

Cracking Classifiers for Evasion: A Case Study on the
Google’s Phishing Pages Filter

Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, Gang Yang

Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE, Beijing 100872, P. R. China
School of Information, Renmin University of China, Beijing 100872, P. R. China

{liangb, sumiaoqiang, youwei, wenchang, yanggang}@ruc.edu.cn

ABSTRACT

Various classifiers based on the machine learning techniques have

been widely used in security applications. Meanwhile, they also

became an attack target of adversaries. Many existing studies have

paid much attention to the evasion attacks on the online classifiers

and discussed defensive methods. However, the security of the

classifiers deployed in the client environment has not got the

attention it deserves. Besides, earlier studies only concentrated on

the experimental classifiers developed for research purposes only.

The security of widely-used commercial classifiers still remains

unclear. In this paper, we use the Google’s phishing pages filter

(GPPF), a classifier deployed in the Chrome browser which owns

over one billion users, as a case to investigate the security

challenges for the client-side classifiers. We present a new attack

methodology targeting on client-side classifiers, called classifiers

cracking. With the methodology, we successfully cracked the

classification model of GPPF and extracted sufficient knowledge

can be exploited for evasion attacks, including the classification

algorithm, scoring rules and features, etc. Most importantly, we

completely reverse engineered 84.8% scoring rules, covering most

of high-weighted rules. Based on the cracked information, we

performed two kinds of evasion attacks to GPPF, using 100 real

phishing pages for the evaluation purpose. The experiments show

that all the phishing pages (100%) can be easily manipulated to

bypass the detection of GPPF. Our study demonstrates that the

existing client-side classifiers are very vulnerable to classifiers

cracking attacks.

CCS Concepts

• Security and privacy➝Browser security • Security and

privacy➝Phishing • Social and professional topics➝Software

reverse engineering • Computing methodologies➝Machine

learning.

General Terms

Security

Keywords

Phishing Detection; Machine Learning; Classifiers; Cracking;

Collision Attacks; Evasion Attacks

1. INTRODUCTION
Machine learning techniques have been commonly adopted in

security applications. Various classifiers were trained for

detecting malicious web pages [25], spam [54], phishing [58],

malware [47], etc. Not surprisingly, the classifiers themselves

have also become an attack target of adversaries. The adversary

can attempt to fool classifiers by purposely modifying their

behaviors. For example, a spammer can manipulate the spam

mails to evade spam filters by inserting some good words

indicative of legitimate mails or misspelling bad words indicative

of spam mails [39]. This requires the classifier to be able to resist

potential attacks.

Many existing studies have paid attention to the security of

classifiers. According to the taxonomy of attacks against

classifiers [9][10][32], the influences of attacks on the classifier

are categorized into two types: (1) causative attacks interfere

training process with control over the training data to downgrade

the performance of the classifier, and (2) exploratory attacks

exploit the knowledge of the trained classifier to cause

misclassifications without affecting the training process.

In causative attacks, the adversary has the opportunity to inject

(poison) specially crafted samples during the collection of training

samples. Such attacks will cause the learner to misclassify

security violations (i.e., false negatives) [17][18][19][20]. For

example, a poisoning attack method against support vector

machines (SVM) is presented in [18]. It was demonstrated that the

SVM’s classification accuracy can be largely impacted by feeding

malicious training data. Fortunately, in practice, the adversary

doesn’t always have an opportunity to effectively control over

training data. In fact, the training process of most classifiers,

especially the ones deployed in commercial products, is not open

to the public. The adversary needs to fight with trained classifiers.

For example, the Google’s server-side phishing page classifier is

developed in an offline training process [58], whose training

dataset consists of millions of samples from various domains. In

this case, it is very difficult, if not impossible, for an adversary to

craft sufficient amounts of malicious inputs to effectively poison

the training process.

On the other hand, exploratory attacks attempt to learn enough

knowledge about the trained classifiers and to find a way to evade

the classification. Some existing studies on evasion attacks made

the unrealistic assumption that the adversary has perfect

knowledge of classification model [28]. In practice, the adversary

often needs to send some probes (e.g., membership queries) to the

classifier and then observe its response so as to deduce desirable

knowledge [25], perform an adversarial learning to get sufficient

knowledge about the target classifier to construct evasion attacks

[40], or reconstruct an imitation of the target classifier based on

the available public information (e.g., training data) to gain key

knowledge [51]. In theory, the success of evasion attacks heavily

Copyright is held by the International World Wide Web Conference Committee

(IW3C2). IW3C2 reserves the right to provide a hyperlink to the author's site if the

Material is used in electronic media.

WWW 2016, April 11-15, 2016, Montréal, Québec, Canada.

ACM 978-1-4503-4143-1/16/04.

http://dx.doi.org/10.1145/2872427.2883060

345

depends on the amount of knowledge possessed by the adversary.

Especially, the knowledge about features contributes most to the

success of the attacks as discussed in [52]. Accordingly, some

mitigation techniques have been proposed to against evasion

attacks by either reducing the leakage of exploitable knowledge as

much as possible [9][11] or making the learning method more

robust to evasion [16][36].

However, existing studies often overlooked an important fact that

some classifiers are deployed in the client environment that is

fully controlled by users (client-side classifier for short) rather

than in a remote server. For example, the classifiers for filtering

spam emails and phishing pages are often embedded in the email

clients or web browsers respectively. In the scenario, the

classifiers face more serious security challenges. Instead of

collecting the information via indirectly observations, the

adversaries can freely and directly analyze the implementation

and configuration of the classifiers to evade them. Consequently,

it should be investigated carefully that how an adversary can learn

the exploitable knowledge from a classifier deployed in the user

clients and how effectively the knowledge are exploited in

launching an evasion attack. Additionally, the existing studies

generally focused on the experimental classifiers developed for

research purposes only. The security of widely-used classifiers in

commercial products still remains unclear. From a practical point

of view, evaluating the security of commercial classifiers is more

significant for protecting end users from evasion attacks.

To this end, in this study, we investigate the security challenges

for the client-side classifiers via a case study on the Google’s

phishing pages filter (GPPF), a very widely-used classifier for

automatically detecting unknown phishing pages. The classifier is

integrated within the Chrome browser and is invoked for every

web page visited by users to check whether it is phishing. Due to

the popularity of Chrome, there are over one billion users using

GPPF against potential phishing attacks [2]. It is also probably the

most widely-used classifier as we know. If the adversary can

easily evade it, countless users will be exposed to out-of-control

phishing attacks.

In this paper, we demonstrate a practical and effective attack

methodology, named classifiers cracking, in which various

reverse engineering techniques are leveraged to extract sufficient

knowledge from the client-side classifier for launching evasion

attacks. Specifically, via some static and dynamic analysis on the

implementation of Chromium (the development version of

Chrome), we successfully extract the classification model of GPPF

from Chromium. The extracted model mainly involves the

classification algorithm, the 2,130 scoring rules and their

corresponding weights, as well as the 1,009 hashed features

composing the scoring rules. With the help of some public

datasets (e.g., large corpora), we then launch a collision attack to

the hashed features and decrypt 815 (80.8%) of them only within

a dozen of hours. As a result, we can completely reverse engineer

1807 (84.8%) scoring rules, covering most of the high-weighted

rules. Additionally, 196 (9.2%) scoring rules are partially cracked

and can also be exploited to compromise the classification. There

are only 127 (6.0%) rules surviving from the collision attack.

Based on the cracked information, we design two kinds of evasion

attacks, i.e., good features insertion and bad features elimination.

