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ABSTRACT
An increasing number of applications are modeled and an-
alyzed in network form, where nodes represent entities of
interest and edges represent interactions or relationships be-
tween entities. Commonly, such relationship analysis tools
assume homogeneity in both node type and edge type. Re-
cent research has sought to redress the assumption of homo-
geneity and focused on mining heterogeneous information
networks (HINs) where both nodes and edges can be of dif-
ferent types. Building on such efforts, in this work we articu-
late a novel approach for mining relationships across entities
in such networks while accounting for user preference over
relationship type and interestingness metric. We formalize
the problem as a top-k lightest paths problem, contextu-
alized in a real-world communication network, and seek to
find the k most interesting path instances matching the pre-
ferred relationship type. Our solution, PROphetic HEuris-
tic Algorithm for Path Searching (PRO-HEAPS), leverages
a combination of novel graph preprocessing techniques, well
designed heuristics and the venerable A* search algorithm.
We run our algorithm on real-world large-scale graphs and
show that our algorithm significantly outperforms a wide va-
riety of baseline approaches with speedups as large as 100X.
We also conduct a case study and demonstrate valuable ap-
plications of our algorithm.

Keywords
Heterogeneous Information Networks, Semantic Relation-
ship Queries, Graph Algorithms

1. INTRODUCTION
Many learning systems, used in a diverse range of ap-

plication domains such as semantic search, financial fraud
detection, intelligence gathering, root-cause analysis of dis-
tributed systems, recommendations, contextualization, per-
sonalization of services, biological networks, security, etc.,
rely on mining Heterogeneous Information Networks (HINs)
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that have semantic labels on vertices and/or edges. HINs are
particularly useful in applications where information from
diverse sources must be linked and mined in a holistic way.
Mining such networks has also attracted a lot of academic
interest in recent years (e.g., [28, 30, 29, 26, 22]).
A fundamental problem in mining heterogeneous informa-

tion networks is to find interesting (possibly complex and
derived) relationships between entities that are modeled as
vertices in the heterogeneous graph. Past literature on min-
ing the relationship between entities either builds on homo-
geneous networks [9, 31] or performs generic mining of het-
erogeneous networks [10] without taking into consideration
the specific type of relationship that an application/user is
searching. When used in real applications involving HINs,
such techniques often end up in discovering trivial and/or
non-interesting relationships. Thus, there is a need for tech-
niques that can discover semantic relationships – queries
where the search is focused on a particular type of rela-
tionship that is specified using a sub-graph with semantic
vertex and edge labels.
In addition to the advantage of returning only the rela-

tionship instances that the user actually cares about, we
show that specifying semantic query patterns also enables
an application developer to prune the search space of pos-
sible relationship instances and thereby support queries in
near real-time. In cases where even the elimination of irrele-
vant relationship instances (that do not match the specified
semantic pattern) still leaves a plethora of matches, a user
can specify a ranking metric to further prioritize the search
results. For instance, Figure 1 shows a real-world example of
a heterogeneous network modeling the communication be-
tween different people. These people use various explicit
channels for communication – Emails, SMS, phone calls –
which are modeled as vertices in this network. One may
further supplement explicit information with implicitly de-
rived information (e.g., conversation topics) using standard
NLP tools. An analyst may be interested in indirect com-
munication between two people, such as Person 1 sending
an email to an intermediate person who then calls Person 2.
Among all such instances, the analyst may be interested in
prioritizing the most recent communication exchanges.
In this paper, we present an algorithm for prioritized re-

lationship mining, where the prioritization lies in both the
relationship type and the interestingness metric over the re-
lationship. The relationship type is defined in terms of a path
pattern (or more generally as a sub-graph pattern) between
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Figure 1: Communication Network: different icons represent
person, email address, email message, phone number, etc.1

entities and the detailed interpretation of this relationship
will be inferred from the semantic labels and other attributes
on vertices and edges of path instances. The interestingness
metric over the relationship is captured by a weight function
on the edges of the graph. For instance, the analyst’s query
for the indirect communication (as mentioned above) be-
tween Person 1 and Person 2 in Figure 1 can be modeled by
the path pattern: (Person 1) → → → → →
→ → → (Person 2). The interestingness metric of re-
cency can be captured by a weight function where the weight
of the edges (eg. → ) is exponential to the difference
between the current time and the time of communication.
We then formalize the problem as top-k lightest paths prob-
lem, targeting the top-k lightest loopless paths between the
entities , matching the path pattern (see Section 2.1).
The problem of finding the (top-k) lightest loopless path,

matching a pre-specified pattern, is NP-hard and further-
more, simple heuristics and straightforward approaches are
unable to efficiently solve the problem in real time (see Sec-
tion 2.3). We propose PROphetic HEuristic Algorithm for
Path Searching (PRO-HEAPS) to efficiently solve our prob-
lem using effective preprocessing and by employing elabo-
rately selected heuristics. We preprocess the graph based
on the query provided to facilitate follow-up searching and
generate a prophet graph, which is a new graph designed
for efficient search. We devise a consistent heuristic which
can be obtained by conducting breadth-first search on the
prophet graph. Adapting the A* algorithm with the heuris-
tic, PRO-HEAPS is able to discover prioritized relationships
in real time even when dealing with large-scale graph and
reasonably complex relationships.
The main contributions of this work are: 1) The prioriti-

zation of relationship mining by specifying the relationship
of interest and weighting the edges of the graph. 2) The
design of a simple but novel tool called prophet graph for
efficient path searching. 3) That we devise a consistent but
computationally cheap heuristic to ensure the optimality of
A* algorithm. 4) That we demonstrate that PRO-HEAPS
can answer relationship queries in real time while allowing
the weights to be dynamic (e.g. depending on recency).

