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ABSTRACT
We study sequences of consumption in which the same item may be
consumed multiple times. We identify two macroscopic behavior
patterns of repeated consumptions. First, in a given user’s lifetime,
very few items live for a long time. Second, the last consumptions
of an item exhibit growing inter-arrival gaps consistent with the
notion of increasing boredom leading up to eventual abandonment.

We then present what is to our knowledge the first holistic model
of sequential repeated consumption, covering all observed aspects
of this behavior. Our simple and purely combinatorial model in-
cludes no planted notion of lifetime distributions or user boredom;
nonetheless, the model correctly predicts both of these phenom-
ena. Further, we provide theoretical analysis of the behavior of
the model confirming these phenomena. Additionally, the model
quantitatively matches a number of microscopic phenomena across
a broad range of datasets.

Intriguingly, these findings suggest that the observation in a va-
riety of domains of increasing user boredom leading to abandon-
ment may be explained simply by probabilistic conditioning on an
extinction event in a simple model, without resort to explanations
based on complex human dynamics.

Keywords. sequence mining; repeat consumption; boredom

1. INTRODUCTION
Under the rubric of recommender systems, researchers over the

last many decades have developed a rich body of work predicting a
user’s likelihood to respond well to a particular item. Typically the
item is unfamiliar to the user, and the system is an aid to discovery.

In the datasets we consider, between 15% and 59% of consump-
tions are in fact items already consumed by the user. However, our
understanding of repeat consumption remains relatively poor. We
have little sense of when a user is prone to re-consume versus seek-
ing variety, and even knowing the user will re-consume, we have
limited understanding of which already-seen item would be pre-
ferred. Finally, we lack detailed models of macroscopic elements
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of repeat consumption: the processes by which users encounter new
material, become enamored, consume frequently, and then slowly
transfer attention to other alternatives.

Here we present a first attempt at a holistic model of repeat
consumption behavior that explains a number of microscopic and
macroscopic properties we observe in our data. This contrasts with
earlier work on repeat consumption, which studies either time in-
dependent consumption sequences [4], or only individual user-item
pairs [7, 18]. Our model captures consumption sequences in three
stages: (i) a temporal model determines the timestamps of con-
sumption events; (ii) a novelty model determines which consump-
tion events will be novel; and (iii) a choice model determines the
identity of each item to be consumed. The model covers all ob-
served behaviors except for the (already heavily studied) identity
of each novel item consumed.

We study the microscopic behavior of each piece of the model,
showing that we can accurately model inter-arrival times, novelty
choices, and repeat item choices across a broad range of datasets
with highly varying properties. We then zoom out to consider
macroscopic properties of re-consumption, and observe two unex-
pected properties across our datasets. First, we study item lifetimes,
and observe that they are best modeled as heavy-tailed consumption
count distributions, typically with finite mean and variance; we re-
fer to this phenomenon as “eventual abandonment.” Second, we
study the end-of-life period during which a user is about to cease
consumption of an item. During this period, we observe that gaps
between consumptions, typically flat through the life of an item,
begin to increase monotonically1 just before the user abandons the
item. We refer to this phenomenon of increasing inter-arrival times
before abandonment as “boredom.”

We show that our model, in addition to reproducing microscopic
properties of each dataset, will empirically generate sequences that
exhibit both eventual abandonment and boredom. We couple this
empirical finding with theoretical analysis proving that these phe-
nomena will occur in our model. Perhaps most importantly, the
model is simple and combinatorial, with no planted notion of life-
times or boredom, yet these phenomena emerge naturally.

In fact, the situation is slightly more nuanced than this obser-
vation suggests. Our model predicts that, in general, inter-arrival
times for an item will stay constant or shrink slightly over time.
However, we prove eventual abandonment, and then condition upon
the last consumption of an item in our analysis. With this con-
ditioning, the behavior reverses and we instead observe consump-
tion gaps that grow in expectation with proximity to the last con-
sumption. The model therefore matches the empirical behavior of
almost-flat inter-arrival behavior throughout the life of the item, in-

1Gaps increase in the sense that later gaps within the end-of-life
region stochastically dominate earlier ones
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dependent of the total lifetime, until the very end when boredom
sets in. We therefore argue that more complex models formalizing
these notions explicitly are not required, at least not to reproduce
the statistics we consider.

Finally, we study personalization versions of our model. Earlier
work finds that the likelihood to re-consume an item that was con-
sumed i steps ago falls off as a power law in i, attenuated by an ex-
ponential cutoff. We consider fitting such a function to each user in-
dividually. While the fit of the earlier model to global distributions
over many users is satisfying both visually and likelihood-wise, the
fit with respect to a particular user is less accurate. Instead, we find
that a double Pareto distribution can be fit to each user with a signif-
icant increase in overall likelihood. We hypothesize that the double
Pareto naturally captures a regime of recency in which a user recalls
consuming the item, and decides whether to re-consume it, versus
a second regime in which the user simply does not bring the item
to mind in considering what to consume next; these two behaviors
are fundamentally different, and emerge as a transition point in the
function controlling likelihood to re-consume.

For the importance of time in repeat consumption, we show that
the situation is complex. Different datasets show wildly varying
time dependencies with respect to repeat consumptions within a
day or two. Hence we do not hypothesize a single functional form
to incorporate time across our datasets; we allow the importance
of time to remain non-parametric, and simply characterize the im-
provement in likelihood that is possible by extending the model to
incorporate different levels of granularity of temporal features.

2. DATA
We now describe our datasets and some macroscopic observa-

tions about the way users consume items. We have made an effort
to use several public datasets so that our results can be reproduced.

