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ABSTRACT
Given a large collection of time-evolving activities, such as Google
search queries, which consist of d keywords/activities for m lo-
cations of duration n, how can we analyze temporal patterns and
relationships among all these activities and find location-specific
trends? How do we go about capturing non-linear evolutions of lo-
cal activities and forecasting future patterns? For example, assume
that we have the online search volume for multiple keywords, e.g.,
“Nokia/Nexus/Kindle” or “CNN/BBC” for 236 countries/territories,
from 2004 to 2015. Our goal is to analyze a large collection of
multi-evolving activities, and specifically, to answer the following
questions: (a) Is there any sign of interaction/competition between
two different keywords? If so, who competes with whom? (b) In
which country is the competition strong? (c) Are there any sea-
sonal/annual activities? (d) How can we automatically detect im-
portant world-wide (or local) events?

We present COMPCUBE, a unifying non-linear model, which
provides a compact and powerful representation of co-evolving ac-
tivities; and also a novel fitting algorithm, COMPCUBE-FIT, which
is parameter-free and scalable. Our method captures the following
important patterns: (B)asic trends, i.e., non-linear dynamics of co-
evolving activities, signs of (C)ompetition and latent interaction,
e.g., Nokia vs. Nexus, (S)easonality, e.g., a Christmas spike for
iPod in the U.S. and Europe, and (D)eltas, e.g., unrepeated local
events such as the U.S. election in 2008. Thanks to its concise but
effective summarization, COMPCUBE can also forecast long-range
future activities. Extensive experiments on real datasets demon-
strate that COMPCUBE consistently outperforms the best state-of-
the-art methods in terms of both accuracy and execution speed.

Categories and Subject Descriptors: H.2.8 [Database manage-
ment]: Database applications–Data mining

Keywords: Time-series; Non-linear; Parameter-free; Forecasting;

1. INTRODUCTION
Online news, blogs, SNS and many other Web-based services

have been attracting considerable interest for business and market-
ing purposes. For example, the consumer electronics industry (e.g.,
“Kindle”, “Nexus”), news and social media (e.g., “CNN”, “BBC”,
“Yahoo! News”) and many other world-wide companies have intro-
duced new online marketing systems and competition has increased

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
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significantly. Our goal is to find patterns, relationships and outliers
in a large collection of co-evolving online activities, consisting of
tuples of the form: (activity, location, time). For example, assume
that we have the online search volume for multiple keywords, e.g.,
“Nokia/Nexus/Kindle” for 236 countries/territories. So, how can
we find meaningful trends with respect to three aspects: activity,
location and time? Specifically, we would like to answer the fol-
lowing questions: Is there any sign of competition, e.g., between
Nokia and Nexus? Who would be Kindle’s most likely competi-
tor? Are there any seasonal activities, e.g., Christmas and New
Year sales in the US and Europe? Which countries are interested
in US politics? Can we forecast the future evolution of each activ-
ity/keyword in each country?

In this paper, we present COMPCUBE, 1 which answers all of the
above questions, and provides a good summary of large collections
of co-evolving activities. Intuitively, the problem we wish to solve
is as follows:

INFORMAL PROBLEM 1. Given a large collection of triplets
(activity, location, time), that is, X ∈ N

d×m×n, which consists of
d activities/keywords in m locations/countries of duration n, Find
a compact description of X , i.e.,

• find global and local-level interaction and competition
(e.g., Kindle vs. Nexus in the US)

• find local seasonal/annual patterns (e.g., Christmas)
• spot external events (e.g., the US election in 2008)
• forecast future activities
• automatically and quickly

Preview of our results. Figure 1 shows some of our discoveries re-
lated to the consumer electronics market, specifically, online activ-
ities on Google Search2 for d = 10 keywords (e.g., iPhone, Kindle
and Nexus), for m = 236 countries and territories, from January
1, 2004 to the present. Note that the original sequences for all key-
words can be seen later in Figure 3 (#1) Products.
Competition between activities: COMPCUBE automatically identi-
fies the most probable competitor for each keyword among all d
possible keywords. For example, it discovers there are potential
interactions between Kindle and Nexus. Figure 1 (a) describes the
strength of the competition between Kindle and Nexus for each
country. Red areas (e.g. United States (US) and Canada (CA)) in-
dicate there is a strong competition between two activities, while
green areas (e.g., Brazil (BR), China (CN) and Japan (JP)) have a
weaker interaction. Figure 1 (b) shows the search volumes (on a
weekly basis) for two keywords: Kindle (skyblue) and Nexus (or-
ange) for each country. Here, the original sequences are shown as
faint lines, and our fitting results are shown as solid lines. Our al-
gorithm captures location-specific patterns of growth and decline.
1http://www.cs.kumamoto-u.ac.jp/~yasuko/software.html
2http://www.google.com/trends/
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(c-i) Christmas for iPod (c-ii) New Year for Kindle (c-iii) Nexus release (c-iv) Chinese New Year for iPod

(c) Seasonal/annual patterns for each location/country

Figure 1: Modeling power of COMPCUBE for the consumer electronics market, (i.e., iPhone, Samsung Galaxy, Nexus, HTC, iPad,
BlackBerry, Nokia, iMac, iPod, Kindle, please also see Figure 3 (#1)). It automatically identifies (a) the latent competition between
different products (e.g., Kindle vs. Nexus), (b) local-level patterns of growth/decline as well as (c) seasonal patterns, e.g., Christmas.

