












4. EXPERIMENTS
Let us now describe the implementation and experimen-

tal results of our algorithm. We implement 4-Prof-Dist
on GraphLab v2.2 (PowerGraph) [12] and measure its run-
ning time and accuracy on large input graphs.3 First, we
show that edge sampling yields very good approximation
results for global 4-profile counts and achieves substantial
execution speedups and network traffic savings when multi-
ple machines are in use. Due to its distributed nature, we
can show 4-Prof-Dist runs substantially faster when using
multiple CPU cores and/or machines. Notice that multi-
core and multiple machines can not speed up some central-
ized algorithms, e.g., Orca [13], which we use as a base-
line for our results. Note also that Orca produces only a
partial 4-subgraph count, i.e. it calculates only connected
4-subgraphs, while 4-Prof-Dist calculates all 17 per vertex.
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Figure 5: Comparison of 4-clique sparsifier concen-
tration bounds with accuracy measured in edge sam-
pling experiments on the LiveJournal graph.

The systems: We perform the experiments on two systems.
The first system is a single powerful server, further referred
to as Asterix. The server is equipped with 256 GB of RAM
and two Intel Xeon E5-2699 v3 CPUs, 18 cores each. Since
each core has two hardware threads, up to 72 logical cores
are available to the GraphLab engine. The second system
is an EC2 cluster on AWS.4 The cluster is comprised of 20
c3.8xlarge machines, each having 60 GB RAM and 32 virtual
CPUs.
The data: In our experiments we use two real graphs rep-
resenting different datasets: social networks (LiveJournal:
4,846,609 vertices, 42,851,237 edges) and a WWW graph
of Notre Dame (WEB-NOTRE: 325,729 vertices, 1,090,108
edges) [18]. Notice that the above graphs are originally di-
rected, but since our work deals with undirected graphs, all
duplicate edges (i.e., bi-directional) were removed and di-
rectionality is ignored.

4.1 Results
Accuracy: The first result is that our edge sampling ap-
proach greatly improves running time while maintaining a
very good approximation of the global 4-profile. In Figure
6a we can see that the running time decreases drastically

3Available at http://github.com/eelenberg/4-profiles
4Amazon Web Services - http://aws.amazon.com

when the sampling probability decreases. At the same time,
Figure 6b shows that the mean ratio of true to estimated
global 4-profiles is within ±2.5%. Similar to [15], which
uses a more complex sampling scheme to count connected
4-subgraphs, this ratio is usually much less than 1%. We
show here only profiles F7 − F10 since their counts are the
smallest and were observed to have the lowest accuracy. In
Figure 5 we compare theoretical concentration bounds on a
logarithmic scale and show the benefit of Theorem 2. While
the guarantees provided by Kim-Vu [16] bounds are very
loose (the additive error is bounded by numbers which are
orders of magnitude larger than the true value), the read-k
approach is much closer to the measured values. We can see
that for large sampling probabilities (p ≥ 0.5), the measured
error is at most 2 orders of magnitude smaller than the value
predicted by Theorem 2.
2-hop histogram: Now we compare two methods of calcu-
lating the left hand side of (5) from Section 2.3. We show
that a simple implementation in which a vertex gathers its
full 2-hop neighborhood (i.e., IDs of its neighbors’ neigh-
bors) is much less efficient than the two-hop histogram ap-
proach used in 4-Prof-Dist (see Section 2.3). In Figures 7
and 9 we can see that the histogram approach is an order
of magnitude faster for various numbers of machines, and
that its network requirements are up to 5x less than that of
the simple implementation. Moreover, our algorithm could
handle much larger graphs while the simple implementation
ran out of memory.
Running time: Finally, we show that 4-Prof-Dist can
run much faster than the current state of the art graphlet
counting implementations. The algorithm and the GraphLab
platform on which it runs are both distributed in nature.
The latter allows 4-Prof-Dist to exploit multiple cores on
a single machine as well as a cluster of machines. Figure 6c
shows running time as a function of CPU cores. We com-
pare this result to the running time of a single core, C++