2.1 Datasets
We collected a variety of datasets in order to study user con-

sumption patterns. The datasets fall under three broad categories:
(i) music and video, where songs, videos, or artists are the con-
sumed items; (ii) clicks data from internet browsing history, where
we interpret clicks on web pages as a form of consumption intent;
(iii) “check-in” data, where consumptions are physical locations.
Each dataset consists of a sequence of consumptions for several
users. Each user sequence is a list of consumption activities for
that user, and each consumption activity consists of an identifier of
the consumed item and a timestamp. The datasets are described
below and the consumption statistics are summarized in Table 1.
LASTFM and LASTFMARTISTS. These datasets are derived from
the complete listening habits of users on the music streaming ser-
vice last.fm [6]. Users can select individual songs or listen to
“stations” based on a genre or artist, where the sequence of songs
comes from a recommendation system. We consider two consump-
tion sequences: one where the consumptions are songs and one
where the consumptions are artists. The data is publicly available.2

YOUTUBE and YOUTUBEMUSIC. These datasets contains se-
quences of videos watched by anonymized users on YouTube. We
consider up to the last 10,000 videos watched by anonymized users
with at least 100 video watches. We only consider a video “watched”
if it was played for at least half of the video length. For privacy
reasons, the videos are anonymized and we only consider videos
watched by at least 50 distinct users. YOUTUBEMUSIC is a subset
of YOUTUBE, consisting of only the music videos.
2
http://www.dtic.upf.edu/~ocelma/

MusicRecommendationDataset/lastfm-1K.html

Table 1: Summary statistics of data sets. Many consumptions
in the datasets are repeats. In other words, users tend to con-
sume items that they have consumed in the past.

Dataset # users # unique # repeat fraction
items consumptions repeat

LASTFM 992 1.50M 14.5M 0.69
LASTFMARTISTS 992 174K 18.2M 0.95
YOUTUBE 696K 1.44M 182M 0.26
YOUTUBEMUSIC 694K 497K 83.1M 0.44
BRIGHTKITE 51.4K 773K 3.63M 0.51
GPLUS 18.4K 1.81M 2.36M 0.31
MAPCLICKS 432K 216K 43.5M 0.38
WIKICLICKS 852K 528K 54.2M 0.15

MAPCLICKS. This dataset consists of clicks on business entities,
e.g., restaurants and movie theaters, on Google Maps. We consider
the sequence of all entity clicks issued by anonymized users, so
consumed items are businesses. For privacy reasons, we only con-
sider businesses clicked on by at least 50 distinct users, and only
consider users with at least 100 clicks.
WIKICLICKS. This dataset consists of clicks on English Wikipedia
pages by Google users. We consider the sequence of all pages
clicked on by anonymized users, so consumed items are web pages.
For privacy reasons, we only consider pages clicked on by at least
50 distinct users, and only consider users with at least 100 clicks.
BRIGHTKITE. BrightKite was a location-based social networking
website where users could check in to physical locations. Here we
consider the consumed items to be all latitude-longitude pairs of
anonymized user check-ins. The data is publicly available.3

GPLUS. On Google+, users can share physical location and choose
to make this check-in public. The dataset consists of all public
check-ins made by several thousand users. The data is public.4

2.2 Macroscopic observations
We now make two empirical macroscopic observations about

the datasets. First, items have finite lifetimes and tend to follow
a heavy-tailed Pareto distribution. Second, gaps in consumption
sequences of an item tend to be larger at the end of the item’s life-
time. The growing gaps are evidence for user boredom with the
items. In Sections 4 and 5, we present a generative model for user
consumption sequences that captures these macroscopic properties
of the data both empirically and theoretically.
Finite lifetimes. Table 2 quantifies finite item lifetimes by mea-
suring the fraction of items appearing in the first 20% of a user’s
consumption lifetime that do not appear in the last 20% of the user’s
lifetime. We measure the user’s lifetime in terms of total number of
items consumed (index lifetime) and the real elapsed time between
the first and last items consumed (temporal lifetime). Indeed, the
lifetimes are finite in all of our datasets. In most datasets, fewer
than 10% of the items consumed in the first part of the lifetime are
still consumed in the last part of the lifetime.

Figure 1 shows the distribution of the number of times that an
item is consumed by a user. We only considered items whose first
and last consumption were in the middle 60% of the user’s index
lifetime. This filtering excludes censored sequences that began be-
fore or finished after the timeframe in which the data was collected.
The count lifetime distributions are all heavy-tailed, roughly fol-
lowing a Pareto distribution. In the YOUTUBE, YOUTUBEMUSIC,
MAPCLICKS, and WIKICLICKS data, the slope parameter is at
3
snap.stanford.edu/data/loc-brightkite.html

4The data is available through the Google+ API.

520



Table 2: Finite item lifetimes: of items consumed in the first
20% of the sequence (in terms of index or absolute time), the
table lists the fraction that do not appear in the last 20% of the
sequence in terms of the number of item consumed (index), or
the user lifetime (temporal). This fraction is large for all data.

Fraction finite lifetimes
Dataset Index Temporal

LASTFM 0.78 0.86
LASTFMARTISTS 0.63 0.75
YOUTUBE 0.98 0.99
YOUTUBEMUSIC 0.94 0.96
BRIGHTKITE 0.89 0.93
GPLUS 0.96 0.98
MAPCLICKS 0.99 0.99
WIKICLICKS 0.98 0.99

Figure 1: Probability distribution of the number of times an
item is consumed by a user over all datasets. In all cases, the
lifetimes tend to follow a heavy-tailed distribution.

least 3 and hence they are characterized by a distribution with finite
mean and variance [24]. The other datasets all have slope greater
than 1.5 and have a finite mean. Consequently, it is reasonable to
expect finite lifetimes in at least some of these datasets.
Boredom and growing gaps. The notion of boredom in user con-
sumption has been studied in a variety of domains, including psy-
chology [28], consumer brand marketing [17, 22], and the web [13,
18]. For example, Kapoor et al. explicitly model user-item inter-
actions in “sensitization” or “boredom” states [18]. Here we pro-
vide some evidence for boredom by looking at the gaps between a
user’s consumption of the same item. In Section 5, we will show
how our model also captures boredom. An important distinction of
our model is that it is generative, i.e., it provides a way to generate
the entire user consumption sequence out of which boredom is a
consequence of the model (Theorem 5.4). In contrast, prior work
has focused solely on modeling a given user-item pair.