The basic idea behind them is to add or to remove some features

with remarkable contributions to GPPF scoring into or from the

target phishing pages to reduce their phishing scores, making the

computed scores lower than the positive threshold defined by

GPPF. We evaluate the effectiveness of the attacks on the 100

latest real phishing pages collected from PhishTank [3], a famous

phishing URLs tracking site. The results show that we can easily

manipulate all the phishing pages under the direction of the

cracked knowledge, to make them successfully evade the

detection of GPPF in the latest version of Chrome.

We also analyze the effectiveness of existing defense techniques

when applying them to client-side classifiers. To the best of our

knowledge, there is still lack of a perfect approach to protect

client-side classifiers from being cracked. We believe that how to

protect the client-side classifiers is still an open problem.

This paper makes the following two main contributions.

 We propose a new attack methodology, classifiers cracking,

aiming at the client-side classifiers. The adversary can

follow it to readily acquire exploitable knowledge from the

target classifier to launch effective evasion attacks.

 We successfully crack and evade the GPPF, a commercial

classifier with over one billion users. It demonstrates that

the existing client-side classifiers are indeed vulnerable to

the classifiers cracking attacks.

2. BACKGROUND

2.1 Threat Model
As shown in Figure 1(a), how to classify an instance in a server-

side classifier is often a black-box to the adversary. The adversary

can only send some queries and analyze responses to learn the

information about it. In many cases, this is already enough to

launch an evasion attack. The adversary can construct a

malformed instance to fool the classifier based on the information

learned in advance.

Query

Response

Knowledge

Server-side

Classifier

(a) Evading the server-side classifier

Client-side

Classifier

 Knowledge

(b) Evading the client-side classifier

Figure 1. Threats to classifiers.

346

However, when a classifier is deployed in the client sides, the

situation may become worse. As shown in Figure 1(b), for a

client-side classifier, its operations are performed in a white-box.

The adversary can leverage almost all kinds of analysis techniques,

such as debugging, disassembling, code analysis, dynamic taint

tracking, to thoroughly analyze the target classifier. As a result,

the adversary has an opportunity to get more comprehensive

knowledge about the classifier so as to develop more sophisticated

evasion attacks. The malformed instance can be applicable for all

the users using the classifier. Besides, if the adversary gets perfect

knowledge about the classifier, she can even reengineer a new

classifier for commercial purposes. In this study, we assume that

all the implementation and configuration of the client-side

classifier are available for the adversary. The adversary can figure

out the type of classification model, the classification algorithm

and the feature extraction method by leveraging various

techniques. Considering the advancement of modern analysis

techniques, this assumption is reasonable.

Some client-side classifiers have already introduced some defense

techniques to prevent the adversary from learning crucial

information. For example, GPPF employs the cryptography

technique to protect the classification model. Unfortunately, it is

proved to be ineffective to against classifiers cracking (discussed

in Section 3 and 4).

2.2 Phishing and GPPF
According to the latest report [4] of Anti-Phishing Working

Group (APWG), phishing attacks remain widespread: the number

of unique phishing reports submitted to APWG during Q4 of 2014

was 197,252, and increased by 18% on top of the 163,333

received in Q3. To minimize the impact of phishing attacks, a

variety of methods have been proposed to detect phishing pages,

involving machine learning [37][53][58] or other techniques

[26][27][29][31][33][46][60][61].

Modern web browsers also provide detection tools to assist end

users against phishing attacks. In Chrome, Google provides not

only the blacklists of malicious URLs but also a trained classifier

(GPPF) which automatically detects phishing pages as a

countermeasure to the phishing problem [5]. These mechanisms

serve as a guard when a request comes, and the request URL will

be checked before the content is allowed to begin loading. The

URL is checked against two blacklists: malware and phishing. If

the URL is matched with any one of the two blacklists, Chrome

will block the request and jump to a warning page as shown in

Figure 2. More importantly, for the URL not matched in the

blacklists, Chrome will further invoke GPPF to determine whether

the URL is legitimate or phishing. In practice, the phishing

blacklist needs to be updated constantly. The browser may be

vulnerable to newly created phishing websites. GPPF acts as an

indispensable role in protecting end users from unknown phishing

pages.

In practice, GPPF is trained offline. Google collects massive

pages from various domains as the training dataset. The

adversaries have no opportunity to alter the training dataset

enough to fool the trained classifier to misclassify phishing pages

as legitimate ones. However, as an internal component of the

Chrome browser, GPPF is completely deployed and running in the

user environment. This actually allows the adversary to freely

analyze its implementation and configurations to construct more

sophisticated phishing attacks.

According to the report of StatCounter [6], from Aug 2014 to Aug

2015, Chrome shared an average of 48.6% market and was the

most popular web browser. In May 2015, Google announced that

Chrome has over one billion active users [2]. This means over one

billion users’ web surfing are protected by GPPF. Hence, we have

reason to believe that the security breach of GPPF can result in a

significant risk that should not be neglected.

3. CRACKING GPPF
There is very limited public information about the design and

implementation of GPPF. We choose to directly analyze the

development version of the Chrome browser, Chromium, to crack

GPPF. The cracking includes two main steps: (1) extracting the

classification model of GPPF from Chromium; and (2) decrypting

the hashed features of the model. It needs to be mentioned that

some sensitive details of the cracking are intentionally omitted

to prevent them from being used for malicious purposes.

3.1 Extracting the Classification Model
3.1.1 Classification Algorithm
The multi-process architecture that Chrome/Chromium adopts

helps it to be more robust. According to a very brief description

[5], we can know that Browser process will periodically fetch an

updated model from Google’s server and send it to every Render

process via an IPC channel. This allows the classification to be

done in the Render process, which will score the request page to

tell whether it is phishing or not.

The reverse engineering technique is employed to extract

encrypted classification model features from Chromium. Although

Chromium is an open-source project, it is difficult to directly

extract the encrypted model only by statically analyzing its source

code. Instead, we performed a hybrid static and dynamic analysis

on the Chromium to find the scoring point and extract the

encrypted model.

By statically analyzing the source code of Chromium and

comparing the rendering processes of a phishing page and a

legitimate page with a debug tool gdb, we locate and confirm the

GPPF’s scoring function ComputeScore(), which is a method of

the Scorer class defined in the file scorer.cc. Combining a

dynamically backward tracking of the execution path started from

ComputeScore() and a static analysis on the source code, we

conclude the workflow of the classification. As shown in Figure 3,

first, the classifier extracts three kinds of page features from the

current web page in the order of URL, DOM and Term features.

Second, the collected page features are hashed with the SHA-256

algorithm and are sent to the function ComputeRuleScore() to

Figure 2. Phishing warning page.

347

compute the rule score for every scoring rule, along with the

hashed model features. Third, ComputeScore() combines all the

rule scores to generate a final score for the current page. Finally,

the score is compared with a predefined threshold (fixed as 0.5). If

the score is smaller than the threshold, the page will be identified

as legitimate; otherwise, it will be regarded as a potential phishing

page. The browser will send its URL to the Safe Browsing servers

to check the URL against a remote blacklist. The servers may

comprehensively analyze the page, e.g., feeding it to the internal

phishing page classifier. If the response from the Safe Browsing

servers identifies the URL as phishing, the page will be blocked.

Consequently, if we can decrease the score of a phishing page, it

can escape from being checked and analyzed by Google’s servers,

and be directly regarded as a legitimate one.

Based on the analysis of the scoring process, we find the GPPF is

a logistic regression classifier, which uses the following two

expressions to compute the phishing score for the target page.

GPPF computes the total score for the page in log odds using the

expression (1), and uses the normalization expression (2) to

transform the score in log odds to the final score.

