Economic Recommendation with Surplus Maximization

Yongfeng Zhang†‡, Qi Zhao†, Yi Zhang†, Daniel Friedman♯, Min Zhang†, Yiqun Liu‡, Shaoping Ma‡
†School of Engineering, Economics Department, University of California, Santa Cruz, CA 95060, USA
‡Department of Computer Science & Technology, Tsinghua University, Beijing, 100084, China
zhangyf07@gmail.com, {qzhao2,yiz,dan}@ucsc.edu, {z-m,yiqunliu,msp}@tsinghua.edu.cn

ABSTRACT
A prime function of many major World Wide Web applications is Online Service Allocation (OSA), the function of matching individual consumers with particular services/goods (which may include loans or jobs as well as products) each with its own producer. In the applications of interest, consumers are free to choose, so OSA usually takes the form of personalized recommendation or search in practice. The performance metrics of recommender and search systems currently tend to focus on just one side of the match, in some cases the consumers (e.g. satisfaction) and in other cases the producers (e.g., profit). However, a sustainable OSA platform needs to benefit both consumers and producers; otherwise the neglected party eventually may stop using it.

In this paper, we show how to adapt economists’ traditional idea of maximizing total surplus (the sum of consumer net benefit and producer profit) to the heterogeneous world of online service allocation, in an effort to promote the web intelligence for social good in online eco-systems. Modifications of traditional personalized recommendation algorithms enable us to apply Total Surplus Maximization (TSM) to three very different types of real-world tasks – e-commerce, P2P lending and freelancing. The results for all three tasks suggest that TSM compares very favorably to currently popular approaches, to the benefit of both producers and consumers.

Categories and Subject Descriptors
[Applied Computing]: Law, Social and Behavioral Sciences-Economics; [Human-Centered Computing]: Collaborative and Social Computing- Collaborative Filtering

Keywords
Total Surplus Maximization; Online Service Allocation; Computational Economics; Recommendation Systems; Web-based Services

1. INTRODUCTION
Online applications and services have grown tremendously in recent years. Consumers find producers on E-commerce websites like Amazon or via social networks like Facebook, borrowers and lenders find each other via P2P lending services like Prosper, and freelancing websites like Amazon Mechanical Turk and Upwork match short term workers with employers. Such online service allocation seems destined to grow rapidly in the years ahead.

Because consumers typically have the right and the ability to choose freely among available online services, an enforced allocation is usually impractical. Service allocation therefore is typically performed online via search and recommendation systems. Search engines, such as Google or Amazon product search, leverage knowledge about consumers’ intentions, while the many recommender systems for products or social networks try to infer consumer needs without explicit user queries.

By its nature, service allocation is a two-sided matching activity, e.g., of consumers with producers. Economists since Adam Smith (1776) have taken a balanced view of service allocation. The key insight is that maximizing total surplus – the sum of producers’ profit and consumers’ net benefit – is in the best interest of society, and potentially enables both sides to be better off than they would be when that maximum is not achieved.

Existing recommendation systems in online service matching platforms typically lack this balanced perspective. Most are designed with a focus on the benefits to only one side, while the benefits of the other side can be ignored or even sacrificed, because there is always a potential conflict of interest between consumers and producers. For example, the widely adopted Collaborative Filtering (CF) approach for recommendation is based on the preferences of consumers, and the benefits of producers play little role. Some online P2P lending systems focus on improving the revenue of lenders, while neglecting the surplus of borrowers. Such an imbalance is problematic because if one side does not gain much benefit, it may do better elsewhere and leave the platform.

The purpose of this paper is to illustrate how to operationalize the economists’ insight in online service allocation into personalized recommendation systems to solve the problem for better social good of the online society. We propose a Total Surplus Maximization (TSM) framework to integrate both consumer surplus and producer surplus into recommendation systems. By TSM, the system creates a bigger pie (total surplus) for consumers and producers to divide. There is a large gap between the traditional application of the economists’ insight (a competitive market for a uniform commodity, with lots of small producers and consumers) and online allocation of very personalized and heterogeneous services. To fill the gap, we develop surplus-oriented metrics for personalized recommendations for heterogeneous products, and illustrate their use in several online markets.

Copyright is held by the International World Wide Web Conference Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2882973.
We will offer evidence that the TSM framework can improve performance to the benefit of both sides. Indeed, our analysis and results for three real-world datasets (e-commerce, P2P lending, online freelancing) conclude that TSM-based recommendation performs better than standard recommendation techniques on traditional metrics. What’s more, social society as a whole is better off in terms of total surplus when better satisfying the needs of both the consumers and the producers.

The rest of the paper is organized as follows. Section 2 introduces the basic economic concepts we will use. Section 3 presents the Total Surplus Maximization (TSM) framework for Online Service Allocation (OSA), and Section 4 tailors it for three typical applications. Results from fitting the models appear in Section 5. Section 6 notes connections to related work, and Section 7 offers concluding remarks.

2. BASIC DEFINITIONS AND CONCEPTS

In this section, we introduce some of the key concepts and definitions in economics and recommendation systems. These will form the theoretical basis for our framework to be described later.

2.1 Utility

In economics, utility is a numerical representation of one’s preference over some set of goods or services. It is a key ingredient of rational choice theory [8]. A consumer’s utility for a given set of goods can be thought of as the amount of satisfaction experienced from consuming these goods.

For a single good, utility $U(q)$ is a function of the consumed quantity q. If that good is indeed good, then more is better and the marginal utility is positive, i.e., $U'(q) > 0$. The Law Of Diminishing Marginal Utility [31] states that there is a decline in the marginal utility a person derives from consuming each additional unit of the product, i.e., $U''(q) < 0$. For example, a hungry person may obtain a huge amount of satisfaction when consuming the first slice of bread, but the increase in satisfaction per slice declines as he consumes more and more slices.

Among the many functional forms that economists employ for utility, two will be particularly helpful for us. They are the Exponential Utility:

$$U(q) = \frac{1 - \exp(-aq)}{a} \quad (1)$$

and the King-Plosser-Rebelo (KPR) utility:

$$U(q) = a \ln(1 + q). \quad (2)$$

The parameter $a > 0$ in Exponential Utility can be interpreted as the person’s absolute risk aversion, but here it will just represent how fast marginal utility decreases as consumption increases. The parameter $a > 0$ in KPR utility has a similar interpretation. Both functions have the usual normalization that $U(0) = 0$, i.e., zero utility for zero consumption. We will regard both functions as money metrics in the sense of Varian [39].