We define the temporal gaps as the difference between the times
at which a user consumes a particular item. Formally, if the k con-
sumption timestamps are t1, . . . , tk, the temporal gaps are �i+1 =
ti+1 � ti, i < k. Figure 2 shows the gaps �i for various gap positions
(i) in the LASTFM dataset, conditioned on whether or not the gap
is the last gap in the consumption sequence. We see that there is a
clear trend for the last gap to be longer, regardless of the total se-
quence length. This is consistent with users experiencing boredom
with an item before eventually ceasing to consume the item.

We can also look at boredom in terms of the number of items
consumed between consumption of the same item. If the user’s
consumptions are numbered 1, . . . ,N and a particular item is con-
sumed at indices j1, . . . , jk, we define the index gaps by gi+1 =
ji+1 � ji, i < k. Figure 3 shows the median behavior of the tempo-

Figure 2: Sizes of temporal gaps between consumptions of the
same item in LASTFM, conditioned on whether or not the gap
is the last in the sequence. The last gaps are much larger.

Figure 3: Median normalized index and temporal gap sizes in
the LASTFM dataset. Gaps at the end of an item’s lifetime are
larger than gaps at the beginning of the item’s lifetime. This is
consistent with user’s experiencing boredom.

ral and index gaps relative to the first gap in the LASTFM dataset.
Consistent with our observations from Figure 2, we see that the
final temporal gap �final tends to be 3.5 times the size of the first
temporal gap �1, and the final index gap gfinal is roughly 5 times the
size of the first index gap g1. Furthermore, the gaps tend to grow
over time. The second-to-last gap is also larger than the first gap,
but not as large as the final gap, and the second gap is still roughly
the same size as the first gap.

3. RELATED WORK
Our holistic modeling of consumption sequences follows a breadth

of research across computer science, marketing, and psychology.
Repeat consumption. A key component of our consumption se-
quence modeling is the notion of repeat consumption of items al-
ready consumed in the past. Anderson et al. model repeat con-
sumption as a combination of recency (recently consumed items are
likely to be consumed again) and quality (popular or high-quality
items are more likely to be consumed) [4]. However, their mod-
els are time-independent. Here, we explicitly model time, in order
to capture consumption inter-arrival times (Section 4.1) and to im-
prove the repeat consumption selection model (Section 4.3). In
fact, we find absolute elapsed time to be more predictive than item
quality. Repeat consumption has also been studied in several do-
mains such as visitation of web pages [1, 2], purchasing behav-
ior in online commerce [9], and web search queries [31, 32]. Fi-
nally, Chen et al. studied short-term repeat consumption behaviors
on location-based social network data [7]. While this work has
focused on modeling the interaction between a user-item pair, we
model the full consumption sequence of an individual, capturing
interactions with many items.
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Boredom in consumption sequences. The notion of boredom has
long been of interest to advertisers and marketers seeking to keep
users interested in a product. Here, the tradeoff between trying
new products or sticking with the same brand is called variety-
seeking behavior [17, 22]. This notion is also rooted in the clas-
sical exploration-exploitation tradeoff [12, 21, 30]. There are also
studies of boredom in consumption on the web. Das Sarma et al. ex-
plicitly model boredom from a utility maximization perspective in
order to understand cyclic trends [13]. Kapoor et al. model user-
item pairs in states of sensitization (active consumption) or bore-
dom [18], and find that items consumed at a lower rate tend to
spend more time in the boredom state.

Related to boredom is the study of user engagement, and deter-
mining when users are likely to cancel services is known as churn
prediction [15]. Most relevant to our work is the hazard-based mod-
eling of Kapoor et al. [19] on LASTFM. Other related work includes
user engagement patterns in social networks [20, 35].

Navigation on the web. Finally, we note that a special case of
user consumption sequences is the traversal of web pages. One of
the first models in this domain is the famous random surfer [26].
Detailed user studies have been performed on, for example, navi-
gation behavior of Wikipedia [33, 34] and the relationship between
queries and subsequent web navigation [8, 14].

4. A HOLISTIC CONSUMPTION MODEL
User consumption sequences are formally represented as lists of

tuples (xi, ti), i = 1, 2, . . ., where xi is the item and ti is the time. We
model these sequences with the following high-level procedure:
(i) Temporal model (to capture inter-arrival times). The inter-
arrival times �i+1 = ti+1� ti are generated from a stochastic process.
(ii) Novelty model (to capture repeat versus novel consump-
tion). Given �1, . . . ,�i, determine whether or not xi is a novel con-
sumption or a repeat consumption.
(iii) Choice model (to capture item identities). If xi is novel, draw
from some distribution; otherwise, draw from the history following
some distribution. The distributions depend on inter-arrival times.

In the remainder of this section, we detail these three model com-
ponents. While it is possible to model these components in various
orders, i.e., changing the conditioning, we choose the above or-
dering for several reasons. First, we treat the second step as a su-
pervised learning problem, and it is useful to have �is as features.
Second, we build upon work from Anderson et al. [4] on repeat
consumption in order to effectively model which items are selected
assuming we condition on the item being a repeat consumption.
Third, we find that modifying these repeat consumption models to
account for time can significantly improve performance. Conse-
quently, we prefer to condition on �i+1.

In this section, our model will be global, i.e., all of the processes
and distributions will be the same for each user. However, the mod-
els may depend on individual user behavior. For example, we use
a logistic regression for determining novelty vs. re-consumption,
which depends on the user’s past history. However, we train this
model over all users. In Section 6, we consider personalization.

4.1 Temporal model
We begin by modeling the inter-arrival times, i.e., the times be-

tween a user’s consumptions. The simplest model of inter-arrival
times allows IID choices from an inter-arrival distribution. How-
ever, Figure 4 shows that for some of our datasets, inter-arrivals are
not independent: users exhibit different behavior when they are us-
ing the service in a “session” of active consumption as opposed to
time between sessions. This behavior makes sense in, for example,

Figure 4: Evidence for active states: the probability of the next
time gap in a consumption sequence being less than 20 minutes
given that the last k gaps were less than 20 minutes as a function
of k for the YOUTUBE data. The data and model show “active
states” of continuous consumption. The marginal probability is
the probability that the gap is less than 20 minutes, independent
of k (equivalent to the k = 0 point for the data).

music consumption, where users actively listen to several songs in
a single session before taking a break from the service.

