoid ambiguity. As a consequence, a drawing
has to be very accurate to be still recognizable.

A second approach for sketch identification would be using a database of draw-
ings that are manually classified and, using data mining techniques, match the
characteristics of a learner’s drawing to that database. For this, basic shapes such
as horizontal and vertical strokes, ellipses, etc. still need to be classified, but there
is no need for defining the complex shapes. It may be expected that data mining
techniques prove less sensitive to variation in details of the drawing (for instance
to the exact shape of a cloud) and more tolerant to mistakes than those based on
pure shape recognition.

Using Drawings in Knowledge Modeling and Simulation for Science Teaching 259

12.3.3 Converting a Drawing into a Model

To achieve the kind of support mentioned in the previous chapter, and to integrate
sketching and modeling, a number of different approaches are being implemented
and evaluated. As we aim for a generic, domain-independent modeling support,
there will be no single, ideal solution, but a number of different approaches will
act together to provide flexible, yet powerful assistance to the learner. In the fol-
lowing, various approaches are introduced and discussed. Together they form a
step-by-step plan to generate a model out of a learner’s drawing.

Fig. 12.5 A simple drawing in the domain of heating a house. The coloring originates from
automatic grouping, the labels stem from automatic shape recognition

In a trial with data collected from the students in the study described above, a
LADDER-based algorithm was capable of positively identifying shapes such as
house, sun and arrow. The main addition to the standard LADDER algorithm was
that the recognition took place after partitioning the drawing into distinct, smaller
objects. The advantage of this approach is that interference of different shapes is
avoided, and that parts of the shape (e.g. a window in the house) that are not part
of the definition can be included in the shape. This allows for a ‘loose’ definition
of shapes, e.g. the house reducing to just four lines that indicate two walls and a
roof. This results in a very accurate recognition of shapes, as is shown in Figure
12.5. The robustness of this approach needs to be tested on larger shape libraries
with more shapes.

260 W.R. van Joolingen, L. Bollen, and F.A.J. Leenaars

12.3.4 Model Generation

The final stage in creating an executable model out of the drawing is to link the
shapes, identify partial models and to create causal and computational links be-
tween the components. In this approach we assume that the system as a whole can
be modeled in ordinary differential equations (ODE). ODEs are suitable to model
many systems, and modeling systems such as System Dynamics base themselves
on ODEs. This approach will not cover all systems (in particular discrete systems
such as cellular automata would be excluded) but we! believe similar approaches
could be found for such systems as well.

ThermalBody

canConnectTo neighbouringBody : ThermalBody (0..N)

properties

public property Temperature : temperature (K)

internal property HeatCapacity : thermalcapacity (J/K)

internal property ThermalEnery : energy (J)

connection(neighbouringBody) property HeatLossCoefficient :

thermalpower (W/K)

equations

Temperature = ThermalEnergy / HeatCapacity

Var TotalHeatLoss =

SUM-OVER-ALL(neighbouringBodies) {

(self<->neighbouringBody).HeatlossCoefficient *

neighbouringBody.Temperature – Temperature

}

dThermalEnergy/dt = TotalHeatLoss

end ThermalBody

Fig. 12.6 Model fragment identifying a thermal body

The basic idea behind the model generation is the use of model fragments and
connectors. For the example of the house heating this will be explained. First of
all, an object such as house as identified by the sketch recognition mechanism is
hardly useful for modeling. In order to make it useful, physical properties have to
be added. This is done by creating a hierarchical ontology that can classify a house
as a thermal-body, that associates with a model fragment that identifies the proper-
ties of that physical object as well as the connections it can have to other objects.
These connections in their turn can have properties of their own. In Fig. 12.6 the
model fragment for a thermal body is given. Note statements that specify that a
thermal body can connect to any number of other thermal bodies, representing the
exchange of heat. This adds flexibility compared to standard functional block ap-
proaches in which the number of connections is fixed for each object. Also each
connection can have its unique properties, in this case the heat loss coefficient that
determines how much heat is transferred over the link per unit of time.