2. PRELIMINARIES

2.1 Problem Formulation
We first provide some definitions that formalize the con-

cept of a Heterogeneous Information Network (HIN), bor-
1We note that in such applications user privacy is an impor-
tant consideration. While it is out-of-scope in the current
effort, we discuss it as future directions in Section 5.2.

rowing from previous work [28, 30].

Definition 1. Weighted Heterogeneous Information
Network. A Weighted Heterogeneous Information Network
is a directed graph G = (V, E, Φ, Ψ, W ), where: V is a set
of vertices; E is a set of edges; Φ : V → L is a vertex label-
ing function; Ψ : E → R is an edge labeling function; and
W : E → R is a weight function.

In our problem, vertices represent entities, of which there
are |L| types in the network, while edges indicate relation-
ships or interactions between entities, of which there are |R|
types. Weight is defined according to the specific applica-
tion and interestingness, and is further discussed in Section
2.2. Moreover, for a vertex u ∈ V , we distinguish outgoing
and incoming neighbors by denoting them as Nout(u) and
Nin(u), respectively.
In this paper, we use paths to explain the relationship

between entities, following the idea from Fang et al. [10],
where they showed that complex relationship expressed by
a subgraph can be decomposed into paths. To convey user
preference on relationship, we use the vertex and edge labels
along a path to represent the type of relationship, and the
weights of edges to interpret importance. Specifically, when
mining relationships between entities, we are provided with
a path pattern.

Definition 2. Path Pattern. Given a weighted HIN
G = (V, E, Φ, Ψ, W ), a path pattern P, or metapath, is a
sequence L0

R0−−→ L1
R1−−→ ...

R`−1−−−→ L`, where L0, ..., L` ∈ L
are vertex labels and R0, ..., R`−1 ∈ R are edge labels.

Here we define the length of a path pattern P to be the
number of edges in P and denote it as |P| = `. Given a
weighted HIN G = (V, E, Φ, Ψ, W ), if a directed path p =
v0

e0−→ v1
e1−→ ...

e`−1−−−→ v` in the graph G and a path pattern
P = L0

R0−−→ L1
R1−−→ ...

R`−1−−−→ L` satisfy Φ(vi) = Li, ∀i =
0, ..., ` and Ψ(ei) = Ri,∀i = 0, ..., `−1, then we say path p is
a legitimate path of pattern P and p is a path instance
of P, denoted as p ∈ P. The weight of path p is defined as

W(p) =
`−1∑
i=0

W (ei).

In addition to a path pattern, we specify a start and end
vertex vs, vt ∈ V as input to our problem. Thus, a tuple
Q = (vs, vt,P) specifies a query. We furthermore assume
that path instances are loopless, as loops (or cycles) in
a path are rarely useful in understanding relationships be-
tween entities. Besides, the query is non-trivial, i.e., that
Φ(vs) = L0 and Φ(vt) = L`. We now define our prioritized
relationship mining problem as top-k lightest paths problem.

Definition 3. Top-k Lightest Paths Problem. Given
a weighted HIN G = (V, E, Φ, Ψ, W ) and a query Q = (vs,
vt,P), find the k loopless paths having smallest weights
among all path instances of P that start at vertex vs and
end at vt.

Figure 2a is an example of a weighted HIN with different
shapes representing different vertex labels. A query is pro-
vided at the bottom of Figure 2a specifying the path pattern
and start and end vertices. The top-k lightest paths problem
is to find the k lightest loopless paths among those between
vertices 1 and 4 that are path instances of the pattern.
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Figure 2: Our running graph and query example.
2.2 Path Pattern and Edge Weights on HIN
To mine a prioritized relationship, the path pattern is pro-

vided to specify the relationship type. Given the path pat-
tern, we avoid other relationship types and can avoid being
overloaded by other trivial or overcomplex relationships. In
many scenarios, users can determine appropriate path pat-
terns to indicate their preference. However, in cases where
it is difficult to reason about path patterns, domain experts
become necessary. Automatic systems can also be used to
find potentially interesting path patterns [22].
Moreover, the edges in a HIN can be assigned weights

based on interestingness metrics given by experts or users.
For instance, the relationships can be prioritized based on
the recency of the individual relationships captured in the
information network. Alternatively, in a noisy environment
(e.g., information extracted using NLP techniques), the weight
can be based on the reliability of the information. For de-
rived attributes (such as the topic of a message), it can be
based on the probability of successful derivation, e.g. prob-
ability of the text belonging to a given topic. Note that the
weights might not be static and sometimes should be calcu-
lated on-the-fly at query time. For example, weights defined
on recency cannot be calculated until the query time.

2.3 Top-k Lightest Paths Complexity
A straightforward way to solve the top-k lightest paths

problem is to enumerate all paths matching the given path
pattern and pick the top-k lightest paths. However, enumer-
ating all possible paths of length |P| between two vertices
in a graph can be exponential in |P| and quickly becomes
intractable in large graphs. In fact, the top-k lightest path
problem can be formally proved to be NP-complete by a
reduction from the Minimum-Weight Path problem [24],
when the network is homogeneous (i.e., |L| = |R| = 1). To
see this, consider the worst case when the network is homo-
geneous and the query pattern has length |P| = |V |−1: this
is the well-known Hamiltonian Path problem.
Despite the worst-case complexity of the top-k lightest

paths problem, it seems easy to adapt standard graph traver-
sal algorithms to solve the problem in practice, at least in
the case where |P| is small. Breadth-first search (BFS) can
be adapted to enumerate all the matched paths, which we
call breadth-first match (BFM). The basic idea of BFM is to
conduct a BFS starting from the vs and explore the neigh-
borhoods of the frontier vertices following the path pattern.
Instead of storing only the frontier vertices, BFM stores all
candidates paths reaching the frontier in order to determine
if a path contains a loop. Similarly, we can modify depth-

first search and have depth-first match (DFM) algorithm.
Another method is to greedily explore vertices without enu-
merating all the paths. Dijkstra’s algorithm can be adapted
to this problem by placing additional constraints of the path
pattern, which we call Dijkstra’s Matching (DijkstraM) al-
gorithm. Instead of enumerating all paths, DijkstraM pref-
erentially explores those paths with lower weights. While
these algorithms solve our problem, we point out the top-k
lightest paths problem is actually significantly more complex
than the standard shortest path problem.
This additional difficulty can be attributed to two issues:

1. Searching for loopless paths makes our problem more dif-
ficult. If we allow loops in the path, we only need to store
frontier vertices of the searcher and simple methods such
as BFS and DFS will work. However, since we require
the path to be loopless, we need to keep track of each
vertex in each path in order to avoid loops, which is com-
putationally more expensive.