Behavior within a session is simple, capturing continuous con-
sumption. Therefore, in addition to considering natural choices
for IID inter-arrival distributions, we also consider a semi-Markov
model of inter-arrival times, in which a user moves between two
states: “within” and “between” sessions, each of which has its own
inter-arrival distribution. This is in a sense the simplest possible
form of dependence between arrivals, in the form of a single bit
determining the state. We show that the likelihood improvement of
moving from a one-state IID model to a two-state session model is
large enough to justify the mild increase in complexity.5 Also, the
inter-arrival distributions within each state is simpler and natural.
A semi-Markov model. Our semi-Markov model captures active
and inactive user consumption states. The following generative
model captures this behavior:
(i) Draw K ⇠ D1 consumptions for the current session.
(ii) Draw K intra-session gaps from D2.
(iii) Draw an inter-session gap s ⇠ D3.
We note that for unknown D1, D2, and D3, this is an explicit dura-
tion hidden Markov model [23].

After analyzing the relevant data, we fix upon the following con-
stituent distributions.
Session length distribution D1: The number of items K in a ses-
sion drawn from D1 follows a power law with exponential cutoff,

Pr (K = k) / k�↵e��k.
Intra-session gap distribution D2: An intra-session gap G2 drawn
from D2 follows a double Pareto [25, 29] distribution,

Pr (G2 = g2) /
8>><
>>:
g⌘�1

2 g2  �
g�⌫2 g2 > �

. (1)

Inter-session gap distribution D3: Finally an inter-session gap G3
draw from D3 follows a simple power law,

Pr (G3 = g3) / ��g3 .
Figure 5 shows the fit of each of these 3 distributions for the

LASTFM dataset. Overall, these model families describe the data
quite well. There is some discrepancy in the tail of the distributions
(and the head of D2 for LASTFM), which is due to a lack of data at
those points. Furthermore, the inter-session gap distribution (D3)
does not capture the increased probability near 24 hours.
5For all model training in Section 4, we use likelihood maximiza-
tion on the complete dataset.

522



Figure 5: Distribution of session length (D1, left), intra session gaps (D2, middle), and inter-session gaps (D3, right) for the LASTFM
dataset and for the semi-Markov model. Figure 6 shows the full inter-event distribution for data simulated according to the model.

Figure 6: Inter-event time distribution for data generated with
our semi-Markov model compared to the true distribution of
the LASTFM dataset. For this dataset, the inter-event time is the
elapsed time between the start of two consecutive song plays.

Thus, the overall model of inter-arrival times may be captured
by six parameters: (↵, �) for the number of items in a session,
(⌘, ⌫,� ) for the inter-arrival time within a session, and � for inter-
arrival time across sessions. The values of the best fit parameters
for our datasets are shown in Table 3. Figure 6 shows the overall
inter-arrival distribution for the inter-arrival time from a simulation
with the model and the empirical data from LASTFM. The model
simulation matches the data quite well.

We also compared our semi-Markov model to several common
inter-arrival models, where the samples are IID. For each IID inter-
arrival distribution we consider, Table 4 shows the likelihood of this
model relative to our semi-Markov model. This ratio is computed
by first computing the maximum likelihood estimator for each of
the IID distributions and then taking the geometric mean of the
ratio of the likelihoods over every inter-arrival time in the data. It
is clear from the table that our semi-Markov model out-performs
these common IID inter-arrival models.

Table 3: Time arrival parameters. Music and video use 20
minute gaps, others 60. (LASTFMARTISTS parameters are the
same as those for LASTFM by the construction of the dataset).

Dataset ↵ � ⌘ ⌫ � �

LASTFM 0.54 0.04 2.77 3.23 230.49 1.30
YOUTUBE 1.36 0.08 0.98 1.34 275.62 1.29
YOUTUBEMUSIC 1.61 0.12 1.13 4.23 241.99 1.20
BRIGHTKITE 2.47 0.00 0.00 0.50 215.94 1.16
GPLUS 2.94 0.00 0.00 0.71 55.60 1.10
MAPCLICKS 0.78 0.32 0.14 1.05 3.63 1.00
WIKICLICKS 2.46 0.00 0.00 0.69 137.94 1.06

Optimizing model parameters. To simplify parameter estima-
tion, we fix the sessions to be all items consumed without taking

Table 4: Relative likelihoods of common IID distributions for
inter-arrival times to the likelihood of our semi-Markov model.
In all cases, our model is much more likely. This is unsurprising
since the data exhibit dependence (Figure 4).

Dataset exponential Pareto log normal

LASTFM 0.05 0.13 0.43
YOUTUBE 0.02 0.12 0.22
YOUTUBEMUSIC 0.01 0.07 0.12
BRIGHTKITE 0.02 0.04 0.07
GPLUS 0.02 0.03 0.06
MAPCLICKS 0.00 0.21 0.20
WIKICLICKS 0.02 0.04 0.08

a break of at least B minutes. From analyzing the data, we found
that B = 20 is appropriate for the music and video data sets, and
B = 60 is appropriate the clicks and check-in data. After making
this assumption, the number of items per session follows a power
law with exponential cutoff with maximum value B, the between-
session times follow a power law with minimum value B, and we
know the empirical distribution for the within-session arrival times.
After performing the decomposition, we bin the data logarithmi-
cally and use a non-linear solver to best fit the probability density
function. While there are more sophisticated maximum likelihood
maximization procedures for estimating these parameters [11, 25],
we find that simple curve-fitting works well in practice.

4.2 Novelty model
Next, we discuss the issue of predicting when a user will re-

consume. We treat this prediction as a supervised learning problem,
and use features such as the user’s proclivity for re-consuming, the
number of items consumed by the user so far, whether or not the last
few consumptions were repeat consumptions, and the time since the
last consumption. The response variable is whether or not the user
re-consumed (or a probability for repeat consumption).

