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Agenda
• Artificial neuron
• Activation function
• Feedforward neural networks
• Forward calculation
• Loss function
• Backpropagation
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Neuron
http://cs231n.github.io/neural-networks-1/ 
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Neural networks and Boolean operators
• The operator AND can be represented by a single 

neuron. 
• Activation function: Heaviside function: 0 if the weighted 

sum is smaller then the number in the neuron, 1 
otherwise.
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Neural networks and Boolean operators
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x0 x1 AND Output
0 0 1*0+1*0 < 1.2 0
0 1 1*0+1*1 < 1.2 0
1 0 1*1+1*0 < 1.2 0
1 1 1*1+1*1 ≥ 1.2 1



Neural networks and Boolean operators
• The operator XOR cannot be represented by a single 

neuron. A second neuron is needed.
• Activation function: Heaviside function: 0 if the weighted 

sum is smaller as the number in the neuron, 1 otherwise.
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Neural networks and Boolean operators
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x0 x1 XOR Output
0 0 1*0+1*0 < 1.2 0 1*0+1*0+ -2*0 < 0.6 0
0 1 1*0+1*1 < 1.2 0 1*0+1*1+ -2*0 ≥ 0.6 1
1 0 1*1+1*0 < 1.2 0 1*1+1*0+ -2*0 ≥ 0.6 1
1 1 1*1+1*1 ≥ 1.2 1 1*1+1*1+ -2*1 < 0.6 0



Activation functions
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Activation functions
• Rectified Linear Units (ReLu):

https://cs231n.github.io/neural-networks-1/#classifier
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Activation functions: squashing functions

https://cs231n.github.io/neural-networks-1/#classifier
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Feedforward neural networks 
http://cs231n.github.io/neural-networks-1/

11



Hands-On: Forward Calculation  
• https://mattmazur.com/2015/03/17/a-step-by-step-
backpropagation-example/
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Hands-On: Forward Calculation 1 
• Calculate the output of neuron h1 for the inputs (0.05, 

0.1) and the sigmoid function f(x) = !
!"#$%
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Hands-On: Forward Calculation 1 
• Calculate the output of neuron h1 for the inputs (0.05, 

0.1) and the sigmoid function f(x) = !
!"#$%

14



Hands-On: Forward Calculation 1 
• Input h1 = 0.05*0.15 + 0.10*0.25 + 0.35 = 0.3775 
• f(x) = !

!"#$%.'(() = 0.5932
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Hands-On: Forward Calculation 2 
• Calculate the output of neurons o1 and o2 for the inputs 

(0.05, 0.1) and the sigmoid function f(x) = !
!"#$%
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Hands-On: Forward Calculation 2 
• Input h2 = 0.05*0.20 + 0.10*0.30 + 0.35 = 0.3925 
• f(x) = !

!"#$%.'()* = 0.5968
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Hands-On: Forward Calculation 2 
• Input o1 = 0.5932*0.40 + 0.5968*0.50 + 0.60 = 1.1059 
• Out o1 = !

!"#$%.%'() = 0.7514, Out o2 = !
!"#$%.**+) = 0.7729
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Universal approximation theorem
“a feedforward network with a linear output layer and at 
least one hidden layer with any “squashing” activation
function (such as the logistic sigmoid activation function) 
can approximate any Borel measurable function from one
finite-dimensional space to another with any desired non-
zero amount of error, provided that the network is given
enough hidden units.... A neural network may also 
approximate any function mapping from any finite 
dimensional discrete space to another.“

Deep Learning; Ian Goodfellow, Yoshua Bengio, Aaaron Courville; MIT
Press; 2016. P. 198
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Feedforward neural networks
Structure must be chosen:

Number of inputs, of hidden layers, of
neurons per hidden layers, activation
function, output function, loss function etc. : 
the hyperparameters; 
Training costly (also in energy)

In the training, the weights are learned
(stochastic gradient descent, backpropagation
algorithm)
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Feedforward neural networks
Can be fooled!

Experiment with 10 000 parabola and random
points (5000 each):

Class        x         y
Parabola, 37.66, 1418.25
Random, 84.65, 222.071

1 hidden layer with 3 units and a bias neuron.
If shuffled, accuracy 95%.
If not shuffled and all random points first: 
accuracy 75%.
If not shuffled and all parabola points first: 
accuracy 50%. 21



Training loop [Cholet p.49]
Draw a batch of training samples x with class T
Run the network on x to obtain output O
Compute the loss of the network, i.e. mismatch
between O and T
Compute the gradient of the loss
Update the weights

Repeat till termination condition: the errors do 
not change or the loss is small enough
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Hands-On – Compute the loss (Mean Squared Error)
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Gradient of the loss: Why?
If the loss is not 0, how do we know whether we
should increase a weight or decrease it? 
We need to know whether our overall function is
ascending (weight should be decreased) or
descending (weight should be increased).
For a simple function f: R → R, the derivative 
gives this information.
For a complex function f: Rn → Rm, the gradient
gives this information,
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Gradient of the loss: Why?

25Mathematics of Machine Learning p. 141



Gradient of the loss: Why?
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Backpropagation
Uses partial derivatives and the chain rule to
calculate the change for each weight efficiently.
Starts with the derivative of the loss function and
propagates the calculations backwards. 
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Hands-On – Backpropagation 
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Hands-On: Backpropagation
Partial derivatives with respect to !5:
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Hands-On: Backpropagation

Loss  = !" #1 − &1 2 + !
" #2 − &2 2

)*+,,
)-! = !" ∗ 2(#1 − &1) ∗ -1 = -(T1 − &1)= 0.7414

T1 : 0.01 and &1: 0.7514
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Hands-On: Backpropagation

!1 = #
#$%&'()*+_-

./#
.01234_# = !1(1 − !1) = 0.7514 (1 − 0.7514)= 
0.1868
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Hands-On: Backpropagation
!"#$%_1 = (5 ∗ +$% ℎ1 + (6 ∗ +$% ℎ2 + 02
123456_7
189 = +$% ℎ1= 0.5932
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Hands-On: Backpropagation
!"#$$
!%& = !"#$$

!'( ∗ !'(
!*+,-./

∗ !*+,-._(!%&

!"#$$
!%& = 0.7414 ∗ 0.1816 ∗ 0.5932= 0.0821

<5‘ = <5 – = ∗ 0.0821 = 0.4 – 0.5 ∗ 0.0821 =
0.3589
With 0.5 as learing rate.  

33



Feedforward neural networks 
Compact graphical representation: W is the
weights-matrix. Deep Learning; Ian Goodfellow, Yoshua
Bengio, Aaaron Courville; MIT Press; 2016. P. 174
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Feedforward neural networks 
Compact graphical representation: W is the
weights-matrix.
h = g(Wx) h: neurons in the hidden layer, x : 
input, g:  activation function.
Our example W x 

0.15 0.25 0.35
0.2 0.3 0.35 . 0.05 0.1 1
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Neural networks and deep learning
Well-known types of NN:

Convolutional Neural Networks (CNN) –
reduce fully connectedness through the use
of a convolutional operator.
Long Short Term Memory (LSTM) neural
networks – topology is recurrent.

Hidden layers extract increasingly abstract
features from the data
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Neural networks and deep learning
Hidden layers extract increasingly abstract
features from the data – Deep Learning p. 6
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Questions?
Thank you for your attention!
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