
 

 

Cracking Classifiers for Evasion: A Case Study on the 
Google’s Phishing Pages Filter 

 
Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, Gang Yang 

Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE, Beijing 100872, P. R. China 
School of Information, Renmin University of China, Beijing 100872, P. R. China 

{liangb, sumiaoqiang, youwei, wenchang, yanggang}@ruc.edu.cn 

   

ABSTRACT 

Various classifiers based on the machine learning techniques have 

been widely used in security applications. Meanwhile, they also 

became an attack target of adversaries. Many existing studies have 

paid much attention to the evasion attacks on the online classifiers 

and discussed defensive methods. However, the security of the 

classifiers deployed in the client environment has not got the 

attention it deserves. Besides, earlier studies only concentrated on 

the experimental classifiers developed for research purposes only. 

The security of widely-used commercial classifiers still remains 

unclear. In this paper, we use the Google’s phishing pages filter 

(GPPF), a classifier deployed in the Chrome browser which owns 

over one billion users, as a case to investigate the security 

challenges for the client-side classifiers. We present a new attack 

methodology targeting on client-side classifiers, called classifiers 

cracking. With the methodology, we successfully cracked the 

classification model of GPPF and extracted sufficient knowledge 

can be exploited for evasion attacks, including the classification 

algorithm, scoring rules and features, etc. Most importantly, we 

completely reverse engineered 84.8% scoring rules, covering most 

of high-weighted rules. Based on the cracked information, we 

performed two kinds of evasion attacks to GPPF, using 100 real 

phishing pages for the evaluation purpose. The experiments show 

that all the phishing pages (100%) can be easily manipulated to 

bypass the detection of GPPF. Our study demonstrates that the 

existing client-side classifiers are very vulnerable to classifiers 

cracking attacks. 
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1. INTRODUCTION 
Machine learning techniques have been commonly adopted in 

security applications. Various classifiers were trained for 

detecting malicious web pages [25], spam [54], phishing [58], 

malware [47], etc. Not surprisingly, the classifiers themselves 

have also become an attack target of adversaries. The adversary 

can attempt to fool classifiers by purposely modifying their 

behaviors. For example, a spammer can manipulate the spam 

mails to evade spam filters by inserting some good words 

indicative of legitimate mails or misspelling bad words indicative 

of spam mails [39]. This requires the classifier to be able to resist 

potential attacks. 

Many existing studies have paid attention to the security of 

classifiers. According to the taxonomy of attacks against 

classifiers [9][10][32], the influences of attacks on the classifier 

are categorized into two types: (1) causative attacks interfere 

training process with control over the training data to downgrade 

the performance of the classifier, and (2) exploratory attacks 

exploit the knowledge of the trained classifier to cause 

misclassifications without affecting the training process.  

In causative attacks, the adversary has the opportunity to inject 

(poison) specially crafted samples during the collection of training 

samples. Such attacks will cause the learner to misclassify 

security violations (i.e., false negatives) [17][18][19][20]. For 

example, a poisoning attack method against support vector 

machines (SVM) is presented in [18]. It was demonstrated that the 

SVM’s classification accuracy can be largely impacted by feeding 

malicious training data. Fortunately, in practice, the adversary 

doesn’t always have an opportunity to effectively control over 

training data. In fact, the training process of most classifiers, 

especially the ones deployed in commercial products, is not open 

to the public. The adversary needs to fight with trained classifiers. 

For example, the Google’s server-side phishing page classifier is 

developed in an offline training process [58], whose training 

dataset consists of millions of samples from various domains. In 

this case, it is very difficult, if not impossible, for an adversary to 

craft sufficient amounts of malicious inputs to effectively poison 

the training process. 

On the other hand, exploratory attacks attempt to learn enough 

knowledge about the trained classifiers and to find a way to evade 

the classification. Some existing studies on evasion attacks made 

the unrealistic assumption that the adversary has perfect 

knowledge of classification model [28]. In practice, the adversary 

often needs to send some probes (e.g., membership queries) to the 

classifier and then observe its response so as to deduce desirable 

knowledge [25], perform an adversarial learning to get sufficient 

knowledge about the target classifier to construct evasion attacks 

[40], or reconstruct an imitation of the target classifier based on 

the available public information (e.g., training data) to gain key 

knowledge [51]. In theory, the success of evasion attacks heavily 
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depends on the amount of knowledge possessed by the adversary. 

Especially, the knowledge about features contributes most to the 

success of the attacks as discussed in [52]. Accordingly, some 

mitigation techniques have been proposed to against evasion 

attacks by either reducing the leakage of exploitable knowledge as 

much as possible [9][11] or making the learning method more 

robust to evasion [16][36]. 

