
An Introduction to Neural Networks
-

Feedforward NN
Backpropagation

Agathe Merceron
Beuth University of Applied Sciences
Berlin, Germany

1

Agenda
• Artificial neuron
• Activation function
• Feedforward neural networks
• Forward calculation
• Loss function
• Backpropagation

2

Neuron
http://cs231n.github.io/neural-networks-1/

3

Neural networks and Boolean operators
• The operator AND can be represented by a single

neuron.
• Activation function: Heaviside function: 0 if the weighted

sum is smaller then the number in the neuron, 1
otherwise.

4

Neural networks and Boolean operators

5

x0 x1 AND Output
0 0 1*0+1*0 < 1.2 0
0 1 1*0+1*1 < 1.2 0
1 0 1*1+1*0 < 1.2 0
1 1 1*1+1*1 ≥ 1.2 1

Neural networks and Boolean operators
• The operator XOR cannot be represented by a single

neuron. A second neuron is needed.
• Activation function: Heaviside function: 0 if the weighted

sum is smaller as the number in the neuron, 1 otherwise.

6

Neural networks and Boolean operators

7

x0 x1 XOR Output
0 0 1*0+1*0 < 1.2 0 1*0+1*0+ -2*0 < 0.6 0
0 1 1*0+1*1 < 1.2 0 1*0+1*1+ -2*0 ≥ 0.6 1
1 0 1*1+1*0 < 1.2 0 1*1+1*0+ -2*0 ≥ 0.6 1
1 1 1*1+1*1 ≥ 1.2 1 1*1+1*1+ -2*1 < 0.6 0

Activation functions

8

Activation functions
• Rectified Linear Units (ReLu):

https://cs231n.github.io/neural-networks-1/#classifier

9

Activation functions: squashing functions

https://cs231n.github.io/neural-networks-1/#classifier
10

Feedforward neural networks
http://cs231n.github.io/neural-networks-1/

11

Hands-On: Forward Calculation
• https://mattmazur.com/2015/03/17/a-step-by-step-
backpropagation-example/

12

Hands-On: Forward Calculation 1
• Calculate the output of neuron h1 for the inputs (0.05,

0.1) and the sigmoid function f(x) = !
!"#$%

13

Hands-On: Forward Calculation 1
• Calculate the output of neuron h1 for the inputs (0.05,

0.1) and the sigmoid function f(x) = !
!"#$%

14

Hands-On: Forward Calculation 1
• Input h1 = 0.05*0.15 + 0.10*0.25 + 0.35 = 0.3775
• f(x) = !

!"#$%.'(() = 0.5932

15

Hands-On: Forward Calculation 2
• Calculate the output of neurons o1 and o2 for the inputs

(0.05, 0.1) and the sigmoid function f(x) = !
!"#$%

16

Hands-On: Forward Calculation 2
• Input h2 = 0.05*0.20 + 0.10*0.30 + 0.35 = 0.3925
• f(x) = !

!"#$%.'()* = 0.5968

17

Hands-On: Forward Calculation 2
• Input o1 = 0.5932*0.40 + 0.5968*0.50 + 0.60 = 1.1059
• Out o1 = !

!"#$%.%'() = 0.7514, Out o2 = !
!"#$%.**+) = 0.7729

18

Universal approximation theorem
“a feedforward network with a linear output layer and at
least one hidden layer with any “squashing” activation
function (such as the logistic sigmoid activation function)
can approximate any Borel measurable function from one
finite-dimensional space to another with any desired non-
zero amount of error, provided that the network is given
enough hidden units.... A neural network may also
approximate any function mapping from any finite
dimensional discrete space to another.“

Deep Learning; Ian Goodfellow, Yoshua Bengio, Aaaron Courville; MIT
Press; 2016. P. 198

19

Feedforward neural networks
Structure must be chosen:

Number of inputs, of hidden layers, of
neurons per hidden layers, activation
function, output function, loss function etc. :
the hyperparameters;
Training costly (also in energy)

In the training, the weights are learned
(stochastic gradient descent, backpropagation
algorithm)

20

Feedforward neural networks
Can be fooled!