 
 
















2130

2 1

,1

i

n

j

jii

i

VWWLogodds (1)

Logodds

Logodds

e

e
score




1
 (2)

According to expression (1), the computing of the log odds of the

page involves 2,130 scoring rules. Every rule has a weight,

namely W1 ~ W2130. Except for the first rule, every rule consists of

one to four (i.e., ni for the ith rule) model features. Before

computing the rule scores, the page features are first mapped into

string forms, which will be hashed and compared with the model

features. For every rule, the classifier creates a set of feature

values (i.e., Vi, 1 ~ Vi, ni) for all matched model features. For

Boolean feature, True is converted to 1.0 and False is converted

to 0.0. The continuous features are scaled to be between 0.0 and

1.0. If a model features of the rule is absent from the target page,

its feature value will be set to 0.0. The score of the rule will be

computed by combining the product of all the feature values and

its weight. Finally, the log odds of the page will be produced by

summing up all the rules scores.

To crack the classification model, we need to recover the weight

and model features for every scoring rule. The rule weight can be

collected by debugging the Render process. We set a breakpoint

in ComputeRuleScore(), in which an extractor written in gdb script

is invoked to read the weight information from the rule objects in

the memory and save them in a file. In a similar way, we also get

the number of model features for every rule. However, the model

features are not stored in plaintext; instead, they are hashed with

the SHA-256 algorithm and are hidden in some complex data

structures. With carefully tracking of the scoring process, we

locate their addresses and design a gdb script to extract them from

rule objects. Take two extracted rules as examples. As listed in

Table 1, the rule R1494 is a negative rule with two features. This

kind of rule is used to identify the good property indicative of

legitimate pages. On the contrary, the rule R2050 is a positive rule,

including only one feature. Some of the model features are

presented in different scoring rules. After eliminating duplicates,

in total, we collect 1,009 individual hashed model features. The

decryption of them will be described in Section 3.2.

3.1.2 Model Features
To decrypt the hashed model features, we should first get clear

about their semantics and how the page features are mapped into

them. When computing the score, three kinds of page features will

be mapped into corresponding model features in different ways.

URL features. In practice, the phishers often obfuscate their

URLs to hide suspicious addresses or confuse victims into

believing they come from a trusted party. Based on the

observation, in GPPF, some characteristics of the URL are

employed to identify phishing pages. By analyzing the

implementation of the classifier, we recover all seven kinds of

properties of the URL being extracted as the page URL features,

as shown in Table 2. The page URL features will be converted

into string forms, which will be hashed and compared with the

encrypted model URL features during computing scores.

The page URL features can be categorized into two groups. For

one of the first group of features (the first three in Table 2), if it is

present in the URL, a hashed predefined string will be taken as its

corresponding model feature. Take the first page URL feature as

an example. If the hostname part of the URL is a numeric IP

address, the string “UrlHostIsIpAddress” is hashed with the SHA-

256 algorithm to act as the model feature. For the second group of

Table 1. Scoring rule examples

Rule Features # Hashed Feature Weight

R1494 2

32ffbec120ed857f57f3d7bb37

e6652955b21da7a7efd81d9a9

aa2865173eb35 -1.26907706
ec92914c7db4483437c84975

8c45cf8bbc6dd0148cdb2f72b

ec0a728e8c91a7d

R2050 1

760e98536a709d0fcb9b717eb

542cc5af77bbabf60a501dbf7d

f81a111d1e807

2.5238471

Web

Page

Computing the rule scores

Computing the final score

Extracting URL features

Extracting DOM features

Extracting Term features

Final score ≥ 0.5

Potential Phishing page Legitimate page

Yes No

Model

features

Figure 3. Classification workflow.

SHA-256 Hash

Response says

phishing?

Yes

Phishing page

No

Sending a

request to

Google’s

servers

348

features (the last four in Table 2), a string in equation form will be

generated by concatenating a predefined string and the concrete

URL property. For example, for the fifth page URL feature, if the

URL is www.phishing.com, the string “UrlDomain=phishing”

will be hashed as the model feature. In scoring rules, all the URL

features will be assigned a Boolean feature value, i.e., 1.0 if it is

present in the page or 0.0 if it is absent.

The predefined strings used to generate the model feature (shown

in the third column of Table 2) can be inferred from the

implementation of the classifier. However, we cannot directly

recover the complete plaintexts from the hashed model URL

features in equation forms. In GPPF, there are hundreds of model

features about the URL in equation forms. Based on their

semantics discussed above, we design a collision attack to decrypt

them as far as possible (described in Section 3.2).

DOM features. GPPF also uses some features about the

Document Object Model (DOM) elements of the page to tell

whether it is phishing. As shown in Table 3, we recover all 12

kinds of DOM features employed by GPPF. In a similar way to

the URL features, these page DOM feature will also be converted

to string forms.

As listed in Table 3, the first seven page DOM features are used to

identify the structure property of the page, e.g., to determine

whether the page has some kinds of DOM elements or not. These

features directly correspond to seven predefined strings

respectively, which will be hashed and compared with the model

features. For example, if the page has the <form> element, the

string “PageHasForms” will be hashed to act as the

corresponding model feature. The eighth page DOM feature

records all external domains that the page links to, which will be

mapped into a string in equation mode for every individual

external domain. In scoring rules, all the above DOM features will

be assigned a Boolean feature value. The last four page DOM

features indicate the fraction of some certain kinds of DOM

elements. They correspond to four predefined strings. In scoring

rules, the values of matched features are set to the fraction value

scaling between 0.0 and 1.0.

For the DOM features, the related predefined strings can be

directly recovered and are shown in the third column of Table 3.

For the eighth page DOM feature, there are many related hashed

model features in equation forms to identify different external

domains. A collision attack is performed to recover their

plaintexts (described in Section 3.2).

Term features. In GPPF, the terms appearing in the page are

taken as a kind of feature. A term feature can be a single word or a

compound of multiple words (at most five).

When fetching the page terms, the page text is first converted into

a list of words in lowercase. In practice, using every word of the

page text to construct features will greatly overburden the learning

process. Instead, GPPF only handles the words contained in a

predefined set. A fast hash algorithm, Murmurhash3, is employed

to implement a word filter. GPPF maintains a list of candidate

words, which are hashed with the Murmurhash3 algorithm. It was

generated by collecting the words with the highest term

frequency-inverse document frequency (TF-IDF) values [50] from

a large dataset.

GPPF uses an array named previous_words to construct the page

term features. The array can store at most five continuous

candidate words of the page text and is initially empty. The first

word is fetched and removed from the page word list. Its

Murmurhash3 value is computed to determine whether it is

contained in the candidate list or not. If it is a candidate, the word

will be added in the first element of previous_words. GPPF then

checks the subsequent word in the list and adds it to the array in

sequence if it is also a candidate word. Whenever a word is added,

all words currently contained in the array (at most five) are

connected and combined with a predefined prefix (“PageTerm=”)

to construct a phrase. It will be hashed with SHA-256 algorithm

and compared with the hashed model term features. For example,

if three continuous words (“abc”, “def”, and “ghi”) have been

added in the array, the generated corresponding phrases will be

“PageTerm=abc”, “PageTerm=abc def”, and “PageTerm=abc

def ghi”. In scoring rules, the values of a term feature will be set

to 1.0 if there is a matched phrase; otherwise to 0.0. When

encountering a non-candidate word or the array is full, GPPF will

Table 2. URL features

No. Page URL Features Model URL Features

1
The hostname is an IP

address?
UrlHostIsIpAddress

2

The number of other host

components is greater than

one?

UrlNumOtherHostTokens>1

3

The number of other host

components is greater than

three?