With those normalizations and interpretations, utility can be understood in monetary terms. $U(q)$ is the dollar value to the consumer of being able to consume q units of the good in question, and $U'(q)$ is her Willingness To Pay (WTP) [13, 12], i.e., the maximum amount of money she would pay to acquire another unit of good. This enables us to align the utility in the same scale as price so as to calculate the surplus of consumers and producers [12].

2.2 Surplus

Consumer Surplus (CS) is the amount of utility that consumers experience beyond the amount that they pay (i.e., the price per unit times number of units). Similarly, Producer Surplus (PS) is the amount of revenue that the producer earns beyond the (variable) cost of producing those units.

The consumer and producer surpluses are indicated in Figure 1, where the demand curve is the marginal utility function $U'(q)$, which decreases according to the exposition in the previous section. The supply curve is the marginal cost $C'(q)$, which increases according to the Law of Diminishing Marginal Returns [31].

In a competitive market, the price P is determined by the equilibrium (intersection) of the two curves. Typically the preferences of many small buyers and the costs of many small sellers lie behind the demand and supply curves of the whole market, but for present purposes it is convenient to think of a single representative buyer and a single representative seller. Given the quantity of consumption $q = q_c$, Consumer Surplus CS is obtained by integrating the marginal utility that exceeds the price at each unit of consumption until q_c:

$$CS = \int_0^{q_c} (U'(q) - P) \, dq = U(q_c) - Pq_c \quad (3)$$

and Producer Surplus PS is similarly determined by:

$$PS = \int_0^{q_c} (P - C'(q)) \, dq = Pq_c - C(q_c). \quad (4)$$

Total Surplus TS is defined as the sum surplus gained by the consumer and producer, which is:

$$TS = CS + PS = U(q_c) - C(q_c). \quad (5)$$

More over, the total surplus of an economic system is the sum of the surpluses for all parties involved in all the transactions of the system.

We see in Eq. (5) that the price component offsets and does not affect the total surplus in a single transaction. Of course, the same is true for any set of transactions, even if they occur at different prices. This is the source of an important insight in Economics: the total surplus in a given set of transactions may be split more or less advantageously for buyer or for seller, but the only way to increase the total (potentially making both sides better off) is to change the set
of transactions. Society is best served when social surplus is maximized, because this provides the largest possible “pie” to split among all participants.

2.3 Collaborative Filtering

Many online services involve the evaluation of producers by consumers (or vice versa) through ratings. For example, on E-commerce websites such as Amazon, users are allowed to rate the purchases with a numerical star rating of 1~5; and on online freelancing websites such as Upwork or Freelancer, such ratings are provided bidirectionally between employers and freelancers.

The numerical rating r_{ij} indicates the satisfaction that consumer i obtains from good j provided by producer p_k. Of course, since a typical consumer rates only a small portion of all possible items, most of the r_{ij} ratings are missing in real-world datas. A key task is to predict the missing ratings, in order to make personalized recommendations for consumers.

We adopt one of the best known prediction methods, Collaborative Filtering (CF) [37] based on Latent Factor Models (LFM) [37, 17]. This gives predicted rating

$$\hat{r}_{ij} = \alpha + \beta_i + \gamma_j + \vec{x}_i^T \vec{y}_j,$$

(6)

where α is the global offset, β_i and γ_j are consumer and item biases, and \vec{x}_i and \vec{y}_j are the K-dimensional latent factors of consumer i and item j. Given a set of observed training records \mathcal{R}, the parameter set $\Theta = \{\alpha, \beta_i, \gamma_j, \vec{x}_i, \vec{y}_j\}$ is obtained via

$$\Theta = \arg\min_{\theta} \sum_{r_{ij} \in \mathcal{R}} (r_{ij} - \hat{r}_{ij})^2 + \lambda \Omega(\Theta)$$

(7)

and $\Omega(\Theta)$ is the l_2-norm regularization term. The minimization of Eq. (7) can be easily accomplished with Stochastic Gradient Descent (SGD) or Alternating Least Squares (ALS) algorithms [17].

3. THE FRAMEWORK FOR OSA

In this section, we propose our Total Surplus Maximization (TSM) framework for the problem of Online Service Allocation (OSA). For clarity in organization and easy understanding, we introduce the key components in a logical order, and then unify these components to present the whole framework.

3.1 Problem Formalization

We consider the problem of online service providing, i.e., distributing goods among given users, so that the total surplus is maximized during this process. The problem takes as given a finite set of consumers $i = 1, ..., m$ with preferences not yet specified, and goods $j = 1, ..., n$, each of which is produced by a unique producer $k(j) \in \{1, ..., r\}$.

Each good is available in limited quantity; $M_j \geq 0$ is the total amount of good j that its producer can supply to the system. For example, $M_j = 1$ in online freelancing networks because each job can only be provided once to only one freelancer; in P2P lending networks like Prosper, we have $0 < M_j < \infty$, which is the amount of money requested by each loan; for e-commerce websites like Amazon, however, we can treat $M_j = \infty$ because for most of the normal goods, the producer can replenish the stock in case of a boosting market demand.

The Online Service Allocation (OSA) problem thus aims to find an Allocation Matrix $Q = [Q_{ij}]_{m \times n}$, where $Q_{ij} \geq 0$ is the quantity that consumer i is provided with good j.

The capacity vector $M = [M_1, M_2, \ldots, M_n]$ leads to the feasibility constraint $\sum_j Q_{ij} \leq M_j$ for each good j, i.e., $\mathbf{1}^T Q \leq M$, where $\mathbf{1}$ is a column vector of 1’s. In different real-world application scenarios we may apply extra constraints on Q to meet specific task characteristics. For example, $Q_{ij} \in \mathbb{N}$ for e-commerce goods, or $Q_{ij} \in \{0, 1\}$ for online freelancing services.

The problem of OSA widely exists and finds its instantiation in a lot of online services or mobile applications wherever there is service consumption. Besides e-commerce, P2P lending, and freelancing services we examined here, other applications include riding services such as Uber and Lyft, group purchase services such as Groupon, or even lodge renting services such as Airbnb, etc.

3.2 Personalized Utility

Different consumers may experience different utility even from the same quantity of the same good. In e-commerce websites, for example, one with an SLR camera in hand may obtain a high consumer surplus when supplied with an SLR lens, however, the surplus may be extremely low when a lens is provided to someone without a camera. For P2P lending, similarly, the same amount of money could mean a huge surplus to someone that is in an urgent need (thus willing to accept a higher interest rate), while the surplus may be lower for those who are not that thirsty for money (thus insists on lower interest rates).