For example, there is strong competition in the United States (US),
Canada (CA), Italy (IT), Australia (AU) and South Africa (ZA),
summarizing the fact that the decline of Kindle coincides with the
rising popularity of Nexus. On the other hand, the behavior is dif-
ferent in Brazil (BR), China (CN) and Japan (JP), where Kindle
is still growing significantly. This information would be valuable
when making marketing decisions.
Seasonal/annual patterns: Figure 1 (c) shows major annual behav-
ior (i.e., seasonality) in the consumer electrics market. For ex-
ample, Figure 1 (c-i) corresponds to Christmas. The bottom map
shows the strength of the annual Christmas spike for iPod in each
country. A darker color indicates stronger seasonality, while gray
means there is no Christmas spike. As shown on the map, there
is a clear Christmas spike in places with Christian majorities, e.g.,
the US, Europe, South Africa and Australia, while there is no spike
in e.g., China and India. Similarly, Figure 1 (c-ii) corresponds to
New Year sales for Kindle. Figure 1 (c-iii) shows a typical pattern
for Nexus, where many users (e.g., in the US, Europe and Russia)
seem to be interested in Nexus during the winter. This is proba-
bly because a new Nexus model is usually released every winter
(e.g., November). Also, COMPCUBE can identify location-specific
seasonal patterns. For example, Figure 1 (c-iv) shows the Chinese
New Year spike for iPod in China.
Contributions. The main contribution of this work is the concept
and design of COMPCUBE, which has the following properties:

1. Effective: It operates on large collections of co-evolving ac-
tivities and summarizes them succinctly with respect to three
aspects (i.e., activity, location, time).

2. Practical: It achieves good fits for numerous diverse real
data, and provides intuitive explanations for co-evolving ac-
tivities, such as competition, seasonality and anomalies (i.e.,
deltas). It also enables long-range forecasting.

3. Parameter-free: It is fully automatic, and requires no “magic
numbers” and no user-defined parameters.

4. Scalable: We provide a scalable algorithm, COMPCUBE-

FIT, which scales linearly in terms of the input data size,
and is thus applicable to long-range sequences.

2. RELATED WORK
We provide a survey of the related literature.

Social activity analysis. Analyses of epidemics and social activi-
ties have attracted a lot of interest [13, 17, 40, 8, 1, 34, 14]. The
work described in [21] studied the rise and fall patterns in the in-
formation diffusion process through online social media. The work
in [7] investigated the effect of revisits on content popularity, while
[33] focused on the daily number of active users. Prakash et al. [30]
described the setting of two competing products/ideas spreading
over a network, and provided a theoretical analysis of the prop-
agation model for arbitrary graph topology. FUNNEL [22] is a
non-linear model for spatially coevolving epidemic tensors, while
EcoWeb [19] is the first attempt to bridge the theoretical modeling
of a biological ecosystem and user activities on the Web. For online
activity analysis, Gruhl et al. [10] explored online “chatter” (e.g.,
blogging) activity, and measured the actual sales ranks on Ama-
zon.com, while Ginsberg et al. [8] examined a large number of
search engine queries tracking influenza epidemics, while [6, 31,
9] studied keyword volume to predict consumer behavior.
Pattern discovery in time series. In recent years, there has been
an explosion of interest in mining time-stamped data [4, 36, 29,
28]. Similarity search and pattern discovery in time sequences have
attracted huge interest [38, 26, 2, 37, 35, 29, 24, 5]. Here, TriM-
ine [20] is a scalable method for forecasting complex time-stamped
events, while, [18] developed AutoPlait, which is a fully-automatic
mining algorithm for co-evolving sequences. Rakthanmanon et
al. [32] proposed a similarity search algorithm for “trillions of time
series” under the dynamic time warping (DTW) distance.
Contrast with competitors. Table 1 illustrates the relative advan-
tages of our method. Only COMPCUBE matches all requirements.

Wavelets (DWT) and Fourier transforms (DFT) can detect bursts
and typical patterns, but they cannot detect interactions between
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Table 1: Only COMPCUBE meets all specifications.
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Competition - - - - - -
√ √

-
√

Periodicity
√

-
√ √ √ √

-
√ √ √

Local pattern - - - - - - - -
√ √

Automatic - -
√

- -
√ √ √ √ √

Forecasting - - -
√ √ √

-
√ √ √

Outliers/deltas
√ √ √

-
√ √

- -
√ √

multiple co-evolving sequences. PARAFAC [12] is capable of com-
pression and 3-way analysis, but cannot capture non-linear tempo-
ral patterns. AutoPlait [18], pHMM [39] have the ability to capture
the dynamics of sequences and perform segmentation, however,
they are not intended to capture long-range non-linear evolutions.

All the traditional, linear methods are fundamentally unsuitable:
AR, ARIMA and derivatives including AWSOM [27], TBATS [16],
PLiF [15] and TriMine [20] are all based on linear equations, and
are thus incapable of modeling data governed by non-linear equa-
tions. Also, most of them require parameter tuning.

The susceptible-infected (SI) model, SpikeM [21], the Lotka-
Volterra model, WTA [30], EcoWeb [19] and FUNNEL [22] are
non-linear, however, they cannot capture co-evolving activities, sea-
sonal spikes, deltas and location specific activities.

In short, none of the existing methods focuses specifically on the
automatic mining and forecasting of non-linear dynamics in multi-
evolving and competing activities. Please also see section 5 and
section 6 for more discussion.

3. PROPOSED MODEL
In this section we present our proposed model. Assume that

we receive time-stamped activities of the form (activity, location,
time). We then have a collection of entries with d unique activi-
ties/keywords, m locations and n time ticks. That is, we have a
3rd-order tensor X ∈ N

d×m×n, where the element xil(t) corre-
sponds to the volume of the i-th activity in the l-th location at time
tick t. For example, (CNN, US, 01-01-2015; 100) means there
were 100 activities/queries/clicks, for the keyword “CNN”, in the
US, on January 1, 2015.
Intuition behind our method. Our goal is to find a compact de-
scription that best summarizes a given co-evolving activity tensor
X . So, what exactly are the most important properties that we need
to discover? Specifically, we need to answer all of the questions
that we mentioned in the introduction. In short, what we would
ideally like to discover is,

• (B)asic trends: Non-linear evolution of individual activity
(e.g., potential popularity and growth rate).

• (C)ompetition: Latent interactions between different key-
words (e.g., Nokia vs. Nexus).

• (S)easonality: Yearly, cyclic, temporal user activities (e.g.,
Christmas and summer vacation).

• (D)eltas: Extreme spikes, which represent major events, and
are completely independent of long-range evolution and sea-
sonality (e.g., the US election).

Most importantly, we are interested in capturing the above patterns
from the following perspectives,

• (Global), i.e., world-wide level: general trends and patterns.
• (Local), i.e., country level: area-specific trends and local

sensitivities.