UrlNumOtherHostTokens>3

4 Top level domain UrlTld=*

5
The first host component

below top level domain
UrlDomain=*

6 Other host components UrlOtherHostToken=*

7 Path token in URL UrlPathToken=*

Table 3. DOM features

No. Page DOM Features Model DOM Features

1 Page has <form> element? PageHasForms

2
Page has <input type=text>

element?
PageHasTextInputs

3
Page has <input type=password>

element?
PageHasPswdInputs

4
Page has <input type=radio>

element?
PageHasRadioInputs

5
Page has <input type=checkbox>

element?
PageHasCheckInputs

6
The number of <script> elements

in the page is greater than 1?
PageNumScriptTags>1

7
The number of <script> elements

in the page is greater than 6?
PageNumScriptTags>6

8
Token feature containing each

external domain that is linked to
PageLinkDomain=*

9

Fraction of form elements whose

action points to an external

domain

PageActionOtherDomainFreq

10

Fraction of links in the page

which point to an external

domain

PageExternalLinksFreq

11
Fraction of page links that use

https
PageSecureLinksFreq

12
Fraction of images whose src

points to an external domain
PageImgOtherDomainFreq

349

clear the array, fetch the next word and repeat the above steps

until the list is empty.

In GPPF, there are 432 hashed model term features. Every one

corresponds to a phrase that may consist of one to five words. We

also use a collision attack to recover their plaintexts.

3.2 Collision Attacks
As discussed in Section 3.1, besides 14 features being directly

recovered in the model extraction, there are still 995 hashed

model features needed to be decrypted. As shown in Table 4, they

can be divided into two categories: URL-related and term-related.

According to their semantics, we design different collision attacks

to decrypt them.

3.2.1 Decrypting URL-related Features
In total, there are 563 hashed URL-related features. So far, it is

impossible to directly construct a collision for a given SHA-256

hash value. Instead, we collect four datasets related to URLs to

perform targeted brute force attacks to find potential collisions as

much as possible. To prevent the adversary from reproducing the

attacks, the sources of the datasets are not presented in this paper.

1) We use a dataset with about 8,000 top level domain names

to decrypt UrlTld features. We select the name from the set

one by one and add the prefix “UrlTld=” to generate a test

case. By hashing it with SHA-256 and comparing the hash

value with all URL-related features, we successfully recover

69 UrlTld features with a desktop computer in about five

minutes.

2) We collect over 30,000 URLs of history phishing pages, and

use the different elements of the URLs (e.g., hostname) to

generate test cases for other four kinds of URL-related

features. In a similar way as above, 171 features are

successfully decrypted in about four minutes, including 20

UrlDomain, 27 UrlOtherHostToken, 17 UrlPathToken and

107 PageLinkDomain features.

3) With the URLs of legitimate pages in thousands of top sites,

we get 3 UrlDomain features and 34 PageLinkDomain

features in less than one minute.

4) A very large URL database with over 2,000,000 records is

leveraged to construct test cases. The decryption process

takes about 20 minutes. As a result, we get 46 UrlTld, 21

UrlDomain, 28 UrlOtherHostToken, 201 UrlPathToken and

107 PageLinkDomain features.

After removing duplicates, as listed in Table 4, we eventually

recover a total of 426 (75.7%) URL-related features, including 69

UrlTld, 21 UrlDomain, 28 UrlOtherHostToken, 201

UrlPathToken and 107 PageLinkDomain features.

3.2.2 Decrypting Term-related Features
GPPF employs 432 hashed term features to detect phishing pages

based on the page text. In practice, the text of a phishing page can

be written in various languages. To this end, we collect some full-

text corpora for seven popular natural languages (English, French,

German, Spanish, Dutch, Chinese and Japanese) to perform

collision attacks. The basic steps are as follows.

 According to the semantics of the term feature, we build a

candidate word filter based on the implementation of the

Murmurhash3 algorithm in Chromium. With it, we extract

all possible word sequences consisting of one to five

continuous candidate words from these corpora respectively.

 For every word sequence, adding the prefix “PageTerm=”

to generate a test case.

 Hashing every test case with SHA-256 and comparing the

hash value with all term features to find potential collisions.

Via the above steps, we successfully recover 292 (67.9%) term

features in various languages in about 8.8 hours. The result is

detailed in Table 5.

To further improve the cracking result about term features, we

also perform blind brute force attacks. We construct an alphabet

consisting of letters in western languages. With the alphabet, all

possible combinations of no more than eight letters are produced.

After filtering, they are used as candidate words to generate test

cases to find collisions. Surprisingly, in about 16 hours, we

recover 281 term features only using a part of test cases. In a

similar way, we also quickly recover 40 term features based on a

set of Chinese, Japanese and Korean (CJK) ideographs. The

related results are detailed in Table 6 and Table 7 respectively.

After combining all above attacks results and removing duplicates,

we eventually recover a total of 375 (86.8%) term

features.

Table 6. Decrypting the term features with an alphabet

Term Size Candidate Words Decrypted Time

1-word 1-letter to 8-letter 186 1 minute

2-word 1-letter to 8-letter 76 8.6 hours

3-word 1-letter to 6-letter 15 14 minutes

4-word 1-letter to 4-letter 4 7.4 hours

Sum 281 16.25 hours

Table 4. Model features needed to be decrypted

Category Model Features Total Decrypted %

URL-related

UrlTld=*

563

69

426 75.7%

UrlDomain=* 21

UrlOtherHostToken=* 28

UrlPathToken=* 201

PageLinkDomain=* 107

term-related PageTerm=* 432 375 86.8%

Sum 995 801 80.5%

Language Decrypted Time

English 201 1.7 hours

French 6 2.3 hours

German 51 3.2 hours

Spanish 5 1.1 hours

Dutch 1 6 minutes

Chinese 27 20 minutes

Japanese 1 5 minutes

Sum 292 8.8 hours

Table 5. Decrypting the term features with seven corpora

350

3.3 Result Analysis
As shown in Table 4, we successfully decrypt 801 (80.5%) model

features with collision attacks. Together with 14 features being

recovered in the model extraction, we eventually get the complete

plaintexts of a total of 815 (80.8%) model features.

After applying the decryption result to 2,130 extracted scoring

rules, we can completely reverse engineer 1807 (84.8%) rules

(every feature of them is decrypted). Besides, there are also 196

(9.2%) rules we cannot completely crack, but at least one of their

features is decrypted. Only 127 (6.0%) rules remain confidential,

no one of their features is cracked.

According to their weights, GPPF’s scoring rules can be

categorized into two types: positive rules and negative rules. As

their names suggest, the former are assigned with a positive

weight and can cause a rise in the phishing score for the page,

while the latter are just the opposite. Naturally, the top-weighted

positive or negative rules will make remarkable contributions to

tell whether a page is phishing. After analyzing top 100 most

weighted positive rules, we learn that 66 of them are completely

reverse engineered, and 20 are partially cracked. For the top 100

most weighted negative rules, 77 of them are completely reverse

engineered, and 21 are partially cracked. In other words, given the

cracking result, the adversary has a great chance to disguise a

phishing page as a legitimate one by targetedly manipulating its

content.

4. EVASION ATTACKS
In this section, we perform some evasion experiments to

demonstrate the effectiveness of the classifiers cracking via

exploiting the recovered knowledge.

For a specific phishing page, we can infer which features can be

added or removed to reduce its phishing score based on the

cracking result presented in Section 3. If a feature can provide

negative contributions to the phishing scoring for a page, we call

it as a good feature from the adversary’s point of view. On the

contrary, if a feature only has positive contributions, we call it a

bad feature. Correspondingly, we design two kinds of evasion

attacks, good features insertion and bad features elimination. The

basic idea behind them is to add or remove appropriate good or

bad features into or from a phishing page to make its phishing

score lower than the threshold, resulting in a misclassification.