We tested several learning algorithms in the scikit-learn
library [27] and found that logistic regression performed the best in
general. Table 5 lists the error rates for logistic regression on each
dataset. We find that we get the best results on the LASTFM and
LASTFMARTISTS datasets, both of which contain a large number
of repeat consumptions. We note that our performance is similar to
a related sequence prediction problem studied by Chen et al. on the
LASTFM data [7].

4.3 Choice model
The last part of our model determines which items to consume.

There are two cases: when the consumption is novel and when the
consumption is a repeat.
Novel consumptions. Here, we assign identities to items being
consumed for the first time by this user. Accurately determining
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Table 5: Performance of logistic regression on each data set for
predicting whether a consumption is a repeat consumption (re-
peat consumption corresponds to a positive response variable).

Dataset Accuracy Precision Recall RMSE

LASTFM 0.859 0.885 0.934 0.321
LASTFMARTISTS 0.957 0.961 0.957 0.189
YOUTUBE 0.834 0.765 0.515 0.352
YOUTUBEMUSIC 0.761 0.757 0.677 0.404
BRIGHTKITE 0.817 0.842 0.942 0.353
GPLUS 0.763 0.779 0.769 0.401
MAPCLICKS 0.677 0.623 0.388 0.447
WIKICLICKS 0.848 0.557 0.040 0.347

which item a user is likely to consume draws upon the wealth of
research in recommendations and response prediction [3, 5]. We
therefore assume that this section is a black box, assigning identi-
ties to items as they are first consumed by each user.

However, in order to proceed with a reasonable model, we in-
stantiate this black box with a simple placeholder. We assign iden-
tities so as to match the popularity of items across the entire dataset.
Formally, let ne be the number of users that consume item e at least
once. Let I(·) denote the binary indicator function. Let x1, . . . , xi�1
be the consumptions of a single user and suppose that we have de-
termined that the ith consumption is novel. Then we choose an
as-yet unconsumed item from a multinomial distribution whose pa-
rameters are ne,

Pr (xi = e | xi is novel) =
I(e < {x1, . . . , xi�1})neP

e0 I(e0 < {x1, . . . , xi�1})ne0
.

This ensures that the expected number of users that consume an
item is the same as in the datasets.

Repeat consumptions. We first consider a fixed time at which a
user will re-consume an item, and study in detail which item will
be re-consumed. From earlier work [4], we know that a key factor
in determining which item will be re-consumed at a particular time
is the sequence of items consumed during prior time steps. In par-
ticular, recent work by Anderson et al. [4] used the following repeat
consumption model for the ith consumption:

Pr (xi = e) =
P

j<i I(x j = e)w(i � j)s(x j)P
j<i w(i � j)s(x j)

, (2)

where w are the recency weights and s are the item quality scores.
In this model, an item is “copied” from the past6 with probabil-

ity dependent on the number of intervening items, and the quality
of the item. The model factors these two contributions by assum-
ing they are combined as a product, and then normalizes the result.
We introduce a third factor, time, which turns out to be more im-
portant than the popularity/quality of each item (see Table 6). We
incorporate time with the following selection model:

Pr (xi = e) =
P

j<i I(x j = e)w(i � j)s(x j)T (ti � t j)P
j<i w(i � j)s(x j)T (ti � t j)

, (3)

for some nonnegative function T . In this new model, an item is
copied with probability that is a product of a time factor, a distance
factor (number of intervening items) and a quality factor. As these
factors are optimized jointly, one may view the time factor as being
the change in likelihood of copying a particular item from i steps
back, depending on how long ago in absolute time that past con-
sumption occurred.

6Following Equation 2, the item could be copied from one of sev-
eral locations if it has been consumed more than once in the past.

Table 6: Relative likelihoods of models: recency weights cap-
ture most of the likelihood, but the relative consumption times
of items is more important than the quality or popularity.

Learned scores
Dataset w w and s w and T

BRIGHTKITE 0.91 0.92 0.98
GPLUS 0.87 0.92 0.94
LASTFM 0.99 0.99 1.00
LASTFMARTISTS 0.96 0.96 1.00
YOUTUBE 0.91 0.94 0.96
YOUTUBEMUSIC 0.92 0.93 0.97
MAPCLICKS 0.81 0.82 0.99
WIKICLICKS 0.78 0.81 0.91

Learning model parameters. Let Ru be the set of all repeat con-
sumptions for user u, and let x(u)

i and t(u)
i be the ith consumption of

user u and the corresponding timestamp. Following the model in
Equation 3, the negative log-likelihood of the repeat consumptions
in the dataset is

� log

2
6666664
Y

u

Y

i2Ru

P
j<i I(x(u)

j = x(u)
i )w(i � j)s(x(u)

j )T (t(u)
i � t(u)

j )
P

j<i w(i � j)s(x(u)
j )T (t(u)

i � t(u)
j )

3
7777775 .

This equation is not jointly convex in w, s, and T , but it is convex
in each function with the other two fixed. Thus, we employ a block
coordinate descent method, using a standard gradient descent pro-
cedure to maximize the likelihood with respect to w or s or T . The
log-likelihood function splits with respect to any consumption of
any user, so there is ample room for parallelizing these procedures.

We now compute the gradients with respect to T . The gradients
with respect to w and s are similar. Since the arguments to T are
continuous, we model the function as a piecewise constant with a
logarithmic binning scheme. Let there be m bins, so that we can
represent the time scores T as a vector in Rm

+ . Furthermore, let
b(t) 2 {1, . . . ,m} be the bin index for any time difference t. Finally,
for a fixed index i and a binary predicate I that depends on j, denote

Au,i(I) =
X

j<i

I( j)w(i � j)s(x(u)
j )T (t(u)

i � t(u)
j ),

Bu,i(I) =
X

j<i

I( j)w(i � j)s(x(u)
j ).

For a given user and a given repeat consumption, the gradient with
respect to T for a given repeat consumption is
@LL
@Tk
=
X

u,i2Ru

Bi,u(b(t(u)
j � t(u)

i ) = k)
Ai,u(1)

�
Bi,u(x(u)

i = x(u)
j , b(t(u)

j � t(u)
i ) = k)

Ai,u(x(u)
i = x(u)

j )
.