2. The same vertex might be explored multiple times. With
query path pattern, approaches such as BFM, DFM or
DijkstraM may explore the same vertex multiple times
since the same vertex can be matched to different nodes
in the path pattern.In the example shown in Figure 2a,
when using DFM to enumerate all the legitimate paths,
vertex 6 will be explored once following the path 1 → 6
and another time following the path 1 → 3 → 8 → 6.
Here vertex 6 can be mapped to both the second vertex
label and the fourth vertex label in the path pattern.

3. ALGORITHM
Motivated by the two issues just discussed, we propose

our algorithm to solve the top-k lightest paths problem ef-
ficiently, called PROphetic HEuristic Algorithm for Path
Searching (PRO-HEAPS). The algorithm is divided into two
phases. The first is a preprocessing phase, where we con-
struct a prophet graph that reduces the search space of our
problem. In the second phase, we use the prophet graph
to derive a heuristic function that estimates the distance to
the target. This heuristic then guides an A* search, which
takes place directly on the prophet graph. The key feature
of the prophet graph, is that we can use it to compute the
solution to the query without having to refer to the original
graph G. Though PRO-HEAPS still has exponential com-
putational complexity in the worst case, in practice it is able
to execute queries in real time as shown in our Section 4.

3.1 Prophet Graph
As mentioned, one difficulty of the top-k lightest paths

problem lies in repeated exploration of vertices in the graph.
In addition, when searching for legitimate paths, there are
many candidate paths to explore, most of which cannot
finally reach the target entity following the path pattern.
This motivates us to define a prophet graph G′, which is a
new graph derived from both the graph G and the query
(vs, vt,P), in which vertices are assigned levels, which range
between 0 and |P|. Intuitively, the i-th level of G′ contains
the set of vertices Vi matching the i-th vertex label in the
path pattern P, which also appear i steps away from vs in
some path instance of P.
Formally, we have the following definition:

Definition 4. Prophet Graph. Suppose we are given
a weighted HIN G = (V, E, Φ, Ψ, W ) and non-trivial query
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Q = (vs, vt,P = L0
R0−−→ L1

R1−−→ ...
R`−1−−−→ L`). The prophet

graph is a level-wise graph G′ = (V0∪V1 . . .∪V`, E0∪E1 . . .∪
E`−1) where

1. V0 = {vs} and V` = {vt};

2. For i ∈ [1, ` − 1], a vertex v ∈ Vi iff Φ(v) = Li,
and there exists a vertex u ∈ Vi−1, u′ ∈ Vi+1 such
that u, u′ ∈ V , eu,v, ev,u′ ∈ E, Ψ(eu,v) = Ri−1 and
Ψ(ev,u′) = Ri;

3. For i ∈ [0, `−1], an edge eu,v ∈ Ei iff u ∈ Vi, v ∈ Vi+1
and Φ(eu,v) = Ri.

Crucially, a vertex v ∈ V can appear in multiple levels of
G′, and thus, G′ is not a subgraph of G. Furthermore, the
prophet graph itself does not enforce the paths be loopless:
this is handled at a later step. Figure 2b shows the prophet
graph for the graph and query in Figure 2a.
We now describe an algorithm for computing the prophet

graph G′, given a HIN G and a query Q, shown in pseu-
docode in Algorithm 1. The major task of creating prophet
graph is to determine the vertices in each level. Obviously,
G′ contains |P| + 1 levels and we store the vertices in each
level as a set (line 1-2). To determine the vertices for each
level, we then perform bidirectional BFS from the vertices
vs and vt. When the two searches meet in the middle, the
intersection of their frontiers becomes the middle level of G′

(line 3-11). In Line 6, the i-th level is obtained by traversing
towards neighbors of (i− 1)-th level following the outgoing
edge with label matched by (i− 1)-th edge label in P. Ver-
tices on i-th level should contain the same label matching
i-th vertex label in P. Line 10 is similar to Line 6 but works
in the reverse direction. The algorithm then continues the
bidirectional BFS and only retain vertices visited by both
searches until they reach vt and vs respectively (line 12-13).
After determining the vertices in each level, we can construct
the prophet graph G′ by linking each consecutive levels with
edges from G matching the edge labels in P.
Algorithm 1 Create prophet graph.
Input: The given HIN G and a query Q = (vs, vt,P).
Output: Prophet graph G′.
1: Create an array of empty sets levels[0...|P|].
2: Set levels[0] = {vs} and levels[|P|] = {vt}.
3: Let mid = b|P|+1

2 c.
4: . Forward BFS from vs.
5: for i = 1→ mid do
6: levels[i] ← Nout(levels[i − 1]) matching (i − 1)-th edge

label and i-th vertex label in P.
7: midLevel = levels[mid]; levels[mid] = ∅.
8: . Backward BFS from vt.
9: for i = |P| − 1→ mid do
10: levels[i]← Nin(levels[i+1]) matching i-th edge label and

i-th vertex label in P.
11: levels[mid] = levels[mid] ∩midLevel.
12: Continue forward BFS and prune levels till reaching vt.
13: Continue backward BFS and prune levels till reaching vs.
14: Construct G′ based on vertices from levels and edges from

G matched by P.
Note that the prophet graph can be created efficiently. It

is more efficient than searching for paths in a brute-force
manner, since we need not store all paths, but rather only
keep track of candidate vertices in each level. This can be
done in a dynamic programming fashion as shown in Al-
gorithm 1. In addition, the adoption of bi-directional BFS
helps prune many vertices from the prophet graph.