The latest 100 real phishing pages are collected from PhishTank

as the attack dataset. We will try to use the two evasion attacks to

manipulate them to evade the detection of GPPF. To minimize the

potential side-effects, we will use pseudonyms when referring to

specific good features or bad features in the following part of this

section.

4.1 Good Features Insertion
Given a phishing page, there may be many features that can be

leveraged to reduce its phishing score. By utilizing plenty of

negative rules having been completely reverse engineered, we can

adopt a very primitive but effective way to choose desirable good

features. In fact, we can sort all negative rules only with one

recovered feature by their weights, and directly use the features of

top-weighted rules as good feature candidates for all target pages.

More surprisingly, for many phishing pages in the dataset, we can

easily convert them to legitimate pages only by inserting just one

such good feature. Moreover, as detailed in Table 8, we find that

it is also effective to use only one kind of good feature. For

example, we can reduce the scores of all test pages to be lower

than 0.5 by inserting at most six good DOM features into the page.

On average, 2.2 good DOM features are required.

It should be noted that a sophisticated adversary can carefully

introduce the good features to preserve the utility of phishing

pages. For example, to prevent the inserted terms from attracting

the attention, their color can be set as the background color.

After introducing above good features, the manipulated test pages

are deployed in our Web server. We then use the latest version of

Chrome (45.0.2454) to visit them one by one to check whether

they can successfully evade the detection of GPPF. We find all the

dressed-up pages (100%) are regarded as legitimate pages and

display properly in the browser. For example, there is a phishing

page which imitates the login page of Chase Bank. When

browsing it, Chrome can successfully block it as a phishing page

and jump to the warning page as shown in Figure 2. In fact, the

page is given a very high phishing score 0.9986. However, after

inserting six good term features T1 ~ T6 into its text, the score is

reduced to only 0.2784. As a result, the dressed-up page can be

normally visited with Chrome as shown in Figure 4.

4.2 Bad Features Elimination
Compared with the good features insertion, selecting proper bad

features from a given phishing page to perform an effective

evasion attack is not a trivial task. The number of available bad

Figure 4. The dressed-up phishing page can evade GPPF.

Table 7. Decrypting the term features with CJK ideographs

Term Size Candidate Words Decrypted Time

1-word 1-ideograph to

3-ideograph
31 1 minute

2-word 1-ideograph to

3-ideograph
7 < 1 minute

3-word 1-ideograph to

3-ideograph
2 < 1 minute

4-word 1-ideograph to

3-ideograph
0 2 minute

Sum 40 5 minutes

Table 8. The required number of Good features

Feature MIN MAX Average

URL 1 10 2.5

DOM 1 6 2.2

Term 1 17 3.7

351

http://cn.bing.com/dict/search?q=dose&FORM=BDVSP6&mkt=zh-cn

features is limited for a given page. Additionally, some features

can be referred by multiple scoring rules. A feature may be not

only present in a positive rule but also in a negative rule. Directly

removing the features in positive rules may also result in some

negative rules losing their efficacy.

To this end, we design a search-based method to automatically

select proper bad features for a given page. Specifically, we

implement a script to compute the contribution of one feature or a

set of features to the final score, by removing the feature or the set

from the page and re-computing the score. For a given page, we

apply the script to all its recovered features to search for a feature

or a set of features whose contribution is enough for the

exploitation. In other words, after removing the feature or the set

of features, the score of the page will become lower than the

threshold, allowing it to be classified as a legitimate page.

With the method, we successfully find proper bad features for

every test page respectively. By eliminating corresponding bad

features from the pages respectively, all test pages (100%) can

evade the classification and be normally rendered by Chrome.
Take the phishing page shown in Figure 4 as an example. We find

four bad term features BT1 ~ BT4 for the page and eliminate them

with some obfuscation techniques, such as changing a word from

singular to plural form. As a result, we successfully reduce its

score from 0.9986 to 0.4591 and dress it up as a legitimate page.

In the experiment, we find that removing at most five bad features

is enough to make the page evade the classifier. On average, 3.1

bad DOM features are required.

5. MITIGATION
Google developers have discussed the potential adversarial attacks

that their server-side phishing page classifier might encounter [58].

They believe that possible attacks on the classifier are either

limited or expensive. From their points of view, the adversary

who tries to evade the classifier by disguising the phishing page as

a legitimate one cannot preserve both its utility and visual

similarity at the same time. However, the assumption is incorrect

to the client-side classifier. Thanks to the cracking results, we can

purposely introduce some easy-to-hide good features to evade

GPPF with a very low cost. For example, we are able to make the

newly added term features invisible by setting their color to be the

same as the background color of the target page.

In practical applications, the phishing page classifier is proved to

be a very valuable tool against phishing attacks under the non-

adversarial environment. Tens of thousands phishing sites are

detected by Safe Browsing per week [7]. To this end, the

developers may want to improve its robust as well as change the

architecture as little as possible. A natural and direct idea is to

select the features difficult to be recovered by brute force attacks.

For example, the developers can just select the comparative long

phrases, 5-word phrases or even longer, as the term features. This

would result in a combinatorial explosion when the adversary

performs a blind brute force attack for cracking. The computation

of enumerating and hashing all possible compounds of five words

is unacceptable. Unfortunately, this idea is not effective enough if

the adversary is aware of the feature extraction method. In fact,

the adversary can still reverse engineer sufficient features by

collecting appropriate page-related data as test cases to perform

collision attacks. The adversary can take the data as a web page to

extract the possible word sequences according to the feature

extraction method and then hash the sequences to check whether

they are term features. For a concrete feature extraction method,

the amount of sequences is actually limited regardless of how long

the sequence is. Given appropriate test cases, the adversaries have

a fair chance to find sufficient collision instances. As presented in

Section 3.2.2, we recover 292 (67.9%) term features only using

seven full-text corpora in 8.8 hours. These features are already

enough for evasion attacks.

Based on the above discussions, we can learn that the most

effective form of defense is to essentially increase the complexity

of reverse engineering the classification model, especially the

semantics of features. A direct approach is to convert the classifier

to a closed-source component of the system. This will improve the

security of the classifier to some extent. The adversary cannot

easily understand the implementation of the classifier by reading

its source code. However, it is not enough when the adversary

leverages some modern analysis techniques, e.g., [11][24][51][56],

to extract exploitable knowledge from binary-format software. A

more sophisticated approach is to employ the code obfuscation

technique to conceal the logic of the classifier as far as possible.

Although the complexity and the cost of analyzing code are

remarkably improved, cracking still cannot be thoroughly

prevented by using code obfuscation. In fact, some deobfuscation

techniques have been developed to reverse engineering obfuscated

code [55][59]. Because the client-side classifier does run in the

environment may be completely controlled by adversaries, they

always can find a way to observe its running and gather

exploitable information.

In conclusion, we believe that how to protect the client-side

classifiers still remains an open problem.

6. DISSCUSSION
In this study, we present an attack methodology, classifiers

cracking, aiming at client-side classifiers and successfully

demonstrate its effectiveness with a widely-used classifier, GPPF.

In theory, the methodology is generic and applicable to other

client-side classifiers. However, when applying the methodology

to a specific classifier, we need to develop a specially designed

crack techniques according to its implementation. In fact, there

are many classifiers equipped with different classification

algorithms, e.g., [8][38]. To further demonstrate the security

challenges brought by classifiers cracking, in the future, we will

pay attention to some other types of classifiers and investigate

their security from the point of cracking. These classifiers may

take security into consideration to different extents and be

deployed in different ways. More reverse engineering techniques

may need to be employed to crack them.

As described in Section 3 and 4, we eventually completely reverse

engineer 84.8% scoring rules of the GPPF classification model,

which is proved to be sufficient for launching effective evasion

attacks. However, in fact, we can get better cracking results by

introducing more appropriate corpora. For example, using a

comprehensive database of history phishing pages can decrypt

more term features. Sometimes, the adversary may want to get

perfect knowledge about a classifier for some special purposes,

such as stealing its techniques to reengineer a new classifier.