Next, we introduce our model in steps of increasing complexity.
Specifically, (1) we first focus on the non-linear dynamics of co-
evolving activities in a single location (i.e., m = 1), and describe
how to capture general trends and competition among multiple ac-
tivities. (2) We then move on to local-level patterns, and describe
how to capture the above four important patterns in a given tensor
X , and finally, (3) we introduce our full model and describe how
to find a compact summary of X , which captures both global and
local-level trends.

3.1 Competing activities in a single location
Let us begin with the simplest step, namely, co-evolving activ-

ities in a single location, where we have a set of d sequences of
length n, taken from a single (m = 1) location.
Preliminaries: Biological ecosystem — Who competes with whom?
Given a set of d co-evolving sequences, how can we capture the
non-linear evolution of each individual sequence? How do we go
about spotting the interaction and competition between two differ-
ent activities? For example, as shown in Figure 1 (b), the declining
pattern of Kindle coincides with the growing activity of Nexus, that
is, they behave as if they are competing for user attention. 3

So, what is the best way to describe latent competition among
all d activities? One of the simplest models that captures the above
phenomena is the Lotka-Volterra population model of competition
(LVC) [25]. The LVC model is mainly used to describe the dynam-
ics of biological systems in which d species interact and compete
with each other. It is assumed that the population size Pi of each
species i changes over time, with the non-linear differential equa-

tions: dPi
dt

= riPi

(

1−
∑d

j=1
cijPj

Ki

)

, (i = 1, 2, . . . , d),

where, ri is the intrinsic growth/reproduction rate of species i (ri ≥
0), Ki is the carrying capacity of species i (Ki ≥ 0), and cij is the
competition coefficient, i.e., the strength of the interaction between
the two different species (cij ≥ 0).

Although important, the above equations do not directly solve
our problem and cannot capture the real activity dynamics. Our
next question is: How can we describe location-specific dynamics
and capture seasonal/annual patterns as well as filter out external
events and anomalies? We provide the answers below.

3.2 Initial attempt: CompCube-dense
Given a tensor X with d unique activities/keywords, m locations

and n time ticks, our next goal is to find important patterns for
each activity in each location. Specifically, we want to find (B)asic
trends, (C)ompetition, (S)easonality and (D)eltas, simultaneously.
Let us observe this step by step.
(B)asic trends and (C)ompetition. Given a tensor X , our first
step is to estimate the potential popularity size, Pil(t), for each ac-
tivity/keyword i in the l-th location at time tick t. We assume that
the popularity size of each activity evolves over time. The popu-
larity size corresponds to the aggregated volume of each user in-
terest/attention for each activity in each location. For example, if
a new product (say, Nexus) is attractive, many users would spend
more time on it, or recommend it to their friends, and eventually
this would lead to an exponential growth in popularity size. Simi-
larly, we assume that there is latent competition between two differ-
ent activities. For example, most users choose one of the products,
(e.g., Nexus, iPhone, Kindle, iPad), based on their preferences and
prices, etc. We also emphasize that we need to capture location-

3We cannot determine whether two products actually compete - we
can only model them when they behave as if they are competing.
Thus, hereafter, we simply use the term competition for this phe-
nomenon.
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specific trends and patterns. As shown in Figure 1 (b), each coun-
try has its own trends and user activities. These activities evolve
naturally over time and depend on many factors including custom,
education and economy.

MODEL 1. Let Pil(t) be the potential popularity size of activity
i in the l-th location at time tick t. Our base model is governed by
the following equations,

Pil(t) = Pil(t− 1)

[

1 + ril

(

1−

∑d
j=1 cijl · Pjl(t− 1)

Kil

)]

,

(i = 1, · · · , d; l = 1, · · · ,m; t = 1, · · · , n) (1)

where, ril > 0,Kil > 0, ciil = 1, cijl ≥ 0, and Pil(0) = pil.

Model 1 consists of the following parameters,

• pil: initial condition, i.e., popularity size of activity i in the
l-th location at time tick t = 0 (i.e., Pil(0) = pil).

• ril: growth rate, i.e., strength of attractiveness of activity i in
the l-th location.

• Kil: carrying capacity, i.e., available user resources of activ-
ity i in the l-th location.

• cijl: competition coefficient, i.e., effect rate of j-th activity
on i-th activity in the l-th location.

Modeling assumption: We assume that competing activities share
some of the same user resources. Similar to a biological ecosys-
tem, the numbers of users and user resources are finite. The user
resources could be anything, such as user interest/attention, or the
amount of time and money they spend. Users cannot use their
time/money for multiple purposes simultaneously. At time tick t,
the percentage of potential (i.e., available) user resources in the l-th
location for activity i (i.e., those who might be interested in activ-

ity i) can be described as

(

1−
∑d

j=1
cijlPjl(t)

Kil

)

, where, cijl is the

competition coefficient, which describes the effect rate of activity
j on activity i in the l-th location. If cijl = 0 (i ̸= j), there is no
interaction between activities i and j in the l-th location, (i.e., “neu-
tralism”). In contrast, if cijl = cjil = 1, this means that these two
activities compete with each other in the l-th location, by sharing
exactly the same user resource group. If cijl = 1, cjil = 0, there
is an asymmetric competitive interaction, (i.e., “amensalism”). In
this case, activity i is strongly affected by activity j, while activity
j is almost unaffected by activity i.
(S)easonality and (D)eltas/extra-spikes. Let us move on to the
next step, namely, how to capture seasonal/annual patterns as well
as external events. Each activity (e.g., Kindle, CNN) always has a
certain volume of popularity, however, user behavior changes dy-
namically according to the season, various annual events and cus-
toms (e.g., Christmas, summer vacation). We should also take ac-
count of unrepeated, external events and anomalies, such as the
election of President Barack Obama in 2008. To reflect these phe-
nomena, we introduce two additional parameter sets, namely, sil(t):
seasonality, and δil(t): deltas.

MODEL 2. Let Vil(t) be the estimated volume of activity i in
the l-th location at time tick t. Our full model is described as the
following equations:

Vil(t) = Pil(t) [1 + sil(t mod np)] + δil(t)

(i = 1, · · · , d; l = 1, · · · ,m; t = 1, · · · , n) (2)

where, np stands for the period of the cycle (i.e., np = 52 weeks).