This ‘personalized’ feature of utility makes up the inherent driving power for service allocation, which makes it reasonable for us to match the appropriate good with the appropriate consumer so as to maximize the potential total surplus in the whole system. And this process can come in the form of personalized recommendation or intelligent marketing assistance to decision makers in practical applications.

In this work, we adopt the personalized utility $U_{ij}(q)$ on a consumer-to-good level, namely:

$$U_{ij}(q) = \frac{1 - \exp(-a_{ij}q)}{a_{ij}}, \text{ or } U_{ij}(q) = a_{ij} \ln(1 + q)$$

(8)

where $U_{ij}(q)$ indicates the utility when supplying a quantity q of good j to consumer i, which is parameterized by the personalized shape parameter a_{ij}.

The estimation procedure for a_{ij} varies with the availability of data and the applicable economic theory. For example, we adopt the Law of Zero Surplus for the Last Unit [12] for the inference of a_{ij} in e-commerce, while the property of percentage surplus is applied in freelancing. We will expost in more details in the Model Specification section below.

3.3 Total Surplus Maximization

Given perfect information on the personalized utilities $U_{ij}(q)$ and the cost function $C_j(q)$ for each good j, the TSM approach for online service allocation would seek an exact allocation matrix Q so as to maximize the total social surplus subject to the relevant constraints:

$$\max_{Q} \sum_{i} \sum_{j} (U_{ij}(Q_{ij}) - C_j(Q_{ij}))$$

$$s.t. \mathbf{1}^T Q \leq M, \ Q_{ij} \in \mathbb{S}$$

(9)
where \(S \) is the set of feasible values for a specific application, e.g., \(S = \mathbb{N} \) for e-commerce and \(S = \{0, 1\} \) for online freelancing.

However, in practical applications we have only estimates of utilities and costs, and consumers may not always choose what appear to be the optimal quantities of goods. To account for measurement error (or decision error by consumers), we regard observed consumer choice as stochastic. That is, the elements \(Q_{ij} \) in allocation matrix \(Q \) are random variables with a probability distribution. For example, when \(Q_{ij} \sim \mathcal{N}(\mu_{ij}, \sigma_{ij}) \), consumer \(i \) chooses good \(j \) with the highest probability, but she may also choose some different quantity, although with lower probability. Therefore we pose the service allocation problem as maximizing expected total surplus:

\[
\text{maximize } \sum Q_{ij} \int (U_{ij}(Q_{ij}) - C_j(Q_{ij}))p(Q_{ij})dQ_{ij} \\
\text{s.t. } \sum Q_{ij}dQ \leq M, Q_{ij} \in S
\]

where \(p(Q_{ij}) \) is the probability density function of each quantity \(Q_{ij} \), \(p(Q) = \int p(Q_{ij})dQ \), and the integral on \(Q \) is per element wise. Here \(\Theta(Q) \) is the set of feasible distribution parameters of allocation matrix \(Q \).

The model produces the optimal density functions \(p(Q) \) as the final output, and we take the expectation \(Q = \int Qp(Q)dQ \) as the final allocation matrix to make system decisions. This probabilistic interpretation simplifies the computation in some applications, as explained in the next section.

4. MODEL SPECIFICATION

We now discuss how to implement our TSM framework for online service allocation for three different online applications. Table 1 summarizes key specifications.

4.1 E-commerce

We first estimate personalized utility \(U_{ij}(q) \) from consumer purchasing records. Although \(U_{ij}(q) \) is not directly observed in the data, it is subject to the Law of Zero Surplus for the Last Unit [12]; as suggested in Figure 4 a rational consumer \(i \) will purchase quantity \(q_{ij} \) on good \(j \) because each unit up to that point brings additional satisfaction worth more than the price, but additional units beyond \(q_{ij} \) are not worth the price. To spell it out, let \(CS_{ij}(q_{ij}) = U_{ij}(q_{ij}) - P_jq_{ij} \) be the consumer surplus obtained from such a purchasing behavior. Then the law of zero surplus gives us the following constraints:

\[
\Delta CS_{ij}(q_{ij}) = CS_{ij}(q_{ij}) - CS_{ij}(q_{ij} - 1) \geq 0 \\
\Delta CS_{ij}(q_{ij} + 1) = CS_{ij}(q_{ij} + 1) - CS_{ij}(q_{ij}) < 0
\]

In the spirit of collaborative filtering, we model the personalized parameter in Eq. 8 as \(a_{ij} = \alpha + \beta_i + \gamma_j + \vec{x}_i^T\vec{y}_j \), where \(\vec{x}_i \) is the \(K \)-dimensional consumer latent factor of consumer \(i \), and \(\vec{y}_j \) is similarly the latent factor corresponding to good \(j \). Hence, the shape parameters \(a_{ij} \) become intermediate parameters that can be derived from the actual parameters \(\Theta = \{\alpha, \beta_i, \gamma_j, \vec{x}_i, \vec{y}_j\} \) in model optimization. Based on this, we maximize the following log-likelihood of observing the whole purchasing records dataset:

\[
\text{maximize } \log p(D) \nonumber \]

\[
= \sum_{i=1}^m \sum_{j=1}^n I_{ij} \log \left(\Pr(\Delta CS_{ij}(q_{ij}) \geq 0, \Delta CS_{ij}(q_{ij} + 1) < 0) \right) \\
- \lambda(\alpha^2 + \sum_{m=1}^n \beta_i^2 + \sum_{j=1}^n \gamma_j^2 + \sum_{i=1}^m \|\vec{x}_i\|^2 + \sum_{j=1}^n \|\vec{y}_j\|^2) \\
\text{s.t. } \bar{x}_i, \bar{y}_j \geq 0, \forall 1 \leq i \leq m, 1 \leq j \leq n
\]

where \(I_{ij} \) is an indicator whose value is 1 when consumer \(i \) purchased good \(j \) in the dataset, and 0 otherwise. The regularizer with coefficient \(\lambda > 0 \) is used to prevent model over-fitting. We apply the commonly used non-negative constraints [19][18] on the latent factors \(\{\vec{x}_i\}_{i=1}^m \) and \(\{\vec{y}_j\}_{j=1}^n \), and adopt the sigmoid function to model the probabilities, which are

\[
\Pr(\Delta CS_{ij}(q_{ij}) \geq 0) = \frac{1}{1 + \exp(-\Delta CS_{ij}(q_{ij}))}
\]

and

\[
\Pr(\Delta CS_{ij}(q_{ij} + 1) < 0) = 1 - \Pr(\Delta CS_{ij}(q_{ij} + 1) \geq 0).
\]