Besides, it needs to be emphasized that some seemingly unrelated

dataset, e.g., a corpus, can also be leveraged to compromise the

security of client-side classifiers. The developers should collect as

much as possible datasets, especially publicly available, to

evaluate the robust of their classifier before releasing it.

We have got sufficient knowledge about the GPPF classification

model by cracking it. This allows us to easily find exploitable

good and bad features for a given page. In this study, it is not

necessary to design a sophisticated algorithm to more effectively

352

and efficiently find exploitable features. However, if the adversary

has only limited knowledge about the target classifier, she can

develop a powerful algorithm to discover exploitable features.

Furthermore, in theory, combining the good features insertion and

bad features elimination can produce better performance. It is also

helpful for the adversary to attack a classifier. To this end,

developers should prevent the information of their classifier from

being inferred by the adversary as far as possible.

7. RELATED WORK
Many existing studies have paid much attention to the security of

classifiers, and the arm race between adversaries and defenders

will never end.

Attacks on Classifiers. The attacks can be categorized into two

types by their influences: causative attacks and exploratory attacks.

In causative attacks, the adversary has the chances to affect the

training process by contaminating training data (e.g., injecting

many specially crafted samples). This kind of attack has been

used to degrade the performance of a lot of learning-based

applications, such as biometric authentication [17][19], spam

filtering [44], and network intrusion detection [34][49]. In [17], a

method is proposed to mislead an adaptive biometric system to

perform self-update by submitting a proper sequence of spoofed

biometric traits to the sensor and cause a misclassification

eventually. A further work [19] reveals that poisoning attacks can

be used to compromise face templates in a more general case.

Another study [44] succeeds in exploiting machine learning to

compromise a spam filter by manipulating the filter’s training data.

They proposed two kinds of poisoning attacks by inserting

different sets of words into attack emails: dictionary attacks inject

words indicative of legitimate emails to increase

misclassifications, and focused attack tries to introduce words to

have the filter block one specific kind of emails (e.g., emails from

business rivals). Besides, the intrusion detection systems may also

be vulnerable to causative attacks [21][34][49]. The adversary can

inject carefully crafted malicious traffic samples into training

dataset and finally force the classifier to learn a wrong model of

the normal traffic.

In exploratory attacks, the adversary tries to figure out as much

knowledge (e.g., type of classifier, features, and threshold) of the

classifiers as possible to effectively evade them. Exploratory

attacks have been applied to various security applications. Lowd

and Meek conduct an attack that minimizes a cost function [40].

They further propose attacks against statistical spam filters that

add the words indicative of non-spam emails to spam emails [39].

The same strategy is employed in [44]. In [41], a simple but

effective attack methodology called reverse mimicry is designed

to evade structural PDF malware detection systems. The main

idea is injecting malicious content into a legitimate PDF while

introducing minimum differences within its structure. The related

experiments show that some very popular classification

algorithms (e.g., SVMs and neural networks) can also be evaded

with this method. A recent work [52] uses PDFRATE, an online

learning-based system for detection of PDF malware, as a case to

investigate the effectiveness of evasion attacks. The study

reconstructs a similar classifier through training one of the

publicly available datasets by a few deduced features, and then

evades PDFRATE by insertion of dummy content into PDF files.

Additionally, in [18], a simple algorithm is proposed for evasion

of classifiers with differentiable discriminant functions. The study

empirically demonstrated that very popular classification

algorithms, e.g., SVMs and neural networks, can still be evaded

with high probability even if the adversary can only learn limited

knowledge.

Unfortunately, to our best knowledge, all of the existing studies

don't pay any special attention to the client-side classifiers. As

demonstrated in this study, the client-side classifiers have a larger

attack surface and hence suffer from a larger number of potential

attacks. The main contribution of this paper is revealing a very

serious security threat to client-side classifiers. By employing

some traditional reverse engineering and cracking techniques,

such as the dynamic debugging and collision attacking, the

adversary can extract enough knowledge from the implementation

of the classifier to launch effective evasion attacks.

Hash Cracking. Hash cracking technique is mainly used in

inverting hashed passwords, including brute force attacks,

dictionary attacks, and rainbow table attacks. In the brute force

attack [1][35], the cracker will compute the hashes for all possible

password candidates and compare them with the given hashed

password. If there is a matched one, the plaintext of the password

is found. Although it is easy to implement, the brute force attack

is time-consuming. The dictionary attack [42][43][57] is a more

intelligent variant of a straight brute force approach. It utilizes a

dictionary of words to compute hashes and compares them with

the given hash. This attack is usually fairly efficient and requires

much less time than a brute force. However, if the password is not

present in the dictionary, the attack will fail. The rainbow table

attack [45] is a more sophisticated hash cracking method. Cracker

will pre-compute all plaintext/hash pairs and store them in a file

called rainbow table. The computation is also time-consuming.

However, given the rainbow table, the cracker can immediately

find the plaintext of a hashed password via a table query.

In this paper, we take some corpora as the cracking dictionaries to

recover as many hashed model features as possible. Besides, to

improve the recovery rate, we further launch a brute-force attack

to find model terms by generating possible terms with a western

alphabet and a set of CJK ideographs.

Dynamic analysis. Some existing approaches adopt dynamic

analysis techniques to reverse-engineer the implementation of a

software. Polyglot [24] uses dynamic binary analysis to extract the

protocol message format used by a target software. Howard [51]

instruments the QEMU [11] processor emulator to extract critical

data structures from a software. TaintScope [56] performs a

differential analysis on the branch instruction traces of program

executions with well-formed and malformed inputs, to identify the

checksum check point.

Since Chromium is an open-source project, we can compile it to

get a debug version with symbols of functions, variables and data

structures. As such, we can directly use a debug tool (e.g., gdb) to

locate the scoring point and identify critical data structures of the

phishing model. If the target system to be cracked is not open-

source, crackers can employ the above dynamic analysis

techniques to achieve the same goal.

Defenses. Many countermeasures against evasion attacks have

been proposed, such as using game theory [22][23] or

probabilistic models [16][48] to predict attack strategy to

construct more robust classifiers, employing multiple classifier

systems (MCSs) [13][14][15] to increase the difficulty of evasion,

and optimizing feature selection [30][36] to make the features

evenly distributed.

Game-theoretical approaches [22][23] model the interactions

between the adversary and the classifier as a game. The

353

adversary’s goal is to evade detection by minimally manipulating

the attack instances, while the classifier is retrained to correctly

classify them. However, the retraining procedure is very

expensive in the situation where the classifier is cracked. The

adversary always can construct an attack instance to evade the

current classifier. Similarly, for approaches based on probabilistic

models [16][48], the adversary can also easily construct a hard-to-

predict attack instance based on cracked knowledge.

MCSs [13][14][15], as the name suggests, uses multiple classifiers

rather than only one to improve classifier’s robustness. The

adversary who wants to effectively evade the classification has to

fight with more than one classifier. Although MCSs actually

increases the workload of classifiers cracking, it doesn’t improve

the security of client-side classifiers fundamentally.

In [30], the method weight evenness via feature selection

optimization is proposed. By appropriate feature selection, the

weight of every feature is evenly distributed, thus the adversary

has to manipulate a larger number of features to evade detection.

In [36], the features are reweighted inversely proportional to their

corresponding importance, making it difficult for the adversary to

exploit the features. However, given sufficient knowledge, the

adversary can easily find enough exploitable features. Besides, in

many cases, the adversary can hide the manipulation very deeply

without attracting the attention. For example, a phisher can

leverage various HTML techniques to make good features

invisible.