The estimated volume Vil(t) describes how many times activity i
appears in the l-th location at time tick t. It depends on the latent
popularity size Pil(t) and two additional parameter sets,
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Figure 2: Illustration of COMPCUBE. (a) Given a tensor X ∈
N

d×m×n, (b) it extracts four components/tensors, i.e., basic B ,
competition C , seasonality S and deltas D (we refer to this as
COMPCUBE-DENSE). (c) It then squeezes four dense tensors
into global/local-level sparse parameters, i.e., basic {B,B ′}
competition {C,C ′}, seasonality {S,W ′} and deltas D ′.

• sil(t mod np): seasonal/annual trends, i.e., relative value
of popularity size Pil(t) vs. the actual volume Vil(t).

• δil(t): deltas, i.e., non-cyclic, completely independent activ-
ity of the long-range evolution.

Note that if there is no seasonality or delta for activity i in the l-th
location at time t, (i.e., sil(t mod np) = δil(t) = 0), the esti-
mated volume is equal to the popularity size (i.e., Vil(t) = Pil(t)).
Full parameter set of COMPCUBE-DENSE. Figure 2 shows our
modeling framework. Given a tensor X (shown in Figure 2 (a)),
we first extract four dense tensors (Figure 2 (b)). We refer to it as
COMPCUBE-DENSE.

DEFINITION 1 (COMPCUBE-DENSE). Let M = {B ,C , S ,D}
be a full parameter set of COMPCUBE-DENSE, where,

• B (d× 3×m): basic/individual trends, consisting of initial

value, growth rate, carrying capacity, i.e., B = {pil, ril,Kil}
d,m
i,l=1.

• C (d×d×m): competition coefficients between the i-th and

j-th activities in the l-th location, i.e., C = {cijl}
d,d,m
i,j,l=1.

• S (d×np×m): seasonal/annual patterns of the i-th activity

in the l-th location, at time tick t, i.e., S = {sil(t)}
d,np,m

i,t,l=1 .

• D (d× n×m): deltas i.e., D = {δil(t)}
d,n,m
i,t,l .

3.3 Final model: CompCube
Until now, we have focused on individual/location-specific trends

with four properties, i.e., B ,C , S ,D . Our final step is to cap-
ture these four properties from both (Global) and (Local) perspec-
tives. So what would be the ideal model for our setting? We
would like to capture common/world-wide level behavior, as well
as location-specific trends. Also, as shown in Figure 2 (b), COM-
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PCUBE-DENSE employs a large number of parameters (i.e., non-
zero elements) to describe all the sequences of X . Most impor-
tantly, we need to avoid redundancy, that is, the ideal model should
provide a compact and powerful representation.
Compression and summarization. We introduce our final model,
COMPCUBE. Figure 2 (c) illustrates how this is done. We decom-
pose each tensor (i.e., B ,C , S ,D) into a set of sparse components
so that we can reconstruct the original dense tensors, i.e.,

B ≃ B · 2B′

, C ≃ C · 2C ′

, S ≃ S · W ′, D ≃ D ′. (3)

Specifically, given dense tensors B and C , we compress them into
matrices B,C and sparse tensors B ′,C ′, where B,C correspond
to global-level (i.e., aggregated) trends of d activities, and B ′,C ′

show the logarithms of the relative values of global vs. local-
specific trends, i.e., B ′ = log(B/B), C ′ = log(C/C). In short,
each element in B ′ and C ′ describes the way in which the behav-
ior at each location differs from global behavior. For example, if
B ′ = 0 for all d activities in all m locations, it is identical to the
global trend, i.e., B = B · 20 = B. Similarly, given a set of sea-
sonal patterns (i.e., S ), we decompose it into a seasonal-component
matrix S and a season-weight tensor W ′. Here, S consists of k-
components of length np, and each component corresponds to an
individual annual pattern, such as Christmas or summer vacation,
while W ′ describes the participation weight of each activity in each
location for each seasonal component. Similarly, we want to make
tensor D ′ as sparse as possible. We should filter out extreme, un-
usual, non-cyclic events automatically. We will explain how this is
done in section 4.
Full parameter set of COMPCUBE. Figure 2(c) shows our mod-
eling framework. Our complete model consists of the following:

DEFINITION 2 (COMPCUBE). Let M′ be a complete set of
COMPCUBE, namely, M′ = {B,B ′,C,C ′, S,W ′,D ′}, i.e.,

• B (d × 3): global-level basic trends of each activity (i.e.,
initial popularity size, growth rate, carrying capacity).

• B ′ (d× 3×m): local-level basic trends.
• C (d× d): global-level competition among all d activities.
• C ′ (d× d×m): local-level competition.
• S (k × np): a set of k seasonal components of period np.
• W ′ (d×k×m): local participation weight of seasonalities.
• D ′ (d× n×m): sparse tensor of deltas/outliers.

4. OPTIMIZATION ALGORITHM
So far, we have shown how we summarize all the important pat-

terns of co-evolving activities. Now, the question is how to find an
optimal solution, and this is exactly the focus of this section. The
problem that we want to solve is as follows:

PROBLEM 1. Given a tensor X ∈ N
d×m×n, consisting of d

activities in m locations of duration n, Find a compact description
that describes the global/local patterns of co-evolving activities in
X , namely, M′ = {B,B ′,C,C ′,S,W ′,D ′}.