The prophet graph will be a powerful tool for our top-k
lightest paths problem. After pruning vertices that are too
far away from vs or vt according to the path pattern, it only
retains vertices that lie in the path from vs to vt following
the path pattern. With the prophet graph in hand, we can
directly search on it, without needing to refer to the original
graph G and query Q. Walking down from vs level by level
to vt will obtain a path following the path pattern though
might contain loops. It can be verified that all the legitimate
paths for the query Q can be derived from the prophet graph
by traversing from vs to vt level by level.

3.2 PRO-HEAPS
We can run BFM or DFM (see Section 2.3) on top of

prophet graph to enumerate all the paths and can correctly
find the top-k lightest paths. However, it might be too ex-
pensive to perform since the number of legitimate paths of
the query can potentially be very huge and we are interested
in merely a few of them. Therefore, greedy algorithms with
priority at exploring vertices will be a better option. For
example, methods adapted from Dijkstra’s algorithm (Di-
jkstraM) as mentioned in Section 2.3 can effectively avoid
enumerating all the paths. A more appropriate choice will
be A* (best-first search) algorithm, considering we are given
both the source and target vertex in this problem. However,
A* algorithm requires a heuristic estimation of the minimum
weight to reach the target and it is nontrivial to obtain the
heuristic in the graph, especially when we expect the heuris-
tics should ensure the optimality of A* algorithm.
While an appropriate heuristic is difficult to obtain in the

original graph, we show that it can be easily derived from
the prophet graph. The value we intend to estimate, i.e.
the minimum weight of acyclic path in the prophet graph
from current vertex to the target vertex, is expensive to
compute since we need to keep track of vertices in the path
to avoid loops. However, if we allow loops, the problem
becomes much easier. Here the idea of our heuristic esti-
mator is to relax the constraint of paths by allowing loops,
and to use the smallest weight loopy path as an estima-
tion of loopless smallest weight. Algorithm 2 shows how the
smallest weight loopy path can be efficiently obtained using
backward BFS on prophet graph. Specifically, the algorithm
starts backward BFS from vt and propagate the heuristics in
a bottom-up fashion till reaching vs. For each vertex on i-th
level of G′, it propagates its heuristic value to its incoming
neighbors in (i−1)-th level, during which the heuristic value
increases by the weight of the edge between them. Each ver-
tex in (i−1)-the level will accept the minimum value among
all the heuristic values propagated into it (Line 3-6).
Algorithm 2 Calculate heuristic function.
Input: Prophet Graph G′ and weight function W .
Output: Heuristic function H on vertices of prophet graph.
1: Set H(vt) = 0 and for other vertices u in G′, set H(u) =∞ .
2: . Backward BFS from vt.
3: for i = |P| → 1 do
4: for vertex u ∈ levels[i] do . i-th level in G′.
5: for vertex v ∈ u’s incoming neighbors do . last level.
6: H(v) = min (H(v), H(u) + W (ev,u)).
7: Return heuristic function H.
As an example, Figure 3a shows the prophet graph with a

specified weight function. Figure 3b demonstrates how the
heuristic values are calculated in the prophet graph, where
the green dashed lines indicate the traces of propagation of
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heuristic values. For instance, knowing the heuristic values
of vertex 5 and vertex 6 on 3rd level is 3 and 2 respectively,
we can easily derive the heuristic value of vertex 8 on 2nd
level is 3 by adding edge weight 1 to 3 and 2 respectively
and take the minimum one. Note that the heuristic value of
vertex v is an estimation of distance of the loopless shortest
path from v to vt in G′. It might not be a correct estimation
since our heuristics allow loops in the paths. For instance,
the heuristic value of vertex 6 on 1st level is 4 while the
correct one should be 5 with path 6→ 8→ 5→ 4.
With the heuristic, we propose PROphetic HEuristic Al-

gorithm for Path Searching (PRO-HEAPS), which is adapted
from A* algorithm to solve our top-k lightest paths prob-
lem. Algorithm 3 describes the procedures of PRO-HEAPS.
It uses the heuristic value in addition to the distance from
vs to current vertex as the key in the priority queue (Line
13) and explores vertices in a greedy way. The while loop
executes until we extract k loopless paths, or the priority
queue is empty (Line 6). Each loop extracts a path with
smallest key in the priory queue. Outgoing neighbors of the
tail vertex in the path are explored if the tail vertex is not
the target (Line 10 to 13). Otherwise, the path is stored
(Line 8 to 9). Note that we still need to check the loop in
the path (Line 12), but the property of priority queue along
with our heuristic function ensure our algorithm exploring
only a small number of paths.
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Figure 3: Calculating the heuristic on our running example.
Algorithm 3 PROphetic HEuristic Algorithm for Path
Searching (PRO-HEAPS).
Input: HIN G with weight function W , a query Q = (vs, vt,P)
and parameter k.
Output: Top-k shortest path from vs to vt following P.
1: Run Algorithm 1 to create prophet graph G′ .
2: Run Algorithm 2 to calculate heuristics H .
3: result← empty array for storing top-k lightest paths.
4: frontier ← priority queue with entities of format (path, key).
5: Initialize frontier with single-vertex path vs and key 0.
6: while result.size() < k and frontier.size()>0 do
7: (path, key)← frontier.pop().
8: if path reaches vt then
9: Add path to result; Go to Line 6.
10: vertex u← tail vertex in path.
11: for v ∈ u’s outgoing neighbors in next level of G′ do
12: if v does not exist in path then
13: Push (path + v,W(path) + H(v)) to frontier.
14: Return paths stored in result.
We now prove Algorithm 3 outputs the correct answer,

i.e. top-k lightest paths if any. We first propose a lemma.