implementation of Orca [13]. Our 4-Prof-Dist algorithm
becomes faster after only 25 cores and is 2x faster using
60 cores. Moreover, 4-Prof-Dist allows scaling to a large
number of machines. In Figure 8 we can see how the running
time for the LiveJournal graph decreases when the number of
machines increases. Since Orca cannot benefit from multi-
ple machines, we see that 4-Prof-Dist runs up to 12x faster
than Orca. This gap widens as the cluster grows larger. In
[20], the authors implemented a GPU version of Orca using
CUDA. However, the reported speedup is about 2x which is
much less than we show here on the AWS cluster (see Figure
8 for p = 1). We also note a substantial running time benefit
of the sampling approach for global 4-profiles. In Figures 8
and 10, we see that with p = 0.1 we can achieve order of
magnitude improvements in both speed and network traffic.
This sampling probability maintains very good accuracy, as
shown in Figure 6b.

5. CONCLUSIONS
We introduced a novel distributed algorithm for estimat-

ing 4-profiles of large graphs. We relied on two theoretical
results that can be of independent interest: that 4-profiles
can be estimated with limited 2-hop information and that
randomly erasing edges gives sharper approximation com-
pared to previous analysis. We showed that our scheme
outperforms the previous state of the art and can exploit
cloud infrastructure to scale.
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Figure 6: LiveJournal graph, Asterix system. All the results are averaged over 10 iterations. (a) – Running
time as a function of sampling probability. (b) – Accuracy of the F7 −F10 global counts, measured as ratio of
the exact count to the estimated count. (c) – Comparison of running times of Orca and our exact 4-Prof-Dist
algorithm. Clearly, 4-Prof-Dist benefits from the use of multiple cores.
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Figure 7: AWS cluster of up to 20 machines (nodes),
results averaged over 10 iterations. Running time
comparing naive 2-hop implementation and 2-hop
histogram approach on the Notre Dame web graph.
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Figure 8: Running time of 4-Prof-Dist for various
number of compute nodes and sampling probability
p, on the LiveJournal graph.
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Figure 9: Network usage comparing naive 2-hop im-
plementation and 2-hop histogram approach on the
Notre Dame web graph.
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Figure 10: Network usage of 4-Prof-Dist for various
number of compute nodes and sampling probability
p, on the LiveJournal graph.
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APPENDIX
A. IMPLEMENTATION DETAILS

To improve the practical performance of 4-Prof-Dist
(see Algorithm 1 for pseudocode), we handle low and high
degree vertices differently. As in GraphLab PowerGraph’s
standard triangle counting, cuckoo hash tables are used if
the vertex degree is above a threshold. Now, we also thresh-
old vertices to determine whether the 2-hop histogram in
Section 2.3 will be either a vector or an unordered map.
This is because sorting and merging operations on a vec-
tor scale poorly with increasing degree size, while an un-
ordered map has constant lookup time. We found that this
approach successfully trades off processing time and memory
consumption.

B. EXTENSION TO GLOBAL 4-PROFILE
SPARSIFIER

Another advantage to read-k function families is that they
are simpler to extend to more complex subgraphs. We now
state concentration results for the full 4-profile sparsifier
evaluated experimentally in Section 4. Using the notation
in Section 3, the edge sampling matrix H is defined by the
relations E[Y0]

...
E[Y10]

 = H

N0

...
N10

 ⇒

X0

...
X10

 = H−1

 Y0

...
Y10

 .
Let t = p−1

p
. Then the inverse sampling matrix is given

by

H−1 =

[
S11 S12

04×7 S22

]
, where

S11 =



1 t t2 t2 t3 t3 t3

0 1
p

2t
p

2t
p

3t2

p
3t2

p
3t2

p

0 0 1
p2

0 t
p2

0 0

0 0 0 1
p2

2t
p2

3t
p2

3t
p2

0 0 0 0 1
p3

0 0

0 0 0 0 0 1
p3

0

0 0 0 0 0 0 1
p3


,

S12 =



t4 t4 t5 t6

4t3

p
4t3

p
5t4

p
6t5

p
2t2

p2
t2

p2
2t3

p2
3t4

p2

4t2

p2
5t2

p2
8t3

p2
12t4

p2

4t
p3

2t
p3

6t2

p3
12t3

p3

0 t
p3

2t2

p3
4t3

p3

0 t
p3

2t2

p3
4t3

p3


,

S22 =


1
p4

0 t
p4

3t2

p4

0 1
p4

4t
p4

12t2

p4

0 0 1
p5

6t
p5

0 0 0 1
p6

 ,
and 04×7 is a 4× 7 matrix of zeros.