An optimal solution of Eq. 12 can be obtained by gradient descent, which involves the computation of the gradients on the shape parameter \(a_{ij} \). To simplify the computation and make it possible for model estimation, we adopt the KPR utility function \(U_{ij}(q) = a_{ij} \ln(1 + q) \). After the above model fitting process, we have the parameter estimates to compute the shape parameters \(a_{ij} \). These in turn give us the personalized utility functions \(U_{ij}(q) \):

\[
U_{ij}(q) = a_{ij} \ln(1 + q) = (\alpha + \beta_i + \gamma_j + \vec{x}_i^T\vec{y}_j) \ln(1 + q).
\]

To obtain producer surplus we assume constant marginal cost of selling e-commerce goods. The (variable) cost function then is \(C(q) = c_jq \), where \(c_j \) is the cost of a unit service of good \(j \). Because \(Q_{ij} \in \mathbb{N} \), we assume that the elements \(Q_{ij} \) in the allocation matrix \(Q \) of Eq. 10 follow a Poisson distribution, i.e.,

\[
p(Q_{ij}) = \lambda_{ij}^q e^{-\lambda_{ij}} / q! \]

where the \(\lambda_{ij} \)'s are the distribution parameters. Finally, the framework for OSA based on total surplus maximization in Eq. 10 can be specified to the following maximization problem:

\[
\text{maximize } \sum \sum_{j=1}^n \lambda_{ij}^q e^{-\lambda_{ij}} \left(\bar{x}_{ij} \ln(1 + q) - c_jq \right) \\
- \eta \sum \sum_{j=1}^n I_{ij}(\lambda_{ij} - q_{ij})^2
\]
where \(\Lambda = [\lambda_{ij}]_{m \times n} \) is the parameter set, \(\eta > 0 \) is regularizer coefficient, \(I_{ij} \) is still the indicator of whether \(i \) purchased \(j \) in the training set, and \(q_{ij} \) is the actual purchasing quantity. The quantity constraints are left out because \(M_j = \infty \).

In practice, we do not have to sum over infinite \(q's \) to compute an expectation over Poisson distribution, but only need to consider sufficiently many choices. In this work, we choose to sum up from \(q = 0 \) to 10 because \(10! = 3,628,800 \) is sufficiently large to diminish the residuals according to the theory of Taylor series expansion.

The minimization of both Eq.(12) and Eq.(17) can be conducted based on gradient descent. Once the distribution parameters \(\Lambda \) are obtained from Eq.(17), we have the expected allocation matrix \(\bar{Q} \) as:

\[
\bar{Q}_{ij} = \sum_{q=0}^{\infty} q \cdot \frac{\lambda_{ij}^q e^{-\lambda_{ij}}}{q!} = \sum_{q=0}^{\infty} \frac{\lambda_{ij}^q e^{-\lambda_{ij}}}{(q-1)!} = \lambda_{ij}
\]

which we take for service allocation and product recommendation. Note that in the regularizer of Eq.(17), \(\lambda_{ij} \) is actually the expectation of quantity \(Q_{ij} \) according to the nature of Poisson distribution (Eq.(15)). As a result, the regularization component applies a guidance to the learning process, so that the estimated allocation quantities for those observed transactions in the training dataset would be close to their actual values.

4.2 Online Peer-to-Peer Lending

In P2P lending services like Prosper, the borrowers are loan request producers, since the loan requests can be viewed as financial products. The lenders are consumers of these financial products. Here the OSA problem is how the lenders (i.e., consumers) should distribute their assets among the available financial products. Here the OSA problem is how the lenders (i.e., consumers) should distribute their assets among the financial products. The lenders are consumers of these financial products. In a standard online lending process, the borrower (request producer) \(k \) initiates a loan request \(j \) by specifying two features: the size of the loan \(M_j \), and its maximal interest rate \(r_{ij}^{\text{max}} \) that she is willing to offer. Once a request is generated, the lenders (request consumers) \(i \) bid the request by providing the amount of money they would like to lend and the interest rates they ask for, which should be lower than or equal to \(r_{ij}^{\text{max}} \). When the total amount of money in bid exceeds the request in a given time period, the loan request then makes a deal, and the top bidders (those with the lowest interest rates) whose money amounts to the request win the bid. The highest interest rate among the winners is set as the final interest rate \(r_j \) for the loan \(j \).

The consumer surplus for the lenders is the interest they obtain from this loan \(r_j Q_{ij} \), less the opportunity cost \(r Q_{ij} \) of investing the money in other ways. For simplicity, we set \(\hat{r} \) as the risk-free interest rate (e.g., to save the money in bank). As a result, we have:

\[
CS_{ij}(Q_{ij}) = (r_j - \hat{r})Q_{ij}
\]

Similarly, the producer surplus for the borrowers is the interest they would like to pay \(r_{ij}^{\text{max}} Q_{ij} \), less the actual interest they have to pay \(r_j Q_{ij} \), namely,

\[
PS_{ij}(Q_{ij}) = (r_{ij}^{\text{max}} - r_j)Q_{ij}
\]

Thus the total surplus is:

\[
TS_{ij}(Q_{ij}) = CS_{ij}(Q_{ij}) + PS_{ij}(Q_{ij}) = (r_{ij}^{\text{max}} - \hat{r})Q_{ij}
\]

Because \(Q_{ij} \) represents the quantity of money that is a continuous variable, we apply a normal distribution to describe \(Q_{ij} \), i.e., \(Q_{ij} \sim \mathcal{N}(\mu_{ij}, \sigma_{ij}) \).

Expected total surplus maximization in Eq.(10) for P2P lending thus becomes

\[
\begin{align*}
\max_{Q_{ij}} & \sum_{i,j} \int \frac{(r_{ij}^{\text{max}} - \hat{r})Q_{ij}}{\sqrt{2\pi}\sigma_{ij}} \exp \left(-\frac{(Q_{ij} - \mu_{ij})^2}{2\sigma_{ij}^2} \right) dQ_{ij} \\
\text{s.t.} & \int \frac{Q}{\sqrt{2\pi}\sigma^2} \exp \left(-\frac{(Q - U)^2}{2\Sigma^2} \right) dQ \leq M, Q_{ij} \in \mathbb{R}_+
\end{align*}
\]

where \(U = [\mu_{ij}]_{m \times n} \) and \(\Sigma = [\sigma_{ij}]_{m \times n} \) are the parameters. This boils down to:

\[
\begin{align*}
\max_{Q_{ij}} & \sum_{i,j} \mu_{ij}(r_{ij}^{\text{max}} - \hat{r}) \\
\text{s.t.} & \int 1^T U \leq M, \mu_{ij} \in \mathbb{R}_+
\end{align*}
\]

which can be solved to find the optima with linear programming. Finally, we take the expected quantity under Gaussian distribution as the allocation matrix, i.e.,

\[
\hat{Q}_{ij} = \mu_{ij}
\]

This result is interesting in that, it allows us to allocate the investments in a greedy manner according to the per capita surplus \((r_{ij}^{\text{max}} - \hat{r}) \) of each loan request, which is an intuitional rule for investment in practice and easily applicable in real-world systems.