Lemma 1. Using the heuristic from Algorithm 2, the first
path added to result (if any) in Line 9 of Algorithm 3 is the
lightest loopless path from vs to vt following pattern P.

Proof. For a vertex p in i-th level and each q of its outgo-
ing neighbors in (i + 1)-th level of G′, the heuristic satisfies
H(p) ≤ H(q) + W (ep,q) according the property shown in
Line 6 of Algorithm 2. Therefore, the heuristic is consis-
tent [23] and our algorithm adapted from A* algorithm can
guarantee attaining the lightest path once the path popped
out of the priority queue reaches the target vertex.

With Lemma 1, we can induce that the i-th path added
to result (if any) is the i-th lightest loopless path from vs

to vt following P. Therefore, by the end of Algorithm 3, it
will return top-k lightest paths if any.

4. EXPERIMENTS AND ANALYSIS
In this section, we compare the performance of PRO-

HEAPS with a series of baselines using three different real-
world datasets.

4.1 Experimental Setup

4.1.1 Datasets Description
The three datasets used in our experiments are as follows:

Enron2: This is a dataset containing Email messages sent
between employees of the Enron corporation. We created a
HIN based on the raw dataset with four types of vertex la-
bels: person, Email address, Email message, and topic. For
the topics, we created fifty topics using the LDA model [6],
and linked each Email message to the closest three topics.
DBLP3: A dataset of computer science bibliographic infor-
mation. We created a HIN by categorizing the entities into
vertex labels: author, paper, conference, and terminology.
Stack Overflow4: This dataset comes from a popular ques-
tion answering service found among the datasets of the Stack
Exchange XML dump. We parsed each post to create a HIN
by dividing entities into the vertex labels: question, answer,
tag and user.
Table 1 provides detailed information about each dataset.

We defined weight functions over edges for these dataset
as follows. For edges of action (eg. publishing, asking and
emailing), we defined the weights based on the recency, ex-
ponential to the time difference between the action time on
edges and the query time. For edges of relation (eg. with
topics and with email address), we defined the weights as
the probability of derivation (1.0 if it is certain).

Dataset # Vertices # Edges |L| |R|
Enron Dataset 46,463 613,838 4 8

DBLP 2,241,258 14,747,328 4 6
Stack Overflow 21,579,657 53,325,635 4 8

Table 1: The datasets used: |L| is number of different vertex
labels and |R| is number of different edge labels.

4.1.2 Baselines
We implemented three groups of algorithms, containing

ten algorithms in total, to use as baseline comparisons to
2https://www.cs.cmu.edu/˜./enron/
3http://dblp.uni-trier.de/xml/
4https://archive.org/details/stackexchange
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Figure 4: Performance comparisons of different algorithms. Top to bottom: The rows correspond to the results for the Enron,
DBLP, and Stack Overflow datasets, respectively. Left to right: The columns show the average time for executing a query,
the average number of paths stored in memory, and average number of paths explored for a query, respectively. Lines/points
are missing for algorithms that do not finish within 48 hours or use more than 48 GB of RAM.

PRO-HEAPS.
Group 1: DFM, BFM, Bidir-BFM, DijkstraM. This group
of methods contains four basic approaches. Section 2.3 de-
scribes depth-first matching (DFM), breadth-first match-
ing (BFM) and Dijkstra’s matching (DijkstraM) algorithm.
The other one, Bidirectional breadth-first matching (Bidir-
BFM), is similar to BFM but searches from vs and vt alter-
nately until meeting in the middle.
Group 2: DFM+oracle, BFM+oracle, Bidir-BFM+oracle,
DijkstraM+oracle. In this group, we employed an off-the-
shelf distance oracle tool [1] with the hope of improving the
algorithms in group 1. A distance oracle can be used to
efficiently return the length of the shortest path between a
source and target vertex, and is constructed in a preprocess-
ing phase on the entire graph. In our problem, we used the
distance oracle to prune vertices when searching for top-k
lightest paths. Specifically, if the distance oracle indicates
that the distance between a vertex v and the target entity
is larger than the remaining part of the path pattern, then

vertex v can be pruned since continuing current match will
not reach the target entity. We applied distance oracles to
the four approaches in the first group to obtain the four
methods in this group. Our implementation used the exact
distance oracle from Akiba et al. [1].
Group 3: PRO-Bidir-BFM, PRO-DijkstraM. In this final
group we implemented two additional methods that make
use of the prophet graph. They run respectively Bidir-BFM
and DijkstraM on the prophet graph.

4.1.3 Evaluation metrics
We used three different metrics to measure the perfor-

mance of algorithms for solving the top-k lightest paths
problem.
Query Time: We measured the time to execute each query
and reported the mean query time from multiple executions.
Note that for algorithms that make use of a prophet graph,
the time to construct the prophet graph is included.
Memory Consumption: The memory consumption of ex-
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ecuting a query is primarily dominated by the storage of the
candidate paths. Thus, we consider the maximum number
of paths stored in memory at any time during query ex-
ecution as an indication of the memory consumption, and
report the mean of this value over multiple executions.
Search Space: To gain better insights into the running
time of each algorithm, we measured the mean number of
candidate paths explored during a query. Here a candidate
path is a path from vs (or vt) to an intermediate vertex that
follows the appropriate pattern.