Experiment with 10 000 parabola and random
points (5000 each):

Class x y
Parabola, 37.66, 1418.25
Random, 84.65, 222.071

1 hidden layer with 3 units and a bias neuron.
If shuffled, accuracy 95%.
If not shuffled and all random points first:
accuracy 75%.
If not shuffled and all parabola points first:
accuracy 50%. 21

Training loop [Cholet p.49]
Draw a batch of training samples x with class T
Run the network on x to obtain output O
Compute the loss of the network, i.e. mismatch
between O and T
Compute the gradient of the loss
Update the weights

Repeat till termination condition: the errors do
not change or the loss is small enough

22

Hands-On – Compute the loss (Mean Squared Error)

23

Gradient of the loss: Why?
If the loss is not 0, how do we know whether we
should increase a weight or decrease it?
We need to know whether our overall function is
ascending (weight should be decreased) or
descending (weight should be increased).
For a simple function f: R → R, the derivative
gives this information.
For a complex function f: Rn → Rm, the gradient
gives this information,

24

Gradient of the loss: Why?

25Mathematics of Machine Learning p. 141

Gradient of the loss: Why?

26

Backpropagation
Uses partial derivatives and the chain rule to
calculate the change for each weight efficiently.
Starts with the derivative of the loss function and
propagates the calculations backwards.

27

Hands-On – Backpropagation

28

Hands-On: Backpropagation
Partial derivatives with respect to !5:
Loss = #

$
%1 − (1 2 +

#

$
%2 − (2 2

(1 = #

#+,-./012_4

56789_1 = !5 ∗ ;89 ℎ1 + !6 ∗ ;89 ℎ2 + >2

?@ABB

?CD
= ?@ABB

?E#
∗

?E#

?FGHIJ_#
∗
?FGHIJ_#

?CD

29

Hands-On: Backpropagation

Loss = !" #1 − &1 2 + !
" #2 − &2 2

)*+,,
)-! = !" ∗ 2(#1 − &1) ∗ -1 = -(T1 − &1)= 0.7414

T1 : 0.01 and &1: 0.7514

30

Hands-On: Backpropagation

!1 = #
#$%&'()*+_-

./#
.01234_# = !1(1 − !1) = 0.7514 (1 − 0.7514)=
0.1868

31

Hands-On: Backpropagation
!"#$%_1 = (5 ∗ +$% ℎ1 + (6 ∗ +$% ℎ2 + 02
123456_7
189 = +$% ℎ1= 0.5932

32

Hands-On: Backpropagation
!"#$$
!%& = !"#$$

!'(∗ !'(
!*+,-./

∗ !*+,-._(!%&

!"#$$
!%& = 0.7414 ∗ 0.1816 ∗ 0.5932= 0.0821

<5‘ = <5 – = ∗ 0.0821 = 0.4 – 0.5 ∗ 0.0821 =
0.3589
With 0.5 as learing rate.

33

Feedforward neural networks
Compact graphical representation: W is the
weights-matrix. Deep Learning; Ian Goodfellow, Yoshua
Bengio, Aaaron Courville; MIT Press; 2016. P. 174

34

Feedforward neural networks
Compact graphical representation: W is the
weights-matrix.
h = g(Wx) h: neurons in the hidden layer, x :
input, g: activation function.
Our example W x

0.15 0.25 0.35
0.2 0.3 0.35 . 0.05 0.1 1

35

Neural networks and deep learning
Well-known types of NN:

Convolutional Neural Networks (CNN) –
reduce fully connectedness through the use
of a convolutional operator.
Long Short Term Memory (LSTM) neural
networks – topology is recurrent.

Hidden layers extract increasingly abstract
features from the data

36

Neural networks and deep learning
Hidden layers extract increasingly abstract
features from the data – Deep Learning p. 6

37

References
François Chollet. Deep Learning with Python.
Manning 2018.
Marc Peter Deisenroth, A. Aldo Faisal, Cheng
Soon Ong. The Mathematics of Machine
Learning. https://mml-book.github.io/
Ian Goodfellow, Yoshua Bengio, Aaaron
Courville. Deep Learning. MIT Press; 2016.

38

Questions?
Thank you for your attention!

39