These defense techniques are built on the assumption that the

classification model is kept confidential to the adversary or can be

updated timely. However, when the adversary learned sufficient

knowledge by cracking classifiers, they can easily and quickly

construct effective evasion attacks targeted to the defense

techniques.

8. CONCLUSIONS
In this paper, we presented a new attack methodology, classifier

cracking, for evading the client-side classifier. Our approach is

different from existing attack methods. We leverage various

reverse engineering techniques to directly extract desirable

knowledge from client-side classifier for launching evasion

attacks. Our study took GPPF, a learning-based filter for phishing

pages deployed in Chrome as a case to study, which owns over

one billion users. Employing various reverse engineering

techniques, we successfully cracked the GPPF model and

completely recovered 84.8% encrypted scoring rules. Based on

the information, we developed two kinds of evasion attacks: good

features insertion and bad features elimination. The latest 100 real

phishing pages collected from PhishTank were taken as the targets

of evaluation. The attack experiments showed that we can easily

manipulate all the phishing pages (100%) to make them

successfully evade the detection of GPPF in the latest version of

Chrome. Additionally, we analyzed the protection methods that

can be potentially applied to client-side classifiers, but

regretted to find that it is difficult to thoroughly prevent the client-

side classifiers from being cracked using the present technology.

Our research revealed an important fact that the client-side

classifiers have a larger attack surface and hence suffer from a

larger number of potential attacks. In the future, we will further

research potential defense techniques to develop more robust

client-side classifier framework.

9. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their insightful comments. The work is supported by National

Natural Science Foundation of China (NSFC) under grants

61170240, 91418206 and 61472429, and National Science and

Technology Major Project of China under grant 2012ZX01039-

004.

10. REFERENCES
[1] Brute Force Attack. https://en.wikipedia.org/wiki/Brute-

force_attack

[2] Google has over a billion users of Android, Chrome,

YouTube, and search.

http://www.theverge.com/2015/5/28/8676599/google-io-

2015-vital-statistics

[3] PhishTank. https://www.phishtank.com/

[4] Phishing Attack Trends Report of the 4th Quarter in 2014.

http://docs.apwg.org/reports/apwg_trends_report_q4_2014.p

df

[5] Design Documents of Safe Browsing.

http://www.Chromium.org/developers/design-

documents/safebrowsing

[6] Market share of popular web browsers from Aug 2014 to

Aug 2015. http://gs.statcounter.com/#browser-ww-monthly-

201408-201508

[7] Google’s Safe Browsing service protects 1 billion Chrome,

Firefox, and Safari users from malware and phishing.

http://thenextweb.com/google/2013/06/25/googles-safe-

browsing-service-now-protects-1-billion-Chrome-firefox-

and-safari-users-from-malware-and-phishing/

[8] I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis,

C. D. Spyropoulos, and P. Stamatopoulos. Learning to filter

spam e-mail: A comparison of a naive bayesian and a

memory-based approach. In Proceedings of the 4th PKDD’s

Workshop on Machine Learning and Textual Information

Access. 2000.

[9] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D.

Tygar. Can machine learning be secure?. In Proceedings of

the 2006 ACM Symposium on Information, Computer and

Communications Security. ASIACCS’2006. ACM, 16-25.

[10] M. Barreno, B. Nelson, A. Joseph, and J. Tygar. The security

of machine learning. Machine Learning. 2010. Springer,

81(2): 121-148.

[11] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.

USENIX Annual Technical Conference, FREENIX Track.

2005. 41-46.

[12] B. Biggio, G. Fumera, and F. Roli. Adversarial pattern

classification using multiple classifiers and randomization. In

Proceedings of the 2008 Joint IAPR International Workshop

on Structural and Syntactic Pattern Recognition. SSPR’2008.

Springer, 5342: 500-509.

[13] B. Biggio, G. Fumera, and F. Roli. Multiple classifier

systems for adversarial classification tasks. In Proceedings of

the 8th International Workshop on Multiple Classifier

Systems. MCS’2009. Springer, 5519: 132-141.

[14] B. Biggio, G. Fumera, and F. Roli. Multiple classifier

systems for robust classifier design in adversarial

environments. International Journal of Machine Learning

and Cybernetics. 2010. Springer, 1(1-4): 27-41.

354

http://cn.bing.com/dict/search?q=regret&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=to&FORM=BDVSP6&mkt=zh-cn
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Brute-force_attack
http://www.theverge.com/2015/5/28/8676599/google-io-2015-vital-statistics
http://www.theverge.com/2015/5/28/8676599/google-io-2015-vital-statistics
https://www.phishtank.com/
http://docs.apwg.org/reports/apwg_trends_report_q4_2014.pdf
http://docs.apwg.org/reports/apwg_trends_report_q4_2014.pdf
http://www.chromium.org/developers/design-documents/safebrowsing
http://www.chromium.org/developers/design-documents/safebrowsing
http://gs.statcounter.com/#browser-ww-monthly-201408-201508
http://gs.statcounter.com/#browser-ww-monthly-201408-201508
http://thenextweb.com/google/2013/06/25/googles-safe-browsing-service-now-protects-1-billion-Chrome-firefox-and-safari-users-from-malware-and-phishing/
http://thenextweb.com/google/2013/06/25/googles-safe-browsing-service-now-protects-1-billion-Chrome-firefox-and-safari-users-from-malware-and-phishing/
http://thenextweb.com/google/2013/06/25/googles-safe-browsing-service-now-protects-1-billion-Chrome-firefox-and-safari-users-from-malware-and-phishing/

[15] B. Biggio, G. Fumera, and F. Roli. Multiple classifier

systems under attack. In Proceedings of the 9th International

Workshop on Multiple Classifier Systems. MCS’2010.

Springer, 5997: 74-83.

[16] B. Biggio, G. Fumera, and F. Roli. Design of robust

classifiers for adversarial environments. In Proceedings of

the 2011 IEEE International Conference on Systems, Man,

and Cybernetics (SMC). SMC’2011. IEEE, 977-982.

[17] B. Biggio, G. Fumera, F. Roli, and L. Didaci. Poisoning

adaptive biometric systems. In Proceedings of the 2012 Joint

IAPR International Workshop on Structural and Syntactic

Pattern Recognition. SSPR’2012. Springer, 7626: 417-425.

[18] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P.

Laskov, G. Giacintoet , and F. Roli. Evasion attacks against

machine learning at test time. In Proceedings of European

Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases. ECML-

PKDD’2013. Springer, 8190: 387-402.

[19] B. Biggio, L. Didaci, G. Fumera, and F. Roli. Poisoning

attacks to compromise face templates. In Proceedings of the

6th IAPR International Conference on Biometrics. ICB’2013.

IEEE, 1-7.

[20] B. Biggio, I. Pillai, S. R. Bulò, D. Ariu, M. Pelillo, and F.

Roli. Is data clustering in adversarial settings secure?. In

Proceedings of the 6th ACM Workshop on Artificial

Intelligence and Security. AISec’2013. ACM, 87-98.

[21] B. Biggio, G. Fumera, and F. Roli. Security evaluation of

pattern classifiers under attack. IEEE Transactions on

Knowledge and Data Engineering. TKDE’2014. IEEE, 26(4):

984-996.

[22] M. Brückner and T. Scheffer. Stackelberg games for

adversarial prediction problems. In Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. KDD’2011. ACM, 547-555.

[23] M. Brückner, C. Kanzow, and T. Scheffer. Static prediction

games for adversarial learning problems. The Journal of

Machine Learning Research. JMLR’2012. MIT Press, 13(1):

2617-2654.