4.1.4 Experimental Design
All experiments were conducted on a machine running

Linux with a Intel Xeon x5650 CPU (2.67GHz) and 48GB
of RAM. All algorithms were implemented in C++ and com-
plied using the gcc compiler. For each dataset, we generated
queries with path patterns of different length, ranging from
2 to 9, as follows. To generate a query Q′ = (v′s, v′t,P ′), we
first randomly select a vertex v′s and start random walk on
the HIN of specified length to a vertex v′t to obtain a path
pattern P ′. We used the time we generated the query as the
query timestamp, which is used during the query to calcu-
late the weights on-the-fly. For each dataset, we generated
800 queries: 100 for each pattern length between 2 and 9.
Each algorithm was independently executed by one process,
and assigned a memory limit of 48GB and time limit of 48
hours for the set of queries. The queries were executed in
order of path length, and the process was terminated if it
exceeded the memory or time limit.

4.2 Performance
Figure 4 shows the performance of PRO-HEAPS com-

pared to other baselines. Figure 5 presents a more detailed
view of the execution time by ranking all algorithms for the
case where the length of path pattern |P| = 4. Table 2
compares PRO-HEAPS with the fastest baseline to demon-
strate the speedup of our algorithm. The main observations
are highlighted and discussed as follows:
1. In general, both the distance oracle and prophet graph

usually speed up the searching algorithm. In Figure 5,
it is obvious that DFM/BFM with distance oracle is sig-
nificantly faster than the plain DFM/BFM over all three
datasets. However, the distance oracle does not always
speed up Bidir-BFM and DijkstraM, which can be ob-
served from Stack Overflow dataset in Figure 5c. On
the other hand, the prophet graph tends to bring more
improvements for both DijkstraM and Bidir-BFM. We
observe that PRO-DijkstraM is much faster than Dijk-
straM+oracle and DijkstraM. Similarly, PRO-Bidir-BFM
is much faster than Bidir-BFM+oracle and Bidir-BFM.

2. PRO-HEAPS reduces memory consumption and search
space drastically. PRO-HEAPS uses much less memory
than other baseline methods, with the exception of DFM
and DFM+oracle, as they only store one path. Further-
more, PRO-HEAPS prunes the search space far more
aggressively compared to other baseline methods. The
reduction in memory consumption and search space be-
comes increasingly evident as the length of the path pat-
tern increases (cf. 4b-4c, 4e-4f and 4h-4i).

3. From Figures 4a, 4d and 4g it can be seen that PRO-
HEAPS is significantly faster on query time compared
to other baselines, for longer patterns (i.e., |P| > 5).

For shorter patterns (of length between 2 and 5), PRO-
HEAPS performs comparably to the best baseline meth-
ods, with queries taking up to a few hundreds of millisec-
onds. This is consistent with our intuition that for longer
path patterns, the overhead of constructing the prophet
graph is well-compensated for by the search space reduc-
tion that it allows. Table 2 shows the speedup of PRO-
HEAPS compared to the best baselines over the three
datasets. For path patterns longer than 5 the speedup
can be over a factor of 100 for the larger datasets: DBLP
and Stack Overflow. For these datasets, the query time of
PRO-HEAPS is typically around 2 seconds when |P| = 7,
while the best baselines take more than half an hour.
Next, we describe the reasons for the significantly faster

query times with PRO-HEAPS.
1. The use of the prophet graph drastically reduces the

search space. As shown in Figure 4, the search space
for PRO-Bidir-BFM is smaller than that of Bidir-BFM
+oracle, which in turn is much smaller than that of Bidir-
BFM. Similarly, the search space of PRO-DijkstraM is
smaller than that of DijkstraM+oracle, which is much
smaller than that of DijkstraM. This is a strong indica-
tion that the prophet graph is more aggressive in pruning
the search space compared to the distance oracle. The
prophet graph not only considers the distance between a
vertex and source/target vertex, but also considers the la-
bels in the path pattern when pruning the search space.
This reduction in search space clearly offsets the small
time required to construct the prophet graph.

2. Leveraging loopy paths in the prophet graph as the heuris-
tic function in A* helps to prune the search space even
further. This can be seen by considering the difference in
performance between PRO-HEAPS and PRO-DijkstraM
in Figure 4. Owing to this heuristic, we found that PRO-
HEAPS is up to 1000 times faster than PRO-DijkstraM.
Moreover, this heuristic is a computationally inexpensive
primitive (cf. Algorithm 2).

4.3 Analysis of PRO-HEAPS
We now study how the performance of PRO-HEAPS varies

with respect to the properties of the graph. We considered
the following properties of the input graph:
Distribution of Weights: Since we aim to search for the
top-k lightest paths in weighted HIN, we considered the
effect of weight distribution on the performance of PRO-
HEAPS.
Density of HIN: We considered the effect of graph density
on PRO-HEAPS compared to baselines. In particular, we
considered the rate of computational growth as the graph
gets denser.
Heterogeneity of HIN: Intuitively, heterogeneity, i.e. the
number of different labels in the graph, also affects the per-
formance of the algorithm. Thus, we considered the varia-
tions of performance as the number of vertex labels in HIN
is reduced.
To conduct experiments for analyzing our algorithm, we

used the Enron dataset and manipulated it with the fol-
lowing procedures. 1) In order to understand the effect of
weight distribution, we used edge weights generated from
various distributions. We considered the following distribu-
tions: constant weight, uniform distribution, Gaussian dis-
tribution, power law distribution skewed towards high val-
ues (most weights are large, denoted as power1), and power
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Figure 5: Timing comparisons for path patterns of length 4 (in seconds). Methods are ranked in decreasing order of query
time. Missing bars (e.g., DijkstraM in DBLP) are due to not finishing within time/memory limit.

