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Recurrent Neural Network (RNN)

Do you know how Google’s autocomplete feature predicts the rest of the words a user is 
typing ?
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Recurrent Neural Network (RNN)

§ Feed forward  Network (FFN) : 

§ Information flows only in the forward direction. No cycles or Loops

§ Decisions are based on current input, no memory about the past

§ Doesn’t know how to handle sequential data

§ Solution to FFN : Recurrent Neural Network

§ Can handle sequential data

§ Considers the current input and also the previously received inputs

§ Can memorize previous inputs due to its internal memory
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Fig1: RNN  [4]



Recurrent Neural Network (RNN)

§ RNN
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Fig2: An unrolled recurrent neural network [4]

§ Useful in a variety of problems :
§ Speech recognition
§ Image captioning
§ Translation
§ Etc.



Recurrent Neural Network (RNN)

§ Math behind RNN
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§ ht : hidden state at time step t

§ xt : input at time step t

§ Wxh and Why : weight matrices. Filters that determine how much importance to accord to 
both the present input and the past hidden state.  

Fig3: Unfolded RNN [5]
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Long Short Term Memory (LSTM)
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§ A small example where RNN can work perfectly : 
§ Prediction of the last word in the sentence : “The clouds are in the sky”

§ RNN can’t handle situation where the gap between the relevant information and the 
point where it is needed is very large.

§ LSTM can !

Fig4: Problem of RNN [4]



Long Short Term Memory (LSTM)
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§ Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of 
RNN, capable of learning long-term dependencies. Hochreiter & Schmidhuber (1997)

§ All recurrent neural networks have the form of a chain of repeating modules of neural 
network. In standard RNNs, this repeating module will have a very simple structure, such 
as a single tanh layer.

Fig5: The repeating module in a standard RNN contains a single layer [4]

http://www.bioinf.jku.at/publications/older/2604.pdf


Long Short Term Memory (LSTM)

Ange T. 9

§ LSTM have the same chain like structure except for the repeating module.

Fig6: The repeating module in a standard RNN contains a single layer [4]



Long Short Term Memory (LSTM)
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§ The core idea behind LSTMs is the cell state.

§ The LSTM has the ability to remove or add information to the cell state : thanks to gates

§ Gates are composed out of a sigmoid neural net layer and a pointwise multiplication 
operation



Long Short Term Memory (LSTM)
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§ Step-by-Step LSTM Walk Through

• Step 1: Decide what information to throw away from the cell state, forget layer.

• 1 represents “completely keep this” 
• 0 represents “completely get rid of this.”



Long Short Term Memory (LSTM)
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§ Step-by-Step LSTM Walk Through

• Step 2: Decide what new information we’re going to store in the cell state

• Input gate layer : decides which values we will update
• Tanh layer : creates a vector of new candidate values

§ Example : “I grew up in France… I speak fluent French.” 



Long Short Term Memory (LSTM)
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§ Step-by-Step LSTM Walk Through

• Step 3: Update the cell state

§ Example : “I grew up in France… I speak fluent French.” 



Long Short Term Memory (LSTM)
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§ Step-by-Step LSTM Walk Through

• Step 4: Decide what is the output

§ Example : “I grew up in France… I speak fluent French.” 



Long Short Term Memory (LSTM)
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§ Variants of LSTM



Backpropagation Through Time (BPTT) 
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§ Backpropagation:  Uses partial derivatives and the chain rule to calculate the change for 
each weight efficiently. Starts with the derivative of the loss function and propagates the 
calculations backward. 

§ Backpropagation Through Time, or BPTT, is the training algorithm used to update 
weights in recurrent neural networks like LSTMs. 



Long Short Term Memory (LSTM)
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§ The good news !

§ You don’t have to worry about all those intern details when using libraries such as Keras. 



Deep Knowledge Tracing (DKT)
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§ Deep Knowledge Tracing  (DKT) : Application of RNN/LSTM in education

§ Knowledge tracing : modeling student knowledge over time so that we can accurately 
predict how students will perform on future interactions.

§ Recurrent Neural Networks (RNNs) map an input sequence of vectors x1, . . . , xT , to an 
output sequence of vectors y1, . . . , yT . This is achieved by computing a sequence of 
‘hidden’ states h1, . . . , hT.

Fig7: Deep Knowledge Tracing [1] 



Deep Knowledge Tracing (DKT)
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§ How to train a RNN/LSTM on students interactions?

§ Convert student interactions into a sequence of fixed length input vectors xt: one-hot 
encoding of the student interaction tuple ht = {qt, at}. Size of xt = 2M (number of unique 
exercises)

§ Yt is the output : vector of length equal to the number of problems, each entry 
represents the predicted probability that the student would answer that particular 
problem correctly.



Deep Knowledge Tracing (DKT)
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§ Optimization

§ Training objective : negative log likelihood of the observed sequence of student 
responses under the model.

§ δ(qt+1) : the one-hot encoding of which exercise is answered at time t + 1

§ ℓ : binary cross entropy

§ The loss for a single student is :



Attention Mechanism
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§ In psychology, attention is the cognitive process of selectively concentrating on one or a 
few things while ignoring others.



Attention Mechanism
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§ The attention mechanism emerged as an improvement over the encoder decoder-
based neural machine translation system in natural language processing (NLP). Later, this 
mechanism, or its variants, was used in other applications, including computer vision, 
speech processing, etc.

§ Before attention, neural machine translation was based on encoder decoder RNN/LSTM 
(Seq2Seq models). Both encoder and decoder are stacks of LSTM/RNN units. It works in 
the two following steps:

§ The encoder LSTM is used to process the entire input 
sentence and encode it into a context vector, 

§ The decoder LSTM or RNN units produce the words
in a sentence one after another

https://www.analyticsvidhya.com/blog/2019/01/neural-machine-translation-keras/?utm_source=blog&utm_medium=comprehensive-guide-attention-mechanism-deep-learning
https://courses.analyticsvidhya.com/courses/natural-language-processing-nlp?utm_source=blog&utm_medium=comprehensive-guide-attention-mechanism-deep-learning
https://courses.analyticsvidhya.com/courses/computer-vision-using-deep-learning-version2?utm_source=blog&utm_medium=comprehensive-guide-attention-mechanism-deep-learning


Attention Mechanism
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§ The main drawback of this approach :  If the encoder makes a bad summary, the 
translation will also be bad !

§ Long-range dependency problem of RNN/LSTMs :  the encoder creates a bad summary 
when it tries to understand longer sentences.

§ So is there any way we can keep all the relevant information in the input sentences intact 
while creating the context vector?

§ Attention mechanism !
Fig8: attention mechanism applied 
to encoder-decoder [6]



Attention Mechanism
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§ How the attention mechanism work ?

Très               bonne              sauce Très                bonne              sauce

C

Fig9: Seq2seq model without and with attention mechanism 



Attention Mechanism
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§ Attention mechanism in Education

§ DKT + Attention mechanism (Tato et al. 2019)

§ Use attention to incorporate expert knowledge to the DKT

§ Expert knowledge = Bayesian network computed by experts

§ Improve the original DKT if you have external knowledge



Application
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