Empirical analysis of time model. We conclude by analyzing
the learned time scores T that are used in the repeat consump-
tion selection process (Equation 3). The time scores measure the
relative importance of elapsed time after accounting for the pro-
clivity to consume recently-consumed items (w) and the relative
quality of each item (s). We learned the function T as a piecewise-
constant function with exponentially-spaced bins of 30 · 1.1k sec-
onds, k = 0, 1, . . .. We chose k large enough so that the inter-arrival
times are covered by the binning.

The top two rows of Figure 7 show the learned time scores T .
Interestingly, the behavior of the time scores are quite different for
the music and video data. In LASTFM, time scores tend to be large
around the duration of a song (3-4 minutes)7 and then flatten out
after an hour. However, for YOUTUBE, the time scores actually
decrease around the time of a song/video (3-5 minutes) and peak

7If our data included duration information, we would instead model
the time from completed consumption of item i to start of consump-
tion of i + 1.
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in the time range of one hour to one day. This is possibly due
to album effects—the last.fm service lets users play albums of the
same artist, whereas these are often organized into single tracks
when uploaded to YouTube.8 For the clicks data (WIKICLICKS
and MAPCLICKS) and check-in data (BRIGHTKITE and GPLUS),
there is a consistent trend towards larger time scores for small time
intervals (30 seconds to 2 minutes). This is partly due to double-
clicks, e.g., from slow page loads, in the clicks data or from power
users in the check-in data that tend to check in several times. Fi-
nally, we observe that the time scores capture cyclic behavior in
the check-in data around daily and weekly marks. This behavior
is particularly strong for the BRIGHTKITE dataset, where cyclic
behavior has been observed [10].

To eliminate short-term effects, we also learned the time score
function T with bins of 12 · 2k hours. The bottom two rows of
Figure 7 show the results. In this case, the scores for LASTFM
and LASTFMARTISTS are near-uniform, i.e., absolute time does
not play a role aside from recency (which is captured by w). How-
ever, repeat consumption in YOUTUBE and YOUTUBEMUSIC still
shows a preference for videos seen in the last day.

Finally, we evaluated the importance of time compared to re-
cency (w) and global item quality (s). Table 6 lists the relative
likelihood of the model when only optimizing a subset of the pa-
rameters compared to learning the full model (here we used the
time score binning of 30 · 1.1k seconds). We see that the recency
weights (w) account for most of the likelihood in all datasets. In-
terestingly, likelihood is improved more with time scores (T ) than
with item scores (s), suggesting that when users consume is more
predictive than what they consume. This makes sense with, e.g.,
the check-in data: users have their own places where they like to
check-in, but these are not necessarily popular for the entire data
set. However, cyclic trends in behavior occur throughout [10].

5. MACROSCOPIC PROPERTIES
We now investigate two global empirical properties of the items

in the datasets—item lifetimes and growing gaps in user-item con-
sumption sequences—and find that the model has similar empirical
properties to the data in both cases. We back up our empirical find-
ings with theoretical results about the model.

5.1 Item lifetimes and eventual abandonment
We first compare the lifetimes of items in the model simulations

and data. Recall that most items have finite lifetimes in the data
(Table 2). We first observe that the distribution of finite lifetimes
is similar in the data and in the model. We then theoretically show
why we may expect lifetimes to be finite in the model.
Empirical observations. Let (x j, t j) be the sequence of items and
timestamps in a consumption sequence. We consider three notions
of lifetime for items in the consumption history of a given user:

(i) Count lifetime: the number of times that an item is con-
sumed. This measures lifetime by consumption volume.

(ii) Index lifetime: the number of items consumed between the
first and last consumptions of an item. Formally, the index lifetime
of item e is max{ j | x j = e} �min{ j | x j = e}.

(iii) Temporal lifetime: the amount of time elapsed between
the first and last consumption of an item, Formally, the temporal
lifetime of item e is max{t j | x j = e} �min{t j | x j = e}.

Figure 9 shows the three item lifetime probability density func-
tions for the YOUTUBE, LASTFM, and BRIGHTKITE data sets. For
these plots, we only considered items whose first and last consump-
8The YouTube data was collected before the launch of auto-play
that plays videos sequentially without user clicks.

tion were in the middle 60% of the user’s consumption sequence (in
terms of number of items).9 This excludes censored sequences that
began before or finished after the data was collected.

We observe that the model simulation matches the Pareto distri-
bution of the count lifetimes in the data. For items consumed more
than once, the index lifetime distributions are much flatter than the
count lifetimes. Again, this is captured in both the model and the
data. However, the density is dominated by items consumed exactly
once, i.e., index lifetime of 0. At this point, the model matches the
data nearly exactly in all three datasets. The distributions of the
temporal lifetimes have a similar shape in the data and model sim-
ulation. However, the model has a longer tail. This is due to the fact
that the intra-session times follow the same distribution for all users
(Table 3), but the model simulates based on the number of items for
the user. Thus, heavy users may have longer total lifetimes, and the
tail in the temporal lifetime will be longer.
Analysis. Next, we characterize a set of cases where the lifetimes
will be finite. For our analysis, we consider a simple recency model
for the repeat consumption item selection process:

Pr (xi = e) =
P

j<i I(x j = e)w(i � j)
P

j<i w(i � j)
. (4)

We consider this model for simplicity, although the results can be
generalized. The following proposition shows that if the weights
decrease fast enough or if the probability of a novel item is small
enough, then the lifetime of an item will be finite.

PROPOSITION 5.1. Let ↵ be the probability of a novel item. IfP1
i=1 wi < 1/↵, then the lifetime of an item is finite almost surely.

PROOF. We bound the number of times an item appears as a
Galton–Watson branching process. Let h be the index of the first
occurrence of an item. We say that the item has a child at node h+ i
if at the ith step, the user copies from position h, which occurs with
probability ↵wi. At a given index, the item may be copied from any
location in its history, so the total size of the tree is an upper bound
on the number of times an item is consumed. The expected number
of children of a node in the process is ↵

P1
i=1 wi.