Dataset Speedup w.r.t Best Baseline
length |P| = 5 length |P| = 6 length |P| = 7

Enron 0.7X(PRO-Bidir-BFM) 28.7X(PRO-Bidir-BFM) 735.6X(PRO-Bidir-BFM)
DBLP 14.1X(PRO-Bidir-BFM) 163.1X(PRO-DijkstraM) >670.4X(-)

Stack Overflow 1.0X(PRO-Bidir-BFM) 165.1X(PRO-Bidir-BFM) >932.6X(-)

Table 2: PRO-HEAPS compared with the fastest baselines. The best baseline method is listed inside the parenthesis. A
hyphen (“-”) indicates that none of the baselines finished in time, and only a lower-bound on the speedup is shown.

law distribution skewed towards low values (most weights
are small, denoted as power2). We forced the weights to be
positive and all distributions to have the same mean. 2) To
study the effect of graph density, we randomly added edges
to the Enron graph, so that the number of edges reached
up to 16X the number in the original graph. In this case
we used edge weights drawn from a uniform distribution. 3)
We manually made the HIN more homogeneous. This was
done by reducing the number of types of vertex labels, by
selecting two types and merging them into one type.
For each of these variants of the Enron graph, we ran

all the previously generated queries. The results can be
seen in Figure 6. Figures 6a-6c shows the averaged query
time of PRO-HEAPS compared to two fastest baseline ap-
proaches under different edge weight distributions. The re-
sult of queries with path pattern length |P| between 4 and
6 are presented, respectively. We observe that the distri-
bution of edge weights does not affect the performance of
approaches that are based on enumerating paths, such as
PRO-Bidir-BFM and Bidir-BFM. For PRO-HEAPS, we ob-
serve that it runs slightly faster with weights from a uni-
form distribution, while it tends to be a slightly slower for
weights with a power law distribution skewed towards high
values (power1 in Figure 6a-6c). However, overall we observe
that the performance of PRO-HEAPS is relatively consistent
across different weight distributions.
Figures 6d-6f show the relationship between the query

time of different methods and the density of graph. The
densification factor is the ratio of the number of edges in
the modified graph divided by the number of edges in the
original Enron graph. We can observe that the query time
increases for denser graphs for all three methods. However,
for queries with longer path patterns, the performance dis-
crepancy between PRO-HEAPS and baselines becomes sig-
nificantly larger as the graph get denser (Figures 6e and 6f).
Finally, Figures 6g-6i present the variations of query time

as the graph gets more homogeneous. We observe that, in
general, more query time is required for a more homoge-
neous graph. We also observe that the slow-down due to

homogeneity is similar for all tested algorithms. We note
that the slowdown of PRO-HEAPS is relatively small, im-
plying possible applications for the PRO-HEAPS algorithm
for solving similar problems on homogeneous graphs.

5. DISCUSSION
In this section, we first present some example use-cases

to demonstrate the efficacy of PRO-HEAPS in dynamically
adapting to the analyst’s requirements and preferences. Then,
we describe some generalizations of PRO-HEAPS that make
it more flexible and usable in a wider range of applications.

5.1 Example Use Cases
Relations between Stack Overflow users. In this

use-case, we show how an analyst can use our solution, PRO-
HEAPS, to study (e.g., to verify the expertise of people)
publicly available forums such as Stack Overflow. Consider
two user accounts, Gordan Linoff and Mureinik, both of
whom claim to be experts in the SQL and MySQL area. To
verify this, an analyst can easily formulate a query: P ′ =
(Gordan Linoff,Mureinik, account → answer → question
→ answer → account) and use some weight function de-
pending on recency. For a query in June 2014, PRO-HEAPS
finds a relationship instance where the two users answered
a question on Oracle database 5 in April 2014. For a query
in Jan 2014, PRO-HEAPS finds a question on MySQL an-
swered by both in December 2013 6 as the best match. This
example demonstrates the efficacy of path patterns and the
weight function in expressing the intent of an analyst and
the effectiveness of PRO-HEAPS in understanding that in-
tent and returning the relevant relationship instance.
Next, we consider Martijn Pieters whose interest is mostly

in Python and Gordan Linoff (active in SQL and MySQL).
A query with the same path pattern as P ′ results in no
matches between these accounts. This validates that there
is no question which was answered by both these users, in-
dicating that their expertise is on different topics. However,
5http://stackoverflow.com/questions/23298310
6http://stackoverflow.com/questions/20828174
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Figure 6: Effect of weight distribution, graph density and heterogeneity. (a)-(c) show different weight distributions on the
x-axis. On the x-axis of (d)-(f), the densification factor is the ratio of # edges in the graph to the # edges in the original
graph. For (g)-(i), the x-axis indicates the total number of different vertex labels in the graph.

when the path pattern is modified to account→ answer →
question → tag → question → answer → account, PRO-
HEAPS reveals that these two accounts did answer questions
with the same tag of String in 20147. This indicates that
their interests are still on the same general subject.
Common publication venues between authors. In

this use-case, we use PRO-HEAPS to examine the relation-
ship between authors of publications indexed by DBLP. We
consider Jiawei Han and Ion Stoica, two famous researchers
in the areas of data-mining and systems respectively, as
objects of our queries. When the query is formulated as
P ′ = (Jiawei Han, Ion Stoica, author → paper → venue
→ paper → author) with query time in 2009 to discover

7http://stackoverflow.com/questions/18744391,
http://stackoverflow.com/questions/17299581

the common venue where the two researchers (from differ-
ent areas) publish and the weight function is set based on
recency, PRO-HEAPS identifies that Jiawei Han has a paper
in ICDCS’09 8 and Ion Stoica has a paper in ICDCS’08 9.
However, when the weights are defined based on the influ-
ence of papers and venues (to determine the common venue
where they published their most influential work), PRO-
HEAPS returns SIGMOD 10. Again, this illustrates the ef-

8Modeling Probabilistic Measurement Correlations for Prob-
lem Determination in Large-Scale Distributed Systems
9Adaptive Distributed Time-Slot Based Scheduling for Fair-
ness in Multi-Hop Wireless Networks

10Jiawei Han published a paper called Mining Frequent Pat-
terns without Candidate Generation in SIGMOD’00 and Ion
Stoica published a paper called Declarative networking: lan-
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ficacy of weight functions and path patterns in capturing
complex intuitions regarding relationships and shows that
PRO-HEAPS is able to find and rank the relevant instances.