The binomial coefficients in these matrices influence our
concentration bounds. A more detailed proof of the follow-
ing result may be found in the extended version of this paper
[8].

Theorem 3 (4-profile sparsifier). Consider the sam-
pling process described above and in Section 3. Let Xi, 0 ≤
i ≤ 10 (and X be a vector of these estimates), be the actual
estimates of 4-profiles. Let ki be the maximum number of
subgraphs Fi sharing a common edge. Let Yi, 0 ≤ i ≤ 10,
be the 4 profile counts of the sparsified graph. Then let
Ni, 0 ≤ i ≤ 10, be the actual counts. Choose 0 < δ < 1
and ε > 0. Let C = (192)2/2 and

kα = k2 + k3, kβ = k4 + k5 + k6, kγ = k7 + k8,

Nα = N2 +N3, Nβ = N4 +N5 +N6, Nγ = N7 +N8.

If

p ≥
(
C log(2/δ)k10

ε2N10

)1/12

, p ≥
(
C log(2/δ)(k9 + 6k10)

ε2(N9 + 6N10)

)1/10

p ≥
(
C log(2/δ)(k8 + 4k9 + 12k10)

ε2(N8 + 4N9 + 12N10)

)1/8

p ≥
(
C log(2/δ)(k7 + k9 + 3k10)

ε2(N7 +N9 + 3N10)

)1/8

p ≥
(
C log(2/δ)(k6 + k8 + 2k9 + 4k10)

ε2(N6 +N8 + 2N9 + 4N10)

)1/6

p ≥
(
C log(2/δ)(k5 + k8 + 2k9 + 4k10)

ε2(N5 +N8 + 2N9 + 4N10)

)1/6

p ≥
(
C log(2/δ)(k4 + 4k7 + 2k8 + 6k9 + 12k10)

ε2(N4 + 4N7 + 2N8 + 6N9 + 12N10)

)1/6

p ≥
(
C log(2/δ)

ε2

)1/4

×(
k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10

N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10

)1/4

p ≥
(
C log(2/δ)(k2 + k4 + 2k7 + k8 + 2k9 + 3k10)

ε2(N2 +N4 + 2N7 +N8 + 2N9 + 3N10)

)1/4

p ≥
(
C log(2/δ)(k1 + 2kα + 3kβ + 4kγ + 5k9 + 6k10)

ε2(N1 + 2Nα + 3Nβ + 4Nγ + 5N9 + 6N10)

)1/2

n0 ≤ |V |2
(
|V |2 − C log(2/δ)

ε2

)
,

then ‖δX‖∞ ≤ ε
(|V |

4

)
with probabilty at least 1− δ.

Proof. We apply Proposition 1 a total of 11 times to the
sampling-estimator system defined above by H and H−1.
In our context, each sampled subgraph count Yi is a sum of
functions in a read-kYi family, where kYi ≤ min{|V |−2, Ni}.
Let ki,e be the maximum number of subgraphs Fi sharing a
common edge e, and let ki = maxe ki,e, for i = 0, . . . , 10.
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The Yi’s have the following parameters:

rY0 =

(
|V |
4

)
, kY0 = |V |

rY1 = N1 + 2N2 + 2N3 + 3N4 + 3N5 + 3N6 + 4N7+

4N8 + 5N9 + 6N10

kY1 = k1 + 2k2 + 2k3 + 3k4 + 3k5 + 3k6 + 4k7 + 4k8+

5k9 + 6k10

rY2 = N2 +N4 + 2N7 +N8 + 2N9 + 3N10

kY2 = k2 + k4 + 2k7 + k8 + 2k9 + 3k10

rY3 = N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10

kY3 = k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10

rY4 = N4 + 4N7 + 2N8 + 6N9 + 12N10

kY4 = k4 + 4k7 + 2k8 + 6k9 + 12k10

rY5 = N5 +N8 + 2N9 + 4N10, kY5 = k5 + k8 + 2k9 + 4k10

rY6 = N6 +N8 + 2N9 + 4N10, kY6 = k6 + k8 + 2k9 + 4k10

rY7 = N7 +N9 + 3N10, kY7 = k7 + k9 + 3k10

rY8 = N8 + 4N9 + 12N10, kY8 = k8 + 4k9 + 12k10

rY9 = N9 + 6N10, kY9 = k9 + 6k10

rY10 = N10, kY10 = k10

We apply Proposition 1 to each estimator. This is shown
in the proof of Theorem 2 for Y10 and in the extended paper
[8] for the other estimators. Rearranging to solve for p,