Using Drawings in Knowledge Modeling and Simulation for Science Teaching 261

Based on the layout of the drawing, model fragments can be combined. For in-
stance, let us assume that we model a system consisting of a house and its
environment. From the drawing a connection between the environment (ENV) and
the house (HOUSE) can be inferred. This means that two thermal object model
fragments can be instantiated, including a link between them. This instantiation
leads to the set of equations that is presented in Fig. 12.7. This is a set of two
ODE’s and four algebraic equations that can be fed into a simulation engine such
as available in – for instance – the SimQuest simulation system (van Joolingen &
de Jong, 2003).

HOUSE.Temperature = HOUSE.ThermalEnergy / HOUSE.HeatCapacity
HOUSE.TotalHeatLoss = (HOUSE<->ENV).HeatlossCoefficient

*(ENV.neighbouringBody.Temperature – HOUSE.Temperature)
dHOUSE.ThermalEbergy/dt = HOUSE.TotalHeatLoss
ENV.InsideTemperature = HOUSE.ThermalEnergy / HOUSE.HeatCapacity
ENV.TotalHeatLoss = (ENV<->HOUSE).HeatlossCoefficient *

(HOUSE.neighbouringBody.Temperature – ENV.Temperature)
dENV.ThermalEbergy/dt = ENV.TotalHeatLoss

Fig. 12.7 Set of equations that can be generated from a drawing

This – relatively simple – example shows how the final step from drawing to
model can be made. For more complex systems, of course the number of elements
and links will grow, but given the complexity of an average drawing, we do not
expect computational problems.

12.4 Conclusion and Outlook

In the preceding sections we presented a means of deriving a computational model
from a more or less systematic drawing made by a learner. The foreseen benefits
are twofold, aiming at the different levels of knowledge modeling addressed in
this paper. For the level in which the learner models his own knowledge, generat-
ing a simulation based on that knowledge can have a positive effect on the learn-
ing process. Learners will be confronted with the consequences of their own ideas,
and will be able to adapt these ideas based on this confrontation.

The approach we sketch here extends the possibility of generating computa-
tional models beyond using standard modeling languages such as system dynam-
ics, LOGO or NetLogo. Instead of asking learners to learn a representational for-
malism, we create a system that generates formal models from the representations
that learners create spontaneously. The advantages are that (1) in this way the idea
of modeling by learners can have a wider application beyond that within dedicated
modeling systems and (2) the system can make more extended use of the informa-
tion it retrieves from learner generated data such as diagrams and models.

An example of the latter would be that the system simulates a learner’s model
and compares the results with the data that learners obtain from the simulation.

262 W.R. van Joolingen, L. Bollen, and F.A.J. Leenaars

Presenting both simulation results and indicating the differences can result in a
dialogue with the learner. Agents in the learning environment can use this infor-
mation to adapt the learning environment, and for instance suggest experiments
that provoke thought on their misconceptions, in the line of Posner and colleagues
(Posner et al. 1982). This can best be illustrated by an example. A common mis-
conception in astronomy is that the seasons are caused by the earth being closer to
the sun in summers than in winters. This a misconception that can easily be picked
up from a drawing. Agents can then respond in several ways:

• Tell the learner that the reality is different.
• Ask questions about the misconception and especially what this would mean

for the times of seasons for the northern and southern hemispheres.
• Generate a simulation and run it to show that this would also mean that the

summer would become shorter and that the temperature on the whole earth
would rise and fall.

The option that would be chosen would be dependent on the pedagogical strat-
egy, and on the level of the learner, but it is clear how the sketch-based modeling
would enlarge the repertoire of ITSs, by extending the possibilities for diagnosis
and feedback, including simulation-based feedback.