We note that prior work has empirically shown the weights w to
be effectively modeled by distributions with

P1
i=1 wi = 1 [4]. Thus,

we expect finite lifetimes if we ran the simulations long enough.

5.2 Boredom and growing gaps
Given our findings on finite lifetimes, we may now study a user’s

last few consumptions of an item, and show both empirically and
theoretically that our model shows an increase in inter-arrival times
for an item when that item approaches extinction, matching the em-
pirical observations of Section 2.2. We give in to the temptation to
label this statistical phenomenon “boredom,” but we do not wish to
imply the functioning of a particular psychological process in the
user’s psyche. Rather, this is a consequence of conditioning on the
fact that a user will stop consuming an item. We emphasize that,
in contrast to prior work [13, 18], our model generates a sequence
of user consumptions that implicitly capture boredom, rather than
than incorporating it formally in the model.
Empirical observations of model behavior. Using the notation
from Section 2.2, let gi and �i be the gaps in consumption of a par-
ticular item for a given user, in terms of index and in time. We mea-
sured the normalized gaps gi/g1 and �i/�1 over all user-item con-
sumption sequences with at least 5 consumptions, where all items
9We also considered the middle 60% in terms of time—the results
were similar.
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were consumed in the middle 60% of the user’s lifetime, i.e., the
sequence begins after the first 20% of the user’s lifetime and ends
before the final 20% of the user’s lifetime. Again, this latter re-
quirement avoids data censoring at the beginning and end of the
user lifetime and ensures that we examine finite lifetimes.

The top row of Figure 10 plots the median of the first, second,
second-to-last, and last normalized gaps over all sequences in the
YOUTUBE, LASTFM, and GPLUS datasets. We observe that for
YOUTUBE and LASTFM, the normalized gaps are monotonically
increasing in the sequence. This holds for both the data and the
model and for both the normalized index gaps and normalized time
gaps. This means that users tend to become bored with items over
time until eventually the item is never consumed again.

In the LASTFM dataset, the model simulation produces normal-
ized index and time gaps that are slightly smaller than the true data.
However, the shapes of the curves for the model simulation and the
data are close. We scaled each curve by the mean ratio of �i/�1
and gi/g1 for the model to the data. These are plotted in the bottom
row of Figure 10. Here, we see a very close match between model
simulation and data for all datasets. We conclude that our model
slightly over-estimates the first gap in the sequence.
Analysis. Although we do not explicitly model boredom, we do
observe it both in the data and in our model. We now show that
this boredom is actually just a consequence on conditioning on the
finiteness of an item’s lifetime. Again, we will assume the recency
model (Equation 4) for simplicity.

We begin with two lemmas that will help us prove our main result
in Theorem 5.4. We consider a user sequence with consumptions
of item e at indices j1, j2, . . . and index gaps gi+1 = ji+1 � ji.

LEMMA 5.2. If the recency weights w are monotonically de-
creasing, then Pr

⇣
g j = k

⌘
monotonically decreasing in k.

PROOF. We prove this pointwise. For any gaps g1, . . . , g j�1,

Pr
⇣
g j = k | g1, . . . , g j�1

⌘

= Pr
⇣
g j � k � 1 | g1, . . . , g j�1

⌘
·
⇣
wk + wk+gk�1 + · · · + wk+gk�1+...+g1

⌘

� Pr
⇣
g j � k | g1, . . . , g j�1

⌘
·
⇣
wk+1 + wk+1+gk�1 + · · · + wk+1+gk�1+...+g1

⌘

= Pr
⇣
g j = k + 1 | g1, . . . , g j�1

⌘
.

The inequality follows from the facts that the w’s are monotonically
decreasing and that g j � k + 1 implies g j � k.

LEMMA 5.3. Let pk be a discrete probability distribution mono-
tonically decreasing in k. Let ak be a monotonically increasing se-
quence such that qk = pkak is a discrete probability distribution.
Then for any random variable X, E⇠p(X)  E⇠q(X).

PROOF. Since ak is monotonically increasing and qk is a prob-
ability distribution, there must exist a K such that 0  ak  1 for
k < K and ak > 1 for k � K. Thus, qk just shifts mass in pk
from k < K to k � K. Since pk is monotonically decreasing, the
expectation must increase.

The following theorem says that conditioning on the fact that an
item will not be consumed again, its last gap will be larger.

THEOREM 5.4. Suppose that the recency weights w are mono-
tonically decreasing. Let E be the event that an item is consumed
exactly j times. Then E(g j | E) � E(g j).

PROOF. First, by applying Bayes’ theorem,

E(g j | E) =
1X

k=1

kPr
⇣
E | g j = k

⌘
Pr
⇣
g j = k

⌘
/Pr (E) .

By Lemma 5.2, the sequence pk = Pr
⇣
g j = k

⌘
is monotonically

non-increasing. Let ak = Pr
⇣
E|g j = k

⌘
/Pr (E) Then ak monotoni-

cally non-decreases with k since w is monotonically non-increasing.
Finally, since qk = pkak = Pr

⇣
g j = k | E

⌘
is a probability distribu-

tion, the result then follows by Lemma 5.3.

6. PARSIMONIOUS PERSONALIZATION
Finally, we consider personalizing our model for each user. We

restrict ourselves to just personalizing the recency weights w be-
cause they are the largest component of the model (both in terms of
number of parameters and effect on likelihood). Our goal is to find
parsimonious personalization, i.e., we want to model each user with
just a few parameters. This allows us to avoid over-fitting and gain
interpretability by examining particular parameterized families.