Model description and data compression. Our goal is to find an
optimal solution M′ that solves Problem 1. So, how can we effi-
ciently estimate full model parameters given X ? How should we
determine the number of seasonal components, k, as well as filter
out deltas D ′? How can we compress M′, and make it as compact
as possible? We want to answer these questions without any pa-
rameter fine tuning, that is, fully automatically. We thus introduce
a new coding scheme, which is based on the minimum description
length (MDL) principle. In short, it follows the assumption that the

more we can compress the data, the more we can learn about its
underlying patterns.
Model description cost: The description complexity of a model
parameter set, CostM (M′), consists of the following terms,

• The number of activities d, locations m, and time ticks n
require log∗(d) + log∗(m) + log∗(n) bits. 4

• (B)asic trends: CostM (B) = d · 3 · cF , CostM (B ′) =
|B ′| · (log(d) + log(3) + log(m) + cF ) + log∗(|B ′|)

• (C)ompetition: CostM (C) = |C|·(log(d)+log(d)+cF )+
log∗(|C|), CostM (C ′) = |C ′|·(log(d)+log(d)+log(m)+
cF ) + log∗(|C ′|)

• (S)easonality: CostM (S) = |S| ·(log(k)+log(np)+cF )+
log∗(|S|) + log∗(k), CostM (W ′) = |W ′| · (log(d) +
log(k) + log(m) + cF ) + log∗(|W ′|)

• (D)eltas: CostM (D ′) = |D ′| ·(log(d)+log(n)+log(m)+
cF ) + log∗(|D ′|)

where, | · | describes the number of non-zero elements and cF is the
floating point cost. 5

Data coding cost: Given a full parameter set M′, we can encode
the data X using Huffman coding [3], i.e., a number of bits is as-
signed to each value in X , which is the logarithm of the inverse of
the probability. The coding cost of X given M′ is computed by:
CostC(X|M′) =

∑d,m,n
i,l,t=1 log2 p

−1
Gauss(µ,σ2)

(xil(t) − Vil(t)),

where, xil(t) and Vil(t) are the original and estimated volume of
the i-th activity in the l-th location at time tick t (i.e., Model 2). 6

Putting it all together: The total code length for X with respect to
a given parameter set M′ can be described as follows:

CostT (X ;M′) = CostM (M′) + CostC(X|M′) (4)

Thus, our next goal is to find an optimal solution M′ to minimize
the above function.

4.1 Proposed algorithms
What is the best way to find an optimal parameter set M′, effi-

ciently and effectively? We want to capture important properties of
X from the both global and local perspectives, as well as eliminate
meaningless properties and avoid redundancy. We propose an effi-
cient algorithm, COMPCUBE-FIT, which consists of the following
sub-algorithms.

1. GLOBALFIT: Find global trends and competition (i.e., B,C),
as well as filter out seasonalities/deltas (i.e., S,D).

2. LOCALFIT: Find local-level trends and seasonalities as well
as spot location-specific deltas/extras (i.e., B ,C , S ,D).

3. AUTOCOMPRESS: Find a compact summary M′ of X .

Algorithm 1 shows an overview of COMPCUBE-FIT. Given a ten-
sor X , it first finds global-level parameter sets: {B,C,S,D}. Given
a tensor X and global parameters {B,C}, it then finds local-level
trends, i.e., four dense tensors, {B ,C , S ,D}. Finally, it com-
presses them into a set of compact parameters according to our cost
function (i.e., Equation 4) and returns the full parameter set M′.

4.1.1 Global parameter optimization
We now describe our algorithms in steps. Given a tensor X , our

first step is to find a set of global-level parameters. Algorithm 2

4Here, log∗ is the universal code length for integers.
5We digitize the floating number so that it has the optimal code
length, i.e., cF = log(bF ), where bF is the number of buck-
ets/digits and bF = argminb′

F
CostT (X ;M′). Here, cF is up

to 4× 8 bits.
6µ and σ2 are the mean and variance of the distance between the
original and estimated values.
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Algorithm 1 COMPCUBE-FIT (X )

1: Input: Tensor X (d×m× n)
2: Output: Full parameter set M′ = {B,B ′,C,C ′,S,W ′,D′}.
3: /* Parameter fitting for global-level activities */
4: {B,C,S,D} =GLOBALFIT (X );
5: /* Parameter fitting for local-level activities */
6: {B ,C , S ,D} =LOCALFIT (X ,B,C);
7: /* Automatic model compression */
8: {B ′,C ′,S,W ′,D′} =AUTOCOMPRESS (X ,B,C,B ,C , S ,D);
9: return M′ = {B,B ′,C,C ′,S,W ′,D′};

Algorithm 2 GLOBALFIT (X )

1: Input: Tensor X (d×m× n)
2: Output: Global-level parameters M = {B,C,S,D};
3: Compute average volumes X (d× n), i.e., X = {x̄i}di=1
4: Initialize parameter set M
5: /* (I) Estimate individual parameters */
6: for i = 1 : d do
7: Mi = TETRAFIT(i, x̄i,M); // Parameter fitting for i using x̄i;
8: end for
9: /* (II) Estimate competition among all d activities */

10: while improving the parameters do
11: /* Select the most unfitted sequence x̄i */
12: i = arg max

1≤i′≤d

CostT (x̄i′ ;M);

13: /* Estimate parameter set M′
ij for each activity xj */

14: for j = 1 : d do
15: /* Find subset of sequences that have competition with i, j */
16: X[i,j] = SUBSETCOLLECTION({x̄i, x̄j},C);
17: M′

ij = TETRAFIT(i,X[i,j],M); // Fitting for i with X[i,j];

18: end for
19: /* Find the best competitor xj of xi, and update Mi */
20: j = arg min

1≤j′≤d

CostT (X;M′
ij′

); Mi = M′
ij ;

21: end while

22: return M = {B,C,S,D};

shows the overall procedure. Let X be the average volume of d
activities for all m locations of length n, that is, X = {x̄i}

d
i=1,

where x̄i = { 1
m

∑m
l=1 xil(t)}

n
t=1. Given a set of global activities

X , GLOBALFIT iteratively optimizes each parameter set for each
i-th activity.

Specifically, let Mi be a set of global parameters for activity i,
(i.e., Mi = {Bi,Ci,Si,Di}) 7. Here, GLOBALFIT (I) first as-
sumes that there is no competition between the d activities (i.e., it
sets cij = 0 (i ̸= j)), and estimates parameters Mi for each indi-
vidual sequence x̄i (i = 1, . . . , d), separately and independently.
Next, (II) it assumes that there is competition between two activ-
ities: x̄i and x̄j . For each iteration, the algorithm searches for
the best competitor x̄j of x̄i, according to the cost function (i.e.,
Equation 4). It continues the fitting until convergence.