However, existing studies often overlooked an important fact that 

some classifiers are deployed in the client environment that is 

fully controlled by users (client-side classifier for short) rather 

than in a remote server. For example, the classifiers for filtering 

spam emails and phishing pages are often embedded in the email 

clients or web browsers respectively. In the scenario, the 

classifiers face more serious security challenges. Instead of 

collecting the information via indirectly observations, the 

adversaries can freely and directly analyze the implementation 

and configuration of the classifiers to evade them. Consequently, 

it should be investigated carefully that how an adversary can learn 

the exploitable knowledge from a classifier deployed in the user 

clients and how effectively the knowledge are exploited in 

launching an evasion attack. Additionally, the existing studies 

generally focused on the experimental classifiers developed for 

research purposes only. The security of widely-used classifiers in 

commercial products still remains unclear. From a practical point 

of view, evaluating the security of commercial classifiers is more 

significant for protecting end users from evasion attacks. 

To this end, in this study, we investigate the security challenges 

for the client-side classifiers via a case study on the Google’s 

phishing pages filter (GPPF), a very widely-used classifier for 

automatically detecting unknown phishing pages. The classifier is 

integrated within the Chrome browser and is invoked for every 

web page visited by users to check whether it is phishing. Due to 

the popularity of Chrome, there are over one billion users using 

GPPF against potential phishing attacks [2]. It is also probably the 

most widely-used classifier as we know. If the adversary can 

easily evade it, countless users will be exposed to out-of-control 

phishing attacks. 

In this paper, we demonstrate a practical and effective attack 

methodology, named classifiers cracking, in which various 

reverse engineering techniques are leveraged to extract sufficient 

knowledge from the client-side classifier for launching evasion 

attacks. Specifically, via some static and dynamic analysis on the 

implementation of Chromium (the development version of 

Chrome), we successfully extract the classification model of GPPF 

from Chromium. The extracted model mainly involves the 

classification algorithm, the 2,130 scoring rules and their 

corresponding weights, as well as the 1,009 hashed features 

composing the scoring rules. With the help of some public 

datasets (e.g., large corpora), we then launch a collision attack to 

the hashed features and decrypt 815 (80.8%) of them  only within 

a dozen of hours. As a result, we can completely reverse engineer 

1807 (84.8%) scoring rules, covering most of the high-weighted 

rules. Additionally, 196 (9.2%) scoring rules  are partially cracked 

and can also be exploited to compromise the classification. There 

are only 127 (6.0%) rules  surviving from the collision attack. 

Based on the cracked information, we design two kinds of evasion 

attacks, i.e., good features insertion and bad features elimination. 

The basic idea behind them is to add or to remove some features 

with remarkable contributions to GPPF scoring into or from the 

target phishing pages to reduce their phishing scores, making the 

computed scores lower than the positive threshold defined by 

GPPF. We evaluate the effectiveness of the attacks on  the 100 

latest real phishing pages collected from PhishTank [3], a famous 

phishing URLs tracking site. The results show that we can easily 

manipulate all the phishing pages under the direction of the 

cracked knowledge, to make them successfully evade the 

detection of GPPF in the latest version of Chrome. 

We also analyze the effectiveness of existing defense techniques 

when applying them to client-side classifiers. To the best of our 

knowledge, there is still lack of a perfect approach to protect 

client-side classifiers from being cracked. We believe that how to 

protect the  client-side classifiers is still an open problem. 

This paper makes the following two main contributions. 

 We propose a new attack methodology, classifiers cracking, 

aiming at the client-side classifiers. The adversary can 

follow it to readily acquire exploitable knowledge from the 

target classifier to launch effective evasion attacks. 

 We successfully crack and evade the GPPF, a commercial 

classifier with over one billion users. It demonstrates that 

the existing client-side classifiers are indeed vulnerable to 

the classifiers cracking attacks.  

2. BACKGROUND 

2.1 Threat Model 
As shown in Figure 1(a), how to classify an instance in a server-

side classifier is often a black-box to the adversary. The adversary 

can only send some queries and analyze responses to learn the 

information about it. In many cases, this is already enough to 

launch an evasion attack. The adversary can construct a 

malformed instance to fool the classifier based on the information 

learned in advance. 

Query 

Response 

Knowledge 

Server-side 

Classifier 

(a) Evading the server-side classifier 

Client-side 

Classifier 

 
 Knowledge 

(b) Evading the client-side classifier 

Figure 1. Threats to classifiers. 
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However, when a classifier is deployed in the client sides, the 

situation may become worse. As shown in Figure 1(b), for a 

client-side classifier, its operations are performed in a white-box. 