4.3 Online Freelancing Platforms

In online freelancing networks like Mturk and Upwork, the employer (job producer) \(k \) posts job \(j \) online, and the freelancers (job consumers) \(i \) apply for the jobs that they are willing to take. Because a job can only be assigned to a single freelancer and a freelancer can only decide to take a job or not rather than take part of a job, the elements \(Q_{ij} \) in allocation matrix \(Q \) can only be binary values in \([0, 1]\).

The employer and freelancer negotiate to decide the salary \(s_j \) for job \(j \). After the job is accomplished, they make ratings on each other which indicates their satisfaction about the other side. We denote the rating given by freelancer \(i \) and employer \(k \) about the job \(j \) as \(\hat{r}_{ij} \) and \(r_{kj} \), respectively, which are integers in a specific rating scale.

To estimate the consumer and producer surplus experienced on a given job, we adopt the economic assumption that the percentage surplus against the price that the consumer pays or the producer obtains is proportional to the normalized ratings that they cast on each other \([12, 42]\), i.e., a higher rating implies a higher percentage surplus.

To do so, we predict the freelancer-job ratings \(\hat{r}_{ij} \) and employer-job ratings \(\hat{r}_{kj} \), respectively, based on the Collaborative Filtering (CF) approach of Eq.(7) introduced in section 2.3. By the sigmoid function \(h(x) = \frac{2}{1 + e^{-x}} - 1 \), we further model the percentage surplus for freelancers as:

\[
\frac{U_{ij}(Q_{ij}) - s_j}{s_j} = h(\hat{r}_{ij})Q_{ij} = \left(\frac{2}{1 + e^{-\hat{r}_{ij}}} - 1 \right) Q_{ij}
\]

and the percentage producer surplus as:

\[
\frac{s_j - C_j(Q_{ij})}{s_j} = h(\hat{r}_{kj})Q_{ij} = \left(\frac{2}{1 + e^{-\hat{r}_{kj}}} - 1 \right) Q_{ij}
\]
where $Q_{ij} \in \{0,1\}$ can be viewed as a binary indicator that whether or not a job is assigned, so that a surplus can be obtained for consumers and producers in Eq. 25 and 26.

As a result, the consumer, producer, and total surpluses implied in a specific job assignment i to j are:

$$CS_{ij}(Q_{ij}) = U_{ij}(Q_{ij}) - s_j = h(\hat{r}_{ij})s_jQ_{ij}$$
$$PS_{ij}(Q_{ij}) = s_j - C_{ij}(Q_{ij}) = h(\hat{r}_{kj})s_jQ_{ij}$$
$$TS_{ij}(Q_{ij}) = (h(\hat{r}_{ij}) + h(\hat{r}_{kj})) s_j Q_{ij}$$ (27)

On considering that Q_{ij} is binary valued, we apply a Bernoulli distribution to model its probabilistic nature, i.e.:

$$p(Q_{ij} = 1) = \alpha_{ij},\quad p(Q_{ij} = 0) = 1 - \alpha_{ij}$$ (28)

where $0 \leq \alpha_{ij} \leq 1$. Let $A = [\alpha_{ij}]_{m \times n}$ be the parameter set, and let $M_j = 1$ because each individual job is by nature provided only once. The OSA problem for online freelancing services is thus specified as:

$$\max_{A} \sum_{ij} \sum_{j} (h(\hat{r}_{ij}) + h(\hat{r}_{kj})) s_j \alpha_{ij}$$ s.t. $1^T A \leq 1$, $0 \leq \alpha_{ij} \leq 1$ (29)

Eq. 29 can be easily optimized using linear programming. Once the parameters in $A = [\alpha_{ij}]_{m \times n}$ are obtained, we assign the job j to the freelancer i of the maximum probability α_{ij} among α_{ij} of all the freelancers on that job, namely:

$$\hat{Q}_{ij} = \begin{cases} 1, & \text{if } \alpha_{ij} = \max \{\alpha'_{ij}\}_{i' = 1}^n \\ 0, & \text{otherwise} \end{cases}$$ (30)

This result is intuitive because it can also be achieved in a greedy manner by replacing α_{ij} with Q_{ij} in Eq. 29. In this way, we assign a given job j to the freelancer i who gains the highest value regarding $(h(\hat{r}_{ij}) + h(\hat{r}_{kj})) s_j$, which is actually a specification of the direct non-probabilistic framework in Eq. 10. Furthermore, this can be viewed as a surplus-augmented version of the traditional CF-based personalized recommendation algorithms, which will be discussed in the following together with the previous specifications.

4.4 Remarks

It is worthwhile to compare and contrast our framework with some traditional recommendation algorithms.

In the case of unlimited quantity where $M_j = \infty$, the quantity constraint $1^T Q \eta \leq A$ in Eq. 10 can be removed and we obtain an unconstrained optimization function, just as shown in Eq. 17. In this case, the total surplus related to each consumer is independent from those of the others, and the optimal allocations for each consumer is independently isolated from each other. Take the e-commerce application for example, the allocation for a given consumer i can be obtained with the following equation:

$$\max_{(\lambda_{ij})_{ij}} \sum_{j} \left(\sum_{q=0}^{\infty} \frac{(\bar{a}_{ij} \ln(1 + q)) \lambda_{ij}^q e^{-\lambda_{ij}}}{q!} - \lambda_{ij}c_j \right) - \eta \Omega(\Theta)$$ (31)

This is similar to traditional Personalized Recommender System (PRS) algorithms, where we consider the preferences of each targeted user and aim to provide the most relevant recommendations. The spirit of personalization has been inherently incorporated in the design of the personalized utility of Eq. 14, where $\bar{a}_{ij} = \alpha + \beta_i + \gamma_j + \bar{x}_i^T \bar{y}_j$ describes the consumer preference towards the goods in a collaborative manner based on the latent factors learned from the wisdom of the crowds, which is similar to the Collaborative Filtering approach in Section 2.3.