[24] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:

Automatic Extraction of Protocol Message Format using

Dynamic Binary Analysis. In Proceedings of the 14th ACM

Conference on Computer and Communications Security.

CSS’2007. ACM, 317-329.

[25] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a

fast filter for the large-scale detection of malicious web

pages. In Proceedings of the 20th International Conference

on World Wide Web. WWW’2011. ACM, 197-206.

[26] Y. Cao, W. Han, and Y. Le. Anti-phishing based on

automated individual white-list. In Proceedings of the 4th

ACM Workshop on Digital Identity Management. DIM’2008.

ACM, 51-60.

[27] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell.

Client-side defense against web-based identity theft. In

Proceedings of the Network and Distributed System Security

Symposium. NDSS’2004.

[28] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma.

Adversarial classification. In Proceedings of the 10th ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining. KDD’2004. ACM, 99-108.

[29] A. Y. Fu, W. Liu, and X. Deng. Detecting phishing web

pages with visual similarity assessment based on earth

mover’s distance (EMD). IEEE Transactions on Dependable

and Secure Computing. TDSC’2006. IEEE, 3(4): 301-311.

[30] A. Globerson and S. Roweis. Nightmare at test time: robust

learning by feature deletion. In Proceedings of the 23rd

International Conference on Machine Learning. ICML’2006.

ACM, 353-360.

[31] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring

and detecting fast-flux service networks. In Proceedings of

the Network and Distributed System Security Symposium.

NDSS’2008.

[32] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, and J. D.

Tygar. Adversarial machine learning. In Proceedings of the

4th ACM Workshop on Artificial Intelligence and Security.

AISec’2011. ACM, 43-58.

[33] M. Khonji, Y. Iraqi, and A. Jones. Phishing detection: a

literature survey. Communications Surveys & Tutorials. 2013.

IEEE, 15(4): 2091-2121.

[34] P. Kloft and M. Laskov. A “poisoning” attack against online

anomaly detection. In Proceedings of Neural Information

Processing Systems (NIPS) Workshop on Machine Learning

in Adversarial Environments for Computer Security. 2007.

[35] L. R. Knudsen, X. Lai, and B. Preneel. Attacks on Fast

Double Block Length Hash Functions. Journal of Cryptology.

1998. Springer, 11(1): 59-72.

[36] A. Kołcz and C. H. Teo. Feature weighting for improved

classifier robustness. In Proceedings of the 6th Conference

on Email and Anti-Spam. CEAS’2009.

[37] P. Likarish, D. Dunbar, and T. E. Hansen. B-apt: Bayesian

anti-phishing toolbar. In Proceedings of IEEE International

Conference on Communications. ICC’2008. IEEE, 1745-

1749.

[38] O. Linda, T. Vollmer, and M. Manic. Neural network based

intrusion detection system for critical infrastructures. In

Proceedings of the 2009 International Joint Conference on

Neural Networks. IJCNN’2009. IEEE, 1827-1834.

[39] D. Lowd and C. Meek. Good word attacks on statistical spam

filters. In Proceedings of the 2nd Conference on Email and

Anti-Spam. CEAS’2005.

[40] D. Lowd and C. Meek. Adversarial learning. In Proceedings

of the 11th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD’2005. ACM,

641-647.

[41] D. Maiorca, I. Corona, and G. Giacinto. Looking at the bag is

not enough to find the bomb: an evasion of structural

methods for malicious pdf files detection. In Proceedings of

the 2013 ACM Symposium on Information, Computer and

Communications Security. ASIACCS’2013. ACM, 119-130.

[42] R. Morris, and K. Thompson. Password security: A case

history. Communications of the ACM. 1979. ACM, 22(11):

594-597.

[43] A. Narayanan, and V. Shmatikov. Fast Dictionary Attacks on

Passwords Using TimeSpace Tradeoff. In Proceedings of the

12th ACM Conference on Computer and Communications

Security. CCS’2005. ACM, 364-372.

[44] B. Nelson, M. Barreno, F.J. Chi, A. D. Joseph, B. I. P.

Rubinstein, U. Saini, C. Sutton, J. D. Tygar, and K. Xia.

355

Exploiting machine learning to subvert your spam filter. In

Proceedings of the 1st USENIX Workshop on Large-Scale

Exploits and Emergent Threats. LEET’2008. USENIX, 1-9.

[45] P. Oechslin. Making a Faster Cryptanalytic Time-Memory

Trade-Off. In Proceedings of 23rd Annual International

Cryptology Conference. CRYPTO’2003. Springer, 2729:

617-630.

[46] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta.

Phishnet: predictive blacklisting to detect phishing attacks. In

Proceedings of the 29th Conference on Information

Communications. INFOCOM’2010. IEEE, 1-5.

[47] M. A. Rajab, L. Ballard, N. Lutz, P. Mavrommatis, and N.

Provos. CAMP: Content-agnostic malware protection. In

Proceedings of the Network and Distributed System Security

Symposium. NDSS’2013.

[48] R. N. Rodrigues, L. L. Ling, and V. Govindaraju. Robustness

of multimodal biometric fusion methods against spoof

attacks. Journal of Visual Languages & Computing. 2009.

Elsevier, 20(3): 169-179.

[49] B. I. P. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.

Lau, S. Rao, N. Taft, and J. D. Tygar. Stealthy poisoning

attacks on PCA-based anomaly detectors. ACM

SIGMETRICS Performance Evaluation Review. 2009. ACM,

37(2): 73-74.

[50] G. Salton and M. J. McGill. Introduction to modern

information retrieval. 1983. McGraw-Hill.

[51] A. Slowinska, T. Stancescu, and H. Bos. Howard: A

Dynamic Excavator for Reverse Engineering Data Structures.

In Proceedings of the Network and Distributed System

Security Symposium. NDSS’2011.

[52] N. Šrndić and P. Laskov. Practical evasion of a learning-

based classifier: A case study. In Proceedings of the 2014

IEEE Symposium on Security and Privacy. SP’2014. IEEE,

197-211.

[53] F. Toolan and J. Carthy. Phishing detection using classifier

ensembles. eCrime Researchers Summit. eCRIME’2009.

IEEE, 1-9.

[54] K. Tretyakov. Machine learning techniques in spam

filtering. Data Mining Problem-oriented Seminar. 2004.

MTAT, 60-79.

[55] S. Udupa, S. Debray, and M. Madou. Deobfuscation:

Reverse engineering obfuscated code. In Proceedings of the

12th Working Conference on Reverse Engineering.

WCRE’2005. IEEE.

[56] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A

checksum-aware directed fuzzing tool for automatic software

vulnerability detection. In Proceedings of the 2010 IEEE

Symposium on Security and Privacy. SP’2010. IEEE, 497-

512.

[57] W. Weir, S. Aggarwal, B. D. Medeiros, and B. Glodek.

Password Cracking Using Probabilistic Context-Free

Grammars. In Proceedings of the 2009 IEEE Symposium on

Security and Privacy. SP’2009. IEEE, 391-405.

[58] C. Whittaker, B. Ryner, and M. Nazif. Large-scale automatic

classification of phishing pages. In Proceedings of the

Network and Distributed System Security Symposium.

NDSS’2010.

[59] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray.

A generic approach to automatic deobfuscation of executable

code. In Proceedings of the 2015 IEEE Symposium on

Security and Privacy. SP’2015. IEEE.

[60] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: a content-

based approach to detecting phishing web sites. In

Proceedings of the 16th International Conference on World

Wide Web. WWW’2007. ACM, 639-648.

[61] H. Zhang, G. Liu, T. Chow, and W. Liu. Textual and visual

content based anti-phishing: A bayesian approach. IEEE

Transactions on Neural Networks. 2011. IEEE, 22(10):

1532-1546.

356