The adversary can leverage almost all kinds of analysis techniques, 

such as debugging, disassembling, code analysis, dynamic taint 

tracking, to thoroughly analyze the target classifier. As a result, 

the adversary has an opportunity to get more comprehensive 

knowledge about the classifier so as to develop more sophisticated 

evasion attacks. The malformed instance can be applicable for all 

the users using the classifier. Besides, if the adversary gets perfect 

knowledge about the classifier, she can even reengineer a new 

classifier for commercial purposes. In this study, we assume that 

all the implementation and configuration of the client-side 

classifier are available for the adversary. The adversary can figure 

out the type of classification model, the classification algorithm 

and the feature extraction method by leveraging various 

techniques. Considering the advancement of modern analysis 

techniques, this assumption is reasonable. 

Some client-side classifiers have already introduced some defense 

techniques to prevent the adversary from learning crucial 

information. For example, GPPF employs the cryptography 

technique to protect the classification model. Unfortunately, it is 

proved to be ineffective to against classifiers cracking (discussed 

in Section 3 and 4). 

2.2 Phishing and GPPF 
According to the latest report [4] of Anti-Phishing Working 

Group (APWG), phishing attacks remain widespread: the number 

of unique phishing reports submitted to APWG during Q4 of 2014 

was 197,252, and increased by 18% on top of the 163,333 

received in Q3. To minimize the impact of phishing attacks, a 

variety of methods have been proposed to detect phishing pages, 

involving machine learning [37][53][58] or other techniques 

[26][27][29][31][33][46][60][61]. 

Modern web browsers also provide detection tools to assist end 

users against phishing attacks. In Chrome, Google provides not 

only the blacklists of malicious URLs but also a trained classifier 

(GPPF) which automatically detects phishing pages as a 

countermeasure to the phishing problem [5]. These mechanisms 

serve as a guard when a request comes, and the request URL will 

be checked before the content is allowed to begin loading. The 

URL is checked against two blacklists: malware and phishing. If 

the URL is matched with any one of the two blacklists, Chrome 

will block the request and jump to a warning page as shown in 

Figure 2. More importantly, for the URL not matched in the 

blacklists, Chrome will further invoke GPPF to determine whether 

the URL is legitimate or phishing. In practice, the phishing 

blacklist needs to be updated constantly. The browser may be 

vulnerable to newly created phishing websites. GPPF acts as an 

indispensable role in protecting end users from unknown phishing 

pages. 

In practice, GPPF is trained offline. Google collects massive 

pages from various domains as the training dataset. The 

adversaries have no opportunity to alter the training dataset 

enough to fool the trained classifier to misclassify phishing pages 

as legitimate ones. However, as an internal component of the 

Chrome browser, GPPF is completely deployed and running in the 

user environment. This actually allows the adversary to freely 

analyze its implementation and configurations to construct more 

sophisticated phishing attacks. 

According to the report of StatCounter [6], from Aug 2014 to Aug 

2015, Chrome shared an average of 48.6% market and was the 

most popular web browser. In May 2015, Google announced that 

Chrome has over one billion active users [2]. This means over one 

billion users’ web surfing are protected by GPPF. Hence, we have 

reason to believe that the security breach of GPPF can result in a 

significant risk that should not be neglected. 

3. CRACKING GPPF 
There is very limited public information about the design and 

implementation of GPPF. We choose to directly analyze the 

development version of the Chrome browser, Chromium, to crack 

GPPF. The cracking includes two main steps: (1) extracting the 

classification model of GPPF from Chromium; and (2) decrypting 

the hashed features of the model. It needs to be mentioned that 

some sensitive details of the cracking are intentionally omitted 

to prevent them from being used for malicious purposes. 

3.1 Extracting the Classification Model 
3.1.1 Classification Algorithm 
The multi-process architecture that Chrome/Chromium adopts 

helps it to be more robust. According to a very brief description 

[5], we can know that Browser process will periodically fetch an 

updated model from Google’s server and send it to every Render 

process via an IPC channel. This allows the classification to be 

done in the Render process, which will score the request page to 

tell whether it is phishing or not. 

The reverse engineering technique is employed to extract 

encrypted classification model features from Chromium. Although 

Chromium is an open-source project, it is difficult to directly 

extract the encrypted model only by statically analyzing its source 

code. Instead, we performed a hybrid static and dynamic analysis 

on the Chromium to find the scoring point and extract the 

encrypted model. 

By statically analyzing the source code of Chromium and 

comparing the rendering processes of a phishing page and a 

legitimate page with a