Similarly for online freelancing application denoted in Eq. 29, we see that for a given target job j, the employer-job rating $h(\hat{r}_{ij})$ (predicted by CF) and the hourly salary s_j would be known values. As a result, the greedy weight $(h(\hat{r}_{ij}) + h(\hat{r}_{kj})) s_j$ will only depend on the freelancer i. In this sense, we are actually assigning the job j to the freelancer i of the maximized $h(\hat{r}_{ij}) s_j$. This is actually a generalization of CF-based algorithms that recommend job j to the freelancer i of the maximum predicted rating \hat{r}_{ij}, where the only difference is that we further take the hourly salary s_j into consideration for a maximized total surplus that is measured on a basis of money.

Another interesting yet intuitive conclusion from the existence of a non-infinity solution to Eq. 31 is that, larger quantity of products that the producers sell is not necessarily preferred by the system, although we assume the quantities that producers can supply are unlimited. This results from the diminishing marginal utility experienced by consumers, and this conclusion is verified by the disadvantages observed on dumping in practical tradings.

However, when the constraint on quantity exists, the consumer surpluses are correlated with each other, so that the allocation matrix that gains a globally maximized total surplus does not necessarily imply a maximized surplus for each consumer or producer.

5. RESULTS

In this section, we take our framework to the data, and perform the traditional tasks of purchase prediction and personalized recommendation, as well as the new task of total surplus maximization. We first present a more detailed description of the e-commerce application, which we think is one of the most representative and easy-to-understand application scenarios that match the economic theories. Then we briefly sketch results on P2P lending and online freelancing applications, to illustrate the scope of our framework.

5.1 E-commerce Dataset Description

We adopt the consumer purchasing records dataset from Shop.com\(^1\), for model evaluation, because an important information source leveraged in our framework is the quantity of product that a consumer purchased in each transaction, which is absent in many of the public datasets. In the Shop.com dataset, however, we have both the product price information and the quantity that a consumer purchased in each record.

To avoid the problem of cold-start \([21, 22]\), and to focus on our key research target of total surplus maximization, we select those consumers and products with at least five purchasing records, which is a frequently adopted pre-processing method in previous work \([21, 20, 37]\). Some statistics of our dataset are summarized in Table 2.

| Table 2: Statistics of the Shop.com dataset |
|-----------------|-----------------|-----------------|---------------|-----------------|
| #Consumers | #Products | #Transactions | Density | Train/Test |
| 34,099 | 42,691 | 400,215 | 0.03% | 75%/25% |

We see that the dataset is extremely sparse with a density of only 0.03\%, which is similar to previously seen recommend-

\(^1\)http://www.shop.com
5.3 Purchase Prediction and Recommendation

We investigated the performance of our TSM framework for the task of personalized purchase prediction and recommendation. For performance comparison, we adopt the widely used CF algorithm in Eq. (1) and (5) to provide the purchasing quantity directly, which are integer values ranging from 1 to 20. For the comparison, the hyper-parameters K and λ are set the same as those in Table 4.

Table 4: Summary of parameters. The number of latent factors K and the CP regularization coefficient λ are identified by cross validation, and are examined throughout the reported results. η varies as the marginal cost of product j. The procedure ends up with the estimated values of λ for any given consumer-product pair in our dataset. As suggested by Eq. (1), the product list is then predicted by ranking the products in descending order of U_{ij}. For easy reference, the values of the involved parameters are as shown in Table 4.

The personalized KPR utility function U_{ij} is given by

$$U_{ij} = \alpha_i + \beta_j + \gamma_{ij} + \lambda_{ij}$$

for any consumer-product pair (i,j) indicated in Eq. (17). Recognizing that λ_{ij} is consumer-specific similar to η_{ij} in Eq. (15), λ_{ij} is parameterized solely by parameter λ in the form of $\lambda_{ij} = \alpha_i + \beta_j + \gamma_{ij}$. In the estimates, we set the hyper-parameter λ in Eq. (12) to examine its influence; thus η varies as the marginal cost of product j. In the estimates, we set the cost ratio 0.5 as an average estimation based on the surveys of 100 producers from different product categories. For simplicity, we set the cost c_{ij} to examine its influence; thus η varies as the marginal cost of product j. The cost ratio 0.5 is an average estimation based on the surveys of 100 producers from different product categories. For simplicity, we set the cost ratio 0.5 as an average estimation based on the surveys of 100 producers from different product categories. For simplicity, we set the cost ratio 0.5 as an average estimation based on the surveys of 100 producers from different product categories. For simplicity, we set the cost ratio 0.5 as an average estimation based on the surveys of 100 producers from different product categories.
Table 3: Evaluation on Conversion Rate (CR@N) and Total Surplus (TS@N) for Top-N recommendation, where TSM* stands for our TSM approach with regularization coefficient $\eta = *$ in Eq. (17).

<table>
<thead>
<tr>
<th>N</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>CF</td>
<td>TSM*</td>
<td>TSM$^+$</td>
</tr>
<tr>
<td>CR (%)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>TS ($)</td>
<td>33.05</td>
<td>1009.45</td>
<td>1009.45</td>
</tr>
</tbody>
</table>

5.4 Evaluation on Total Surplus

In this section, we closely examine the performance of our framework under the total surplus metric, which is a core notion of this work. The evaluation is carried out based on the recommendation results from the above section. Similar to the Top-N conversion rate, we are interested in calculating the accumulated social surplus of a Top-N recommendation list for each user, which is defined as,

$$TS@N = \frac{1}{M} \sum_{i=1}^{M} \sum_{j \in \Pi_{i,N}} (\hat{a}_{ij} \ln(1 + \lambda_{ij}) - c_j \lambda_{ij})$$ (32)

where i and M are the index and the total number of testing consumers, respectively, N is the length of recommendation list, and $\Pi_{i,N}$ is the length-N personalized recommendation list for the i-th consumer.

Similarly, the resulted of $TS@N$ are reported in Table 3 and a full scope report under comprehensive choices of N can be found in Figure 3.

It can be seen from the results that our TSM approach consistently outperforms the CF method. This result is actually not surprising because our TSM framework is by nature able to maximize the total surplus by Eq. (17). Besides, we find that the smaller η is, the more total surplus our TSM approach gains. This observation on the influence of η further verifies the effects of the surplus maximization component and the quantity guidance in Eq. (17).