There are two main ideas behind GLOBALFIT: (1) TETRAFIT

and (2) SUBSETCOLLECTION.
(1) TETRAFIT. Given a set of sequences X , we want to find opti-
mal, purified parameters for B, C, as well as filter out seasonality S

and deltas D. Since each component consists of a large number of
parameters, it is extremely expensive to optimize all the parameters
simultaneously. We thus propose an efficient and effective algo-
rithm, namely TETRAFIT, which optimizes each parameter set of
each i-th activity (i.e., Bi,Ci,Si,Di) in an alternating way. Algo-
rithm 3 shows the steps performed by TETRAFIT in detail. Given
a set of sequences X , a current parameter set M, and, index i, it
iteratively estimates each parameter set that corresponds to the i-th
activity. Here, we use the Levenberg-Marquardt (LM) algorithm

7
Bi = {pi, ri,Ki}, Ci = {cij}

d
j=1, Si = {si(t)}

np

t=1, Di =
{δi(t)}

n
t=1,

Algorithm 3 TETRAFIT (i, X , M)

1: Input: (a) Index: i, (b) Sequences X , (c) Current parameter set M
2: Output: Optimal parameters for i, i.e., Mi = {Bi,Ci,Si,Di}
3: while improving the parameters do
4: /* (I) Base and competition parameter fitting, i.e., Bi,Ci */
5: {Bi,Ci} = arg min

B′

i
,C′

i

CostT (X;B,C,S,D);

6: /* (II) Seasonal parameter fitting, i.e., Si */
7: {Si} = arg min

S′

i

CostT (X;B,C,S,D);

8: /* (III) Find deltas, i.e., Di */
9: {Di} = arg min

D′

i

CostT (X;B,C,S,D);

10: end while

11: return Mi = {Bi,Ci,Si,Di};

and minimize the cost function (i.e., Equation 4).
For each iteration, however, TETRAFIT still requires O(d2n)

time to compute the cost function. As described in Equation 1,
it needs to calculate all possible combinations of competition, that
is, {cij}

d,d
i,j=1. Here, one subtle but important point is that the com-

petition matrix C is usually very sparse, that is, most elements are
zero, (i.e., cij = 0), and so we should ignore unrelated combina-
tions/pairs (i, j). We thus introduce our second idea.
(2) SUBSETCOLLECTION. To provide a more efficient solution,
we additionally propose a new algorithm, namely SUBSETCOL-
LECTION, which extracts a small subset of interacting sequences.
Specifically, for each step of TETRAFIT, to estimate the model pa-
rameters with respect to activity i, we use a subset X[i] ⊂ X

that competes with activity i. Here, the subset X[i] consists of
sequences that compete directly (or indirectly) with the i-th se-
quence x̄i, that is, X[i] = f(x̄i), where, f(x̄i) = {x̄i ∪ x̄j ∪
f(x̄j)|

∀jcij > 0}. If there is no competition (i.e., ∀jcij = 0 (i ̸=
j)), then, X[i] = x̄i. Since the subset X[i] consists of a small
number of sequences, this approach greatly reduces the computa-
tion time needed for each iteration in TETRAFIT.

4.1.2 Local parameter optimization
Next, let us focus on the local-level trends, i.e., M = {B ,C , S ,D}.

How do we go about capturing local-level trends and find the op-
timal parameter set M? The most straightforward solution would
be simply to apply GLOBALFIT for all m locations, independently
and separately, and obtain a local-level parameter set for each l-th
location, i.e., M = {Ml}

m
l=1, (Ml = {Bl,Cl,Sl,Dl}). How-

ever, this approach requires us to fit all combinations of competition
(i.e., d× d) for all local activities. Also, some of the locations have
very sparse sequences, which derails the fitting result. More im-
portantly, we are interested in both capturing global-level patterns
and competition, and, spotting location-specific trends and anoma-
lies. For example, we want to answer such questions as in which
countries are the example of competition (e.g., Nokia vs. Nexus)
stronger/weaker than global activities? We want to determine rel-
ative trends and patterns, rather than independent and individual
trends.

So, how can we deal with this issue? To achieve much better op-
timization, we propose “sharing” the global competition for all m
locations. The idea is that, if there is no local competition between
two activities i and j for all m locations, there is no global com-
petition between them. Thus, given a global-level matrix C, our
algorithm ignores unrelated pairs (i.e., ∀i, j, cij = 0), and updates
the coefficients only if cij > 0. Algorithm 4 shows the details of
LOCALFIT. For each activity i in each location l, it finds an op-
timal parameter set Mil. Here, it uses SUBSETCOLLECTION and
TETRAFIT for the efficient optimization. Note that it uses global
parameters B and C as the initial parameter set of TETRAFIT.
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Algorithm 4 LOCALFIT (X ,B,C)

1: Input: Tensor X , Global parameters B,C
2: Output: Local-level parameters i.e., M = {B ,C , S ,D}
3: /* For each i-th activity in l-th location, xil */
4: for l = 1 : m do
5: for i = 1 : d do
6: /* (I) Find subset of sequences that have competition with i */
7: X[il] = SUBSETCOLLECTION(xil,C);
8: /* (II) Estimate parameters for xil */
9: Mil = TETRAFIT(i,X[il], {B,C});

10: end for
11: end for

12: return M = {B ,C , S ,D};

Algorithm 5 AUTOCOMPRESS (X ,B,C,B ,C , S ,D)

1: Input: Tensor X , Global/local-dense parameters B,C,B ,C , S ,D
2: Output: Compressed parameters i.e., {B ′,C ′,S,W ′,D′}
3: B ′ = log(B/B); C ′ = log(C/C); // Compute B ′,C ′;
4: k = 1; // Find k seasonal components (k = 1, 2, · · · );
5: while improving the cost do
6: {S,W ′} = DECOMPOSE(S , k); {S,W ′} = SPARSE(S,W ′);
7: Costk = CostT (X ;S,W ′, k);
8: if Costk < Costbest then
9: /* Update best candidate set */

10: Costbest = Costk, kbest = k; {Sbest,W ′
best} = {S,W ′}

11: end if
12: k ++;
13: end while
14: {S,W ′} = {Sbest,W ′

best}
15: /* Compress parameters */
16: {B ′,C ′,D′} = SPARSE(B ′,C ′,D′);
17: return M′ = {B ′,C ′,S,W ′,D′};

4.1.3 Automatic model compression
Given a tensor X and a set of dense components, {B,C,B ,C ,

S ,D}, our final step is to compress these parameters to make them
as compact as possible, and provide an optimal representation M′.
We need to avoid redundancy and ignore meaningless patterns, but
we do not want to miss any important trends or surprising anoma-
lies. Now, we have two questions: (a) How can we find an optimal
set of k seasonal components (i.e., S)? (b) How can we determine
the optimal number of seasonal components (i.e., k), and the num-
ber of non-zero elements in each tensor (i.e., |B ′|, |C ′|, |W ′|, |D ′|)?