6.1 Model
After analyzing the data and experimenting with different param-

eter families, we found the double Pareto distribution (Equation 1)
to be a good fit for modeling the recency weights w. Formally,

w(�) /
8>><
>>:

(�/�)��1 �  �
(�/�)�↵�1 � > �

,

where � = 1, 2, . . . , ↵ > 1, � > 0 and � � 1. Thus, our personal-
ized double Pareto (PDP) model finds triples (↵, �, �) for each user.
The result is a parsimonious personalized model, where each user’s
behavior is captured by just three parameters. We compare this dis-
tribution to the power-law with exponential cutoff (PLECO) model,
which was previously proposed for global recency weights [4].
Learning model parameters. Note that w is differentiable (al-
though not continuously differentiable, specifically at � = �). There-
fore, we can run gradient descent on the negative log-likelihood for
each user. The gradients of w with respect to each parameter are
@w(�)
@↵

=

8>><
>>:

0 �  �
� ln(�/�)w(�) � > �

,
@w(�)
@�

=

8>><
>>:

ln(�/�)w(�) �  �
0 � > �

,

@w(�)
@�

=

8>><
>>:
�(� � 1)(�/�)�/� �  �
(↵ + 1)(�/�)�↵/� � >�

.

With an easy application of the chain rule, we optimize the param-
eters to minimize the negative log-likelihood (Section 4) for each
user, given that we have already learned the rest of the model.

In practice, we observed that the gradient descent algorithm is
sensitive to the initial value of �. Therefore, we perform the opti-
mization over equally-spaced points in some interval [�min, �max].

6.2 Experiments
We evaluated our personalization model on “heavy users” in the

LASTFM, YOUTUBE, and BRIGHTKITE datasets. Specifically, we
consider 25 users from LASTFM with at least 80,000 consumptions
and 40,000 repeat consumptions each, 250 users from YOUTUBE
with at least 8,000 consumptions and 2,000 repeats each, and 500
users from BRIGHTKITE with at least 500 consumptions and 250
repeats each. We restrict our personalization experiments to such
heavy users because they actually have sufficient data for training
the models described in Section 6.1. However, we note that these
users only represent a small portion of the user population.

To form an upper bound on the improvement from personaliza-
tion, we first optimize a non-parametric weight vector w for each
user and compute the likelihood. Note that this tends to overfit
the weights w—for example, if one user happens to not repeat any
items from 17 positions prior, then w(17) will be set to zero for
that user in order to maximize the likelihood. After, we compare
the likelihood from the overfit weights to the model with the global
weight vector w, i.e., learning the full model w for just a single
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Table 7: Relative likelihoods of parsimonious personalized
models to the (overfitted) model of learning w for each user.

form of w
Base dataset # heavy users Global PDP PPLECO

LASTFM 25 0.80 0.89 0.88
YOUTUBE 250 0.68 0.77 0.73
BRIGHTKITE 500 0.45 0.99 0.90

user in the optimization procedure discussed in Section 4.3. The
likelihood ratios provide an upper bound on the total possible im-
provement in the model from personalization.

Table 7 lists the relative likelihoods. For LASTFM, the global
model has already captured 80% of the possible likelihood. The ta-
ble also lists the relative likelihoods of the PDP model to the over-
fitted, non-parametric model. In all cases, personalization captures
over 75% of the available likelihood. For BRIGHTKITE, PDP cap-
tures essentially all of the likelihood.

Figure 8 shows the PDP parameters for a heavy LASTFM user.
We see that this family effectively captures inflection points in the
true (overfit) weights. In other examples, wee see the double Pareto
distribution learns a slightly positive slope, which cannot be cap-
tured by simple power laws or related distributions.

Compared to the non-personalized situation, in which earlier work
(confirmed in our analysis) has shown a good fit for the PLECO dis-
tribution of weights, we see in the personalized setting a significant
likelihood improvement using PDP, which requires the same num-
ber of fit parameters as PLECO. There is nothing inconsistent about
this, as the appropriate mixture of personalized PDP distributions
may be well-approximated by a PLECO in the global setting.

7. CONCLUSIONS
We developed a general model for user consumption sequences.

We showed empirically and theoretically that this model captures:
(1) the heavy-tailed distribution of item lifetimes and (2) a notion of
boredom in terms of growing gaps between consumptions before an
item is abandoned by a user. Importantly, our model does not need
to explicitly incorporate these properties; rather, they arise from
the simple generative process. In future work, it would be useful to
evaluate these ideas on a concrete task such as predicting the num-
ber of unique items consumed in a specified time interval. We also
studied personalization in the recency weights for repeat consump-
tion item selection. Interestingly, for some datasets, the likelihood
gains were only modest, suggesting that user consumption patterns
are quite similar (even if they consume different items). Determin-
ing when personalization will significantly improve the model is an
interesting avenue for future research.

Finally, our datasets cover entertainment, social check-ins, and
web browsing behavior, but there are a number of additional do-
mains where we can apply our models in future work. For ex-
ample, sequences in consumer goods shopping (groceries, clothes,
etc.) have many repeat consumptions due to brand loyalty [16] and
also contain temporal dynamics from seasonal purchasing.
Acknowledgments. We thank the reviewers for their suggestions.

Figure 7: Learned time scores T (·) (Equation 3). Top
two rows: Fine-grain time scores with binning of 30 · 1.1k

seconds. The scores capture information such as album
effects (LASTFMARTISTS, first row) and periodic behavior
(BRIGHTKITE, second row). Bottom two rows: Coarse-grain
time scores with binning of 12 · 2k hours. YouTube users have a
preference for videos watched in the past 24 hours (third row).

Figure 8: Personalized recency weights w for a heavy user in
LASTFM. The double Pareto model is able to captures inflec-
tion points in the weights near 200 (top) and near 10 (bottom).
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Figure 9: Distributions of count (left), index (middle), and temporal (right) lifetimes for three datasets. In all cases, the lifetime
distributions in the model-simulated data tends to match the lifetimes in the data.

Figure 10: (Top) Median behavior of the normalized gaps in the time between consumptions for a given user-item pair. Gaps are
measured in terms of the number of other items consumed (index) and absolute time between repeat consumptions. The last two
normalized gaps tend to be larger than the first two gaps (relative to the size of the first gap) for the YOUTUBE and LASTFM data in
both the data and model simulation, indicating boredom. (Bottom) Same data as top, except the curves are scaled by the mean ratio
of model to data in the top set of curves. The gaps in the LASTFM data now take nearly the same values in the model and in the data.
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