5.2 Generalizations of PRO-HEAPS
Our solution PRO-HEAPS is very flexible and can be fur-

ther generalized in the following ways:
1. The specification of node and edge labels in the query

path pattern can be a logical statement with OR/AND/
NOT. This also enables wildcard labels “.” that matches
any other label. For instance, an analyst can ask the
following query on the DBLP graph: Author 1 → paper
OR poster → NOT workshop AND NOT journal → .
→ Author 2 to find an instance of a connection between
two authors in which the first author published a paper
or a poster in a venue that is neither a workshop, nor a
journal (e.g., conference/symposium), where the second
author also published something. This relaxation can
be easily incorporated in the construction of the prophet
graph and the follow-up steps of the algorithm can also
be easily adapted to support this flexibility.

2. Since in PRO-HEAPS, there is no pre-processing of the
graph based on weights, the weights function can, as well,
be specified at the time of query. This allows an analyst
to rank the relationship instances in many different ways,
learning different insights in the process.

3. PRO-HEAPS can also be used to mine relationships be-
tween two groups of entities, rather than just two enti-
ties, where it will return the top-k lightest paths between
the two groups. To support this extension, the first and
the last level of prophet graph have to contain multiple
vertices belonging to the two groups. Other algorithmic
steps are similar to the ones described in Section 3.

4. An extension we intend to investigate is to support pri-
vacy preserving analysis for applications where user pri-
vacy is sacrosanct. Recent efforts on the privacy preserv-
ing publishing of social network data[36] coupled with
anonymization strategies[21] of user profiles, can poten-
tially be implemented on top of our current efforts.

6. RELATED WORK
k-shortest Path Problems and Variants: The k-shortest
path problem seeks to find the top-k shortest path between
two vertices in a graph [35, 27]. A variant of this prob-
lem, closer to our work, is restricted to disallow loops within
paths. Exact algorithms for solving this problem is too ex-
pensive for large graphs [35, 17, 14], and have led to the de-
velopment of parallel [33] and approximation approaches [15,
27]. Another related problem, the minimum-weight path
problem, aims to find the minimum-weight simple path of a
user-defined length and its solution relies on randomized al-
gorithm based on color coding [3], which typically works on
smaller-scale networks [24]. In contrast to these techniques
that primarily focus on homogeneous graphs, we leverage
the idea of a path pattern with node and edge labels to
both prioritize paths and drastically prune the search space
of possible paths matching the pattern.
Generalized Pattern Matching in Graphs: The clas-
sic structural graph pattern match problem, known as sub-
graph isomorphism, aims to find matches for a given graph

guage, execution and optimization in SIGMOD’06

pattern among a graph database. It is known to be NP-
complete [12] and will be too expensive for our purpose, even
with various optimizations [32, 11] and approximations [8,
25, 11]. Beyond focusing just on structure, there are seman-
tic variants, where pattern graph and data graph contain
labels on nodes and/or edges. GraphGrep [13] provides an
exact algorithm for this problem. Specifically, it represents
the graph database as a set of all possible paths and parse
a query graph into a series of label paths. Then the match-
ing becomes straightforward after filtering unpromising path
mapping. This algorithm has exponential complexity and
works only for small graphs. Even approximate [2, 7, 34, 18,
19] and distributed variants [4] often do not scale to large
graphs. While the above semantic graph pattern match-
ing algorithms focus on general pattern matching in graph
database, our work can be thought of as a specialization of
the above, for which a scalable algorithm is realized through
novel graph pre-processing and smart heuristics.
Meta-Paths in Heterogeneous Networks: Meta-paths,
essentially a labeled path within a HIN [28], have found
significant use as a mechanism to quantify the similarity be-
tween a pair of nodes within a HIN [30, 29, 20, 26, 28].
Variants of the above include work by Lao et al. [20] which
uses path constraint random walks to quantify the similar-
ity of nodes while Shi et al. [26] defined a symmetric rele-
vance measurement based on pair-wise random walk. More
recently, Meng et al. [22] studied how to discover relevant
metapaths given pairs of related nodes, where they defined
the problem in supervised learning context and leveraged a
greedy algorithm.These works are distinct from ours with
respect to application (e.g. similarity search, clustering and
link prediction) and the fact that they do not leverage users’
preference and are limited to unweighted graphs.
Relationship Mining in Graphs: Keyword search in re-
lational databases is an important problem in web-based
search where vertices represent tuples and edges represent
the foreign-key relationships. Solutions seek tree- (e.g. Steiner
trees) or subgraph- patterns to explain the relationships
among a given set of keywords [5, 16]. Related to the above
is the notion of center-piece subgraphs where the authors [9,
31] seek to find the connected subgraphs between two or
more entities to explain the relationship. Their algorithm is
guided by a specific goodness function while restricting the
size of the subgraph to some budget. Fang et al. extend
the above and in a heterogeneous graph setting [10]. How-
ever, none of them incorporates the users’ preference and
prioritizes relationship mining.

7. CONCLUSIONS
In this paper, we solve the problem of prioritized rela-

tionship mining considering user preference and formalize
it as the top-k lightest paths problem. Our algorithm for
this problem, PRO-HEAPS, outperforms numerous baseline
approaches with speedups as large as 100X and is able to
execute queries in real time even on large-scale graphs with
complex relationships. We show our algorithm can be ex-
tended to solve more generalized problems and has the po-
tential to enable many other applications involving search
of paths in HINs.
Acknowledgements. This work is supported by NSF Award
NSF-EAR-1520870 and NSF-DMS-1418265.
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