The work presented here is in progress. The segmentation part is up to a level
that it can be used in practice. The recognition step can be covered for simple
shapes, but there is a need for building and analyzing a large corpus of drawings to
extract rules for more complex shapes than houses and suns. Once the corpus has
been built, data mining techniques can be used to create and test classification
rules. In the long run this should lead to a large library and ontology of learner
generated shapes that can be used for identification of drawings, and become a
learning system when it is also fed with the results of manual labeling by learners
and experts.

The model generation part, finally, is rather straightforward once the shapes
and their relations have been identified. Equations like the ones generated in the
example presented above can be processed with existing simulation engines such
as those available for SimQuest (van Joolingen and de Jong 2003). However,
identifying relations is tricky, and strongly dependent on the way learners repre-
sent them. So far we need to rely on pre-stored relations and drawn arrows by
learners.

In the long run, the outlook for drawing based modeling systems is that they
can form an integrated part of inquiry-based environments that offer intelligent
support for the learner. A traditional issue in Intelligent Tutoring Systems, includ-
ing those based on inquiry learning, such as Co-Lab (van Joolingen et al. 2005)
and SCY (de Jong et al. in press) is that of estimating the learners’ knowledge
level. The way we use drawings as described in this chapter provides a natural in-
put for the knowledge modeling systems Drawings can form an excellent means
of sharing and communicating knowledge, with fellow learners as well as with the
tutoring system. If drawings can be augmented by a simulation, the learning envi-
ronment can become a partner in the learning process, by detecting and acting

Using Drawings in Knowledge Modeling and Simulation for Science Teaching 263

upon misconceptions, similarities and differences between drawings by several
learners. As such we believe that drawing-based modeling will provide a valuable
addition to the repertoire of ITS design.

References

Alessi, S.M.: The Application of System Dynamics Modeling in Elementary and Secondary
School Curricula. Paper presented at the Conference of the Red Iberoamericana de In-
formática Educativa, RIBIE, Vina del Mar, Chile (2000)

Alvarado, C., Lazzareschi, M.: Properties of Real-World Digital Logic Diagrams. Paper
presented at the Proceedings of 1st International Workshop on Pen-based Learning
Technologies, PLT 2007, Catania, Italy (2007)

Biçici, E., Yuret, D.: Locally Scaled Density Based Clustering. In: Beliczynski, B.,
Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431,
pp. 739–748. Springer, Heidelberg (2007)

Bliss, J.: From mental models to modelling. In: Mellar, H., Bliss, J., Boohan, R., Ogborn,
J., Tompsett, C. (eds.) Learning with Artificial Worlds: Computer Based Modelling in
the Curriculum. The Falmer Press, London (1994)

Bollen, L., Hoppe, H.U., Milrad, M., Pinkwart, N.: Collaborative Modeling in Group
Learning Environments. Paper presented at the Proceedings of the XXth International
Conference of the System Dynamics Society, Palermoy, Italy (2002)

Bouwer, A., Bredeweg, B.: VisiGarp: Graphical Representation of Qualitative Simulation
Models. Paper presented at the Proceedings of 10th International Conference on Artifi-
cial Intelligence in Education, AI-ED 2001, San Antonio, Texas (2001)

de Jong, T., van Joolingen, W.R., Anjewierden, A., Bollen, L., d’Ham, C., Dolonen, J., et
al.: Learning by creating and exchanging objects: the SCY experience. British Journal of
Educational Technology (in press)

Ergazaki, M., Zogza, V., Komis, V.: Analysing Students’ Shared Activity while Modeling a
Biological Process in a Computer-Supported Educational Environment. Journal of
Computer Assisted Learning 23(2), 158–168 (2007)

Feurzeig, W., Roberts, N.: Modeling and simulation in science and mathematics. Springer,
New York (1999)

Forbus, K.D., Usher, J.: Sketching for Knowledge Capture: A Progress Report. Paper pre-
sented at the IU 2002, San Francisco (2002)