p ≥
(

log(2/δ)k10

2ε2N10

)1/12

, p ≥
(

log(2/δ)(k9 + 6k10)

2ε2(N9 + 6N10)

)1/10

p ≥
(

log(2/δ)(k8 + 4k9 + 12k10)

2ε2(N8 + 4N9 + 12N10)

)1/8

p ≥
(

log(2/δ)(k7 + k9 + 3k10)

2ε2(N7 +N9 + 3N10)

)1/8

p ≥
(

log(2/δ)(k6 + k7 + 2k9 + 4k10)

2ε2(N6 +N8 + 2N9 + 4N10)

)1/6

p ≥
(

log(2/δ)(k5 + k7 + 2k9 + 4k10)

2ε2(N5 +N8 + 2N9 + 4N10)

)1/6

p ≥
(

log(2/δ)(k4 + 4k7 + 2k8 + 6k9 + 12k10)

2ε2(N4 + 4N7 + 2N8 + 6N9 + 12N10)

)1/6

p ≥
(

log(2/δ)

2ε2

)1/4

×(
k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10

N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10

)1/4

p ≥
(

log(2/δ)(k2 + k4 + 2k7 + k8 + 2k9 + 3k10)

2ε2(N2 +N4 + 2N7 +N8 + 2N9 + 3N10)

)1/4

p ≥
(

log(2/δ)(k1 + 2kα + 3kβ + 4kγ + 5k9 + 6k10)

2ε2(N1 + 2Nα + 3Nβ + 4Nγ + 5N9 + 6N10)

)1/2

,

where

kα = k2 + k3, kβ = k4 + k5 + k6, kγ = k7 + k8,

Nα = N2 +N3, Nβ = N4 +N5 +N6, Nγ = N7 +N8.

The final condition comes from the result for Y0:

n0 ≤

(
|V |
4

)
− log(2/δ)|V |2

2ε2
≤ |V |2

(
|V |2 − log(2/δ)

2ε2

)
.

Plugging into our estimators (given by H−1), we get the
following error bounds:

δX0 ≤ ε(n1 + n2 + n3) + ε(n1 + 2n2 + 3n3 + n2 + 3n3 + n3)

≤ ε(2n1 + 4n2 + 8n3) ≤ 8ε

(
|V |
3

)

δX1 ≤ ε(N1 + . . .+ 192N10) ≤ 192ε

(
|V |
4

)

δX2 ≤ ε(N2 + . . .+ 48N10) ≤ 48ε

(
|V |
4

)

δX3 ≤ ε(N3 + 4N4 + 6N5 + . . .+ 192N10) ≤ 192ε

(
|V |
4

)

δX4 ≤ ε(N4 + . . .+ 96N10) ≤ 96ε

(
|V |
4

)

δX5 ≤ ε(N5 + . . .+ 32N10) ≤ 32ε

(
|V |
4

)

δX6 ≤ ε(N6 + . . .+ 32N10) ≤ 32ε

(
|V |
4

)

δX7 ≤ ε(N7 + 2N9 + 12N10) ≤ 12ε

(
|V |
4

)
δX8 ≤ ε(N8 + 4N9 + 12N10) + 4ε(N9 + 6N10) + 12ε(N10)

≤ ε(N8 + 8N9 + 48N10) ≤ 48ε

(
|V |
4

)
δX9 ≤ ε(N9 + 6N10) + 6ε(N10)

≤ ε(N9 + 12N10) ≤ 12ε

(
|V |
4

)
δX10 ≤ εN10.

Thus the maximum deviation in any estimator is less than
192ε

(|V |
4

)
. Substituting ε̃2 = ε2/(192)2 = ε2/2C completes

the proof.
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