More interestingly, when combining this result with that on recommendation in the previous section, we find that our TSM framework can achieve decent results in terms of both total surplus and conversion rate when η is properly set. This is exciting because our framework is able to benefit the social good on total surplus, and at the same time improves the consumer experience in personalized recommendations.

5.5 P2P Lending Networks

To investigate the performance on Peer-to-Peer loan networks, we use the datasets from a famous P2P lending website Prosper.

Beginning from the third quarter in 2009, Prosper introduced an automatic bidding mechanism that bids the listings (i.e., loan requests) on behalf of the lenders automatically once a listing is created. However, as we intend to investigate the behaviour of consumers and producers in an economic system, we prefer the decisions made directly by themselves, instead of those indirectly by the algorithms. As a result, we adopt those listing and bidding records before this mechanism was launched, which finally covers the period from November 9th 2005 to May 8th 2009.

As we do not consider risk control in our current model, we select those successfully funded listings whose status are not Defaulted, Cancelled or Charge-off from the dataset, because these listings are meant to be ruled out from the system by the intelligent risk control mechanisms. Finally, our dataset involves those funded listings of the status Current, Late, Payoff in Progress, or Paid, which correspond to 46,680 listings, 1,814,503 bids, and a total amount of $157,845,684 fundings. Some statistics of these records are summarized in Table 5.

Table 5: Statistics of the selected Prosper dataset, where ‘rate’ represents the interest rate of a loan.

<table>
<thead>
<tr>
<th>#Listings</th>
<th>#Lenders</th>
<th>#Bids</th>
<th>TotalAmount</th>
</tr>
</thead>
<tbody>
<tr>
<td>46,680</td>
<td>49,631</td>
<td>1,814,503</td>
<td>$157,845,684</td>
</tr>
</tbody>
</table>

MinimumRate MaximumRate AverageRate Amount/Listing
0.0001 0.4975 0.1662 $3,381.44

To calculate the total surplus reached by an arbitrary allocation $Q = [Q_{ij}]_{n \times n}$, we take the yearly average bank deposit interest rate $\hat{r} = 0.01$ as the risk-free interest rate, and the TS for P2P loaning can be calculated as:

$$TS_{P2P} = \sum_{i} \sum_{j} Q_{ij}(r_{ij}^{max} - \hat{r})$$ (33)

Based on this, the results on total surplus for the actual allocations (Actual) and our Total Surplus Maximization (TSM) framework are shown as follows:

Table 6: Results on total surplus with and without our Total Surplus Maximization (TSM) framework.

<table>
<thead>
<tr>
<th>$TS($</th>
<th>TS/Listing($)</th>
<th>TS/capita($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>25,174.134</td>
<td>539.29</td>
</tr>
<tr>
<td>TSM</td>
<td>33,838.364</td>
<td>724.90</td>
</tr>
</tbody>
</table>
The estimates indicate that the TSM framework achieves 34.42% higher total and per listing/capita surplus, from $0.16 per capita to $0.21 per capita, which is a major improvement in efficiency for the online lending systems. Based on two-tailed t-test on the large amount of listings, the improvements are significant at a 0.01 level.

The improvement on total surplus is not surprising because our framework intends to achieve a maximized surplus among all the possible allocations. However, we should further verify that our allocations are acceptable to the lenders in practice. As a result, we calculate the Percentage of Paid (PoP) listings among all the funded listings in our dataset, which indicates the safety factor of a funding allocation.

Results show that the PoP among all the listings in our selected dataset is 69.37%, while the PoP among the funded listings of our TSM allocation is 73.32%, which is no lower than the actual PoP. This suggests that our TSM framework is able to improve efficiency without impairing the safety of the system.

5.6 Online Freelancing

We used the dataset from Zhubaji3 (ZBJ) for empirical verification of online freelancing applications. ZBJ is a famous Chinese online marketplace that includes online jobs across various categories. Each employment record includes the employer, freelancer, and job IDs, the hourly salary, as well as the employer-job and freelancer-job ratings, which are integers ranging from 0 to 5. Some of the basic statistics of the dataset that we collected are summarized in Table 7.

<table>
<thead>
<tr>
<th>#Employers</th>
<th>#Freelancers</th>
<th>#Jobs</th>
<th>AverageSalary</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,228</td>
<td>46,856</td>
<td>296,453</td>
<td>¥21.85/hr</td>
</tr>
</tbody>
</table>

Similar to our e-commerce application, we make job recommendations to freelancers based on the allocation matrix produced by our framework, then verify the performance on this task. To do so, we take all the freelancer-job ratings, and conduct personalized recommendation based on Collaborative Filtering (CF). In CF, a job j is assigned to freelancer i who has the highest predicted rating \(\hat{r}_{ij} \), while in our Total Surplus Maximization (TSM) framework, it is assigned to the freelancer where \(Q_{ij} = 1 \) according to Eq. (30).

We conduct five-fold cross-validation for both methods, and we still adopt the Conversion Rate (CR) for performance evaluation, which is the percentage of properly assigned jobs in the testing dataset. Results of TSM and CF methods are presented in Table 8 under different choices of the number of latent factors \(K \) used for rating prediction (see Eq. (30)).

<table>
<thead>
<tr>
<th>#Employers</th>
<th>#Freelancers</th>
<th>AverageEmp-Rating</th>
<th>AverageFre-Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>276,103</td>
<td>241,638</td>
<td>2.336</td>
<td>2.405</td>
</tr>
</tbody>
</table>

Table 7: Some key statistics of the ZBJ dataset.

Table 8: Conversion rate on job recommendation.

<table>
<thead>
<tr>
<th>K</th>
<th>CF(%)</th>
<th>TSM(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.165</td>
<td>0.384</td>
</tr>
<tr>
<td>10</td>
<td>0.216</td>
<td>0.421</td>
</tr>
<tr>
<td>20</td>
<td>0.244</td>
<td>0.453</td>
</tr>
<tr>
<td>30</td>
<td>0.258</td>
<td>0.486</td>
</tr>
<tr>
<td>40</td>
<td>0.262</td>
<td>0.507</td>
</tr>
<tr>
<td>50</td>
<td>0.266</td>
<td>0.512</td>
</tr>
</tbody>
</table>

Results show that our TSM framework gains consistently better performance on conversion rate for job recommendation. The improvements are significant at 0.01 level for all choices of latent factors \(K \). According to the discussions in Section 4.4, the improvement comes from the inherent consideration of salary rate in our model, which implies that the salary could be an extremely important factor when freelancers seek for jobs. Besides, we see that the results tend to be stable when \(K \geq 40 \) for both methods, which means that a dimensionality of 40 could be sufficiently enough to describe the factors considered by freelancers.