Hammond, T., Davis, R.: LADDER: A Language to Describe Drawing, Display, and Edit-
ing in Sketch Recognition. Paper presented at the Proceedings of International Joint
Conference on Artificial Intelligence, Hyderabad, India (2003)

Hammond, T., Davis, R.: Ladder, a Sketching Language for User Interface Developers.
Computers & Graphics 29, 518–532 (2005)

Koile, K., Chevalier, K., Low, C., Pal, S., Rogal, A., Singer, D., et al.: Supporting Pen-
Based Classroom Interaction: New Findings and Functionality for Classroom Learning
Partner. Paper presented at the 1st International Workshop on Pen-Based Learning
Technologies, PLT 2007, Catania, Italy (2007)

LaViola, J., Zeleznik, R.: MathPad: A System for the Creation and Exploration of Mathe-
matical Sketches. ACM Transactions on Graphics (Proc. SIGGRAPH) 23(3) (2004)

264 W.R. van Joolingen, L. Bollen, and F.A.J. Leenaars

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping
for Complex Data Mining Tasks. Paper presented at the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD 2006 (2006)

Novak, J.D.: Learning, creating and using knowledge: Concept map TM as facilitative tools
in schools and corporations. Lawrence Erlbaum Associates Inc., Mahwah (1998)

Paulson, B., Hammond, T.: Accurate Primitive Sketch Recognition and Beautification. Pa-
per presented at the Proceedings of the International Conference on Intelligent User In-
terfaces, IUI 2008, Canary Islands, Spain (2008)

Penner, D.E.: Cognition, Computers, and Synthetic Science: Building knowledge and
meaning through modelling. Review of Research in Education 25, 1–37 (2001)

Posner, G.J., Strike, K.A., Hewson, P.J., Gertzog, W.A.: Accomodation of a scientific con-
ception: Towards a theory of conceptual change. Science Education 66(2), 211–227
(1982)

Schwarz, C.V., Meyer, J., Sharma, A.: Technology, Pedagogy, and Epistemology: Oppor-
tunities and Challenges of Using Computer Modeling and Simulation Tools in Elemen-
tary Science Methods. Journal of Science Teacher Education 18(2), 243–269 (2007)

Sins, P.H.M., Savelsbergh, E.R., van Joolingen, W.R.: The Difficult Process of Scientific
Modelling: An analysis of novices’ reasoning during computer-based modelling. Inter-
national Journal of Science Education 27(14), 1695–1721 (2005)

van Joolingen, W.R., de Jong, T.: SimQuest: Authoring educational simulations. In:
Murray, T., Blessing, S., Ainsworth, S. (eds.) Authoring tools for advanced technology
educational software: Toward cost-effective production of adaptive, interactive, and in-
telligent educational software. Kluwer Academic Publishers, Dordrecht (2003)

van Joolingen, W.R., de Jong, T., Lazonder, A.W., Savelsbergh, E.R., Manlove, S.: Co-
Lab: research and development of an online learning environment for collaborative sci-
entific discovery learning. Computers in Human Behavior 21(4), 671–688 (2005)

van Joolingen, W.R., King, S., de Jong, T.: The SimQuest Authoring System for Simula-
tion-Based Discovery Learning. Paper presented at the Proceedings of the International
Conference on Artificial Intelligence and Education, AIED 1997 (1997)

Van Meter, P., Garner, J.: The Promise and Practice of Learner-Generated Drawing: Litera-
ture Review and Synthesis. Educational Psychology Review 17(4), 285–325 (2005)

Wilensky, U., Reisman, K.: Thinking Like a Wolf, a Sheep, or a Firefly: Learning Biology
Through Constructing and Testing Computational Theories — An Embodied Modeling
Approach. Cognition and Instruction 24(2), 171–209 (2006)

Wilensky, U., Resnick, M.: Thinking in Levels: A Dynamic Systems Approach to Making
Sense of the World. Journal of Science Education and Technology 8(1), 3–19 (1999)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