As described in Figure 2 (b), the seasonal tensor S consists of
d×m sequences of length np, where each sequence describes the
temporal pattern of the i-th activity in the l-th location, e.g., the
Christmas spike in December for Kindle in the US. However, it
does not provide a good representation: it cannot capture global
seasonal trends among multiple activities and locations. We thus
propose employing independent component analysis (ICA) [11].
Given a seasonality tensor S , it finds a set of k independent/non-
Gaussian components thus minimizing the reconstruction errors
(i.e., S ≃ S · W ′).

With respect to the second question, we want to find the ap-
propriate number of seasonal components (i.e., k), automatically.
We also need to determine the number of non-zero variables in
each tensor. Our coding scheme enables us to provide the an-
swer. Our cost function (i.e., Equation 4) determines the optimal
number of seasonal components, k, and also makes each tensor
as sparse as possible. For example, if the element cijl in C ′ is
very small and negligible, the cost function suggests that we ig-
nore this variable, and set it at zero, i.e., cijl = 0. Algorithm 5
describes the overall procedure. It first computes B ′,C ′ according
to Equation 3. It then finds a set of k seasonal components using
ICA. Finally, it compresses each component to minimize the cost
function (Equation 4).

5. EXPERIMENTS
In this section we demonstrate the effectiveness of COMPCUBE

on real datasets. To ensure the repeatability of our results, we used
publicly available datasets. The experiments were designed to an-
swer the following questions:

Q1 Effectiveness: How well does it explain important patterns in
given input data?

Q2 Accuracy: How well does it fit real datasets?
Q3 Scalability: How does it scale in terms of computational

time?

5.1 Q1. Effectiveness - discoveries
We demonstrate how effectively COMPCUBE discovers impor-

tant patterns in given data X . We performed experiments on eight
datasets, which were taken from different domains on GoogleTrend,
namely, (#1) Products, (#2) News sources, (#3) Beer, (#4) Cock-
tails, (#5) Car companies, (#6) Social media sites, (#7) Financial
companies and (#8) Software. We picked up the top-10 major key-
words for each domain, and specifically, each dataset consists of
the d = 10 keywords for m = 236 countries and territories, from
January 1, 2004 to the present. Here, we describe our major discov-
eries, which correspond to the four properties of online activities.
(B)asic trends. Figure 3 (a) shows our fitting results for eight
datasets. The original activities are shown as faint lines, and our
estimated volumes are shown as solid lines. COMPCUBE success-
fully captured the long-range evolution and exponential growing
patterns in all co-evolving activities for every dataset. For exam-
ple, with (#1) Products in Figure 3 (a), from 2004 to 2012, most of
the keywords (such as iPhone and Nexus) grew steadily, with Nokia
and iPod being the exceptions (arguably due to the appearance of
Android-based products).
(C)ompetition. Figure 3 (b) shows major examples of competition
for each dataset. COMPCUBE automatically detected latent com-
petition among multiple activities/keywords. For example, it found
that there was interaction between Kindle, Nokia and Nexus ((#1)
Products). As we have already shown in the introduction section
(Figure 1 (a)), our method can also capture local-level competition.

Figure 4 (a-i) and (a-ii) show the local competition between Mod-
elo and Corona ((#3) Beer). Modelo and Corona are popular lagers
that are produced by Grupo Modelo in Mexico. Compared with
Corona, which is growing steadily, Modelo is declining signifi-
cantly, especially in e.g., Mexico and Brazil. However, it behaves in
different ways in several other countries, such as Guatemala (GT)
and Chile (CL).

Figure 4 (b-i) and (b-ii) show the local competition between HTML
and HTML5 ((#8) Software). There are no location-specific trends:
most countries behave similarly to the global activities. For each
country, the user attention/interest for HTML5 increases exponen-
tially, while HTML is declining significantly.
(S)easonality. As shown in Figure 3 (a), COMPCUBE successfully
captured yearly-cyclic patterns for all datasets. For example, (#1)
Products, (#3) Beer and (#8) Software have strong seasonal patterns
(e.g., Christmas and summer vacation), while there is no clear sea-
sonality for (#2) News sources. With respect to location-specific
seasonality, Figure 4 (a-iii) shows the major trend of Coors, which
is a popular beer, brewed in Colorado, US. Our method discovered
that many users in the US and Canada are interested in Coors dur-
ing the summer, which is a season where drinking beer is popular.

Figure 4 (b-iii) shows the major seasonality for (#8) Software,
which corresponds to New Year’s breaks. The bottom map shows
the strength of the seasonality for XML for each country. Note
that we observed similar trends (i.e., a sudden decline around New
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(a) Fitting results of COMPCUBE for eight datasets (global activities), shown as faint lines (original) and solid lines (fitting results).
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(b) Major examples of competition for each dataset.

Figure 3: Fitting results and discoveries of COMPCUBE for eight datasets (here, d = 10 for each dataset). (a) Our estimated volumes
(shown as solid lines) fit the original activities (shown as faint lines) very well: it captures the long-range evolution of each sequence,
e.g., (B)asic trends: exponential growing patterns, (C)ompetition: declining patterns, (S)easonality: annual spikes and (D)eltas:
extreme spikes (see red circles in (#2) and (#5)). Note that our fitting results are so good that the original sequences are often invisible
due to occlusion. (b) COMPCUBE also automatically reveals latent competition such as Nokia vs. Nexus and HTML vs. HTML5.
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Figure 4: Discovery of local patterns for (#3) Beer and (#8) Software. COMPCUBE captures local-level competition coefficients
between (a-i) Modelo and Corona and between (b-i) HTML and HTML5, as well as long-range evolutions in each location (as shown
in (a-ii) and (b-ii)). It also detects seasonal patterns, e.g., (a-iii) the summer spike for Coors beer in the US and Canada, and (b-iii)
the New Year holiday for XML in Europe, AU, etc.