We further calculate the total surplus for the allocations given by CF and TSM under different choices of \(K 's \). Once an arbitrary allocation \(Q = \{Q_{ij}\}_{m \times n} \) is realized in practice, we obtain the total surplus as:

\[
TS_{FR} = \sum_{i} \sum_{j} (h(\hat{r}_{ij}) + h(\hat{r}_{kj})) s_{ij} Q_{ij} \tag{34}
\]

We calculate the total surplus for each of the five testing folds, where there are 59,291 job allocations on average in each fold. Finally, the averaged total surplus among the five folds are shown in Table 9, where the surplus is measured in CNY (¥) and ‘m’ is for ‘million’.

Table 9: Total surplus of online freelancing job allocations under typical choices of latent factor \(K \).

<table>
<thead>
<tr>
<th>K</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>Actual Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF(¥)</td>
<td>1.562m</td>
<td>1.758m</td>
<td>1.824m</td>
<td>1.860m</td>
<td>2,593,618</td>
</tr>
<tr>
<td>TSM(¥)</td>
<td>3.255m</td>
<td>3.862m</td>
<td>4.270m</td>
<td>4.336m</td>
<td>2,593,618</td>
</tr>
</tbody>
</table>

The improvements on total surplus are significant at 0.001 level for all choices of \(K \). We see that our TSM framework consistently gains more surplus than CF. It even leads to more surplus than the actual surplus of the testing dataset. The TSM framework gains a total surplus of ¥73.13/job on a job-level when \(K = 30 \), while that for the CF approach and the actual allocation are ¥31.37/job and ¥43.74/job, respectively.

The fact that the total surplus of the actual allocation is less than that gained by our TSM approach implies the failure of market equilibrium, which is frequently observed by economists in the research of antitrust and market regulations. For online freelancing as an example, this comes from the problem of information asymmetry between freelancers and employers, because it could be impossible for the freelancers to browse millions of jobs to make a final decision. This further stresses the importance of personalized recommendation techniques in service allocation, which help to push the appropriate jobs to freelancers, so as to overcome the problem of information overload.

When putting the evaluation results on total surplus and recommendation together, we find it extremely exciting because our TSM framework leads to better market efficiency even than the practical market of the system, while at the same time it benefits the freelancers with more acceptable job recommendations. This means that our allocation solution may well be applied in practice for a better off in online markets compared with current actually adopted recommendation techniques.

6. RELATED WORK

In mainstream economics, economic surplus4,5,2, also known as total welfare or Marshallian surplus (named after Alfred Marshall), refers to three closely related quantities: consumer surplus, producer surplus, and social/total surplus, where social surplus is the sum of surpluses experienced by both consumers and producers. The research

3http://www.zbj.com

4Throughput

5Efficiency
of surplus has had quite a long history in the progress of economical theories, dating back to as early as the 19th century with the initial understandings of Surplus Values \cite{33} when the gigantic increase in wealth and population brought by the First and Second Industrial Revolution drove economists to investigate the nature of economical increase \cite{33}. In modern economics, the concept of social surplus has been widely adopted by economists for economic system analysis and mechanism design, usually as a direct measure of social good to benefit the good of our human society \cite{13, 28, 3}. However, although the Web has formed itself as a virtual society by continuously integrating the human activities from offline to online, the research community still has seldomly investigated the surplus nature of the Web as a social system.

Actually, a large number of Web-based services can be formalized as consumer-producer interaction systems, including the most commonly used E-commerce websites \cite{23, 35}, online financing \cite{22, 6}, crowd-sourcing systems \cite{10, 5}, and even social networks \cite{32, 15}, where the consumers consume normal goods, financial products, freelancing jobs, or information from the corresponding producers therein. These applications raise the practical problem of matching services from producers to consumers. Perhaps the most closely related tasks for such matching processes are Personalized Recommendation \cite{11, 30, 16} and Search \cite{3, 24, 14}, which feed the implicit or explicit needs of the users with recommendations and search results.

However, current approaches for such tasks mainly focus on the benefits of one side without explicitly modeling the benefits of the Web system as a whole. For example, the widely adopted Collaborative Filtering (CF) \cite{11, 17, 38, 36, 29, 23, 20} techniques for personalized recommendation inherently focus on the maximization of consumer satisfaction based on their preferences. Although the satisfaction of consumers intuitionally benefits the surplus of producers by improving the potential of user clicks, there is no direct guarantee that such a single-side oriented modeling can benefit both sides.

In this work, however, we view the Web as a virtual society and propose to maximize the social surplus directly, based on well-developed and widely-accepted economic concepts and conclusions, which, to the best of our knowledge, is the first time to do so in the context of web-based applications.

7. CONCLUSIONS AND FUTURE WORK

Most existing literature on recommender systems focuses on developing new algorithms for standard evaluation metric such as RMSE, conversion rate or click through rate. There is little research on some fundamental questions, such as what metrics should be used to evaluate recommender systems and to what extent do the metrics reflect the goals of users, producers, platform providers, and the overall Web economy.

This paper is our first step towards finding principled answers to these questions based on established economic theory. Considering a recommender system as an information agent to support two-sided matching tasks, we introduce established economic surplus theory into recommender systems and meld it with recent data driven algorithmic approaches. Our proposed Total Surplus Maximization framework integrates the goals of users and suppliers, which can be a good metric to optimize for platform providers as it better reflects the overall economic value of the online system. We have illustrated how to realize this framework for different recommendation systems. The empirical results for several sets of industry data demonstrated the effectiveness of the proposed framework.

This paper focuses on the broadest metric about efficiency, or maximization of total surplus, and this inherent principle is not restricted to recommendation tasks that we primarily investigated, but applicable to the whole research effort of web intelligence for social good. In the future, we will also examine performance metrics about its two major components: producer surplus and consumer surplus. We can also try the ideas on new datasets, compare different functional form and specifications of utilities and profits. We will implement it both in static (one-time) and dynamic (multi-period/session/page) recommendation or search settings, and evaluate with real users to see the short term and long term impact of the total surplus based framework.

Acknowledgement

This work was sponsored by the National Science Foundation under grant number CCF-1101741 and IIS-0953908 of the US, as well as the National Key Basic Research Program (2015CB358700) and Natural Science Foundation (61532011, 61472206) of China. Any opinions, findings, conclusions, or recommendations expressed in this paper are the authors, and do not necessarily reflect those of the sponsors.

8. REFERENCES

\begin{thebibliography}{99}
\end{thebibliography}