(a) CNN: Nov 2-8, 2008 (b) Tesla: Jul 5-11, 2009
(US election) (Google Doodle)

Figure 5: COMPCUBE automatically detects
world-wide events, i.e., (D)eltas. (a) Local trend
for CNN news: “Barack Obama presidential elec-
tion” in 2008. (b) Google honored the great inven-
tor: “Nikola Tesla” on his birthday on July 10,
2009. Please also see Figure 3 ((#2) News sources
and (#5) Car companies).
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Figure 6: COMPCUBE consistently wins: Aver-
age fitting error (RMSE) between original (xil(t))
and fitted (Vil(t)) volumes for each dataset (lower
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Figure 7: COMPCUBE scales linearly: Wall clock time vs. dataset size,
i.e., (a) activity d, (b) location m, (c) duration n, shown in (left) linear-log
scale to accommodate slow competitors, and (right) magnification, in linear-
linear scale. Our method is linear on the data size.
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Year) for other keywords (e.g., Java and SQL). Clearly, most devel-
opers and hackers stop coding during their vacations.
(D)eltas. Figure 5 shows two major global events corresponding to
(a) CNN news: the United States presidential election in 2008 and
(b) the Google Doodle for Nikola Tesla’s birthday on July 10, 2009
(please see the red circles in Figure 3 (#2) News sources and (#5)
Car companies). Figure 5 (a) indicates that CNN US political news
attracts attention in the US, Canada, Europe, South Africa, Japan,
Korea and elsewhere (i.e., apparently, English-speaking countries,
and/or trading partners). Similarly, Figure 5 (b) reveals that technology-
oriented countries (e.g., US, Canada, India and Brazil) seem to
be interested in one of science’s most important inventors, Nikola
Tesla.

5.2 Q2. Accuracy
We now discuss the quality of COMPCUBE in terms of fitting

accuracy. We compared COMPCUBE with the following state-of-
the-art methods: (a) PLIF [15], i.e., linear dynamical systems for
co-evolving time sequences, (b) FUNNEL [22], i.e., a non-linear
model for spatially-coevolving epidemics, (c) LVC [23], i.e., tra-
ditional non-linear equations for biological competition, and (d)
ECOWEB [19], i.e., non-linear dynamical systems for online user
activities for a single space. Figure 6 shows the root mean square
error (RMSE) between the original and estimated volumes for eight
datasets (#1-#8). A lower value indicates a better fitting accuracy.
As shown in the figure, our approach achieved high fitting accu-
racy, while (a) PLIF is linear, i.e., cannot capture non-linear evo-
lutions, (b) FUNNEL has the ability to capture non-linear growing
patterns as well as external spikes, but cannot capture competition
between different sequences, (c) LVC can detect competition, but
cannot capture seasonal dynamics, and (d) ECOWEB cannot handle
extreme spikes or local trends.

5.3 Q3. Scalability
We performed experiments to evaluate the efficiency of our op-

timization algorithm, which we discussed in section 4. Figure 7
compares COMPCUBE with other methods in terms of computa-
tion time for varying the dataset size with respect to (a) activity d,
(b) location m, and (c) duration n. Note that each result is shown
in both linear-log (left) and linear-linear (right) scales. For PLIF,
we set k = 5 hidden variables and iter = 20, and treated the in-
put tensor as a set of d × m sequences. As shown in the figure,
COMPCUBE is linear with respect to the data size.

Consequently, thanks to our carefully designed algorithms as de-
scribed in section 4, our method achieved a large reduction in both
computation time and fitting error.

6. COMPCUBE AT WORK - FORECASTING
As we discussed in the previous section, COMPCUBE is capa-

ble of handling various types of co-evolving activities. Here, we
tackle the most important and challenging task, namely, forecasting
the non-linear dynamics of co-evolving activities. We compared
our method with the following forecasting methods: (a) FUN-
NEL [22], (b) SARIMA+, i.e., seasonal ARIMA (we set np =
52 weeks), where we determined the optimal parameter set using
AIC, (c) TBATS [16], i.e., a state-of-the-art forecasting algorithm
for complex seasonal time series (we set np = 52 weeks), (d)
PLIF [15] (we set k = 5), and (e) AR, i.e., a traditional forecasting
algorithm (we set the order p = 5 weeks).

Figure 8 shows the forecasting power of COMPCUBE for (#1)
Products. As discussed in section 2, SARIMA+, TBATS, PLIF
and AR are unsuitable for capturing non-linear dynamics; they are
linear models, and they can go to infinity over time. FUNNEL, on
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Figure 8: Forecasting power of COMPCUBE for (#1) Prod-
ucts: It consistently wins. We trained the model using 2/3 of
the dataset (from 2004 to 2011, gray lines), then predicted the
subsequent years.
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Figure 9: Forecasting error of COMPCUBE: It consistently
wins. Average forecasting error (RMSE) for each dataset
(lower is better).
the other hand, is a non-linear model, and has the ability to capture
sinusoidal cyclic patterns, however, it cannot handle competition
and failed to forecast rising/declining evolutions.

Figure 9 shows the average forecasting error of major countries,
(i.e., RMSE between the original and the estimated volume). A
lower value indicates a better forecasting accuracy. Our method
achieves a high forecasting accuracy for every dataset.

7. CONCLUSIONS
Our proposed COMPCUBE exhibits all the desirable properties:

1. It is Effective: It captures long-range non-linear dynamics
and provides important patterns including local competition,
seasonality and anomalies.

2. It is Practical: It matches diverse real data, helps us to under-
stand the mechanisms of competing activities with respect to
both global and local-level aspects, and provides long-range
forecasting.

3. It is Parameter-free: Thanks to our modeling framework,
COMPCUBE needs no training set and no domain expertise.
It is fully automatic and requires no “magic numbers” or
user-defined parameters.

4. It is Scalable: We proposed an efficient optimization algo-
rithm, COMPCUBE-FIT, which is linear in terms of the input
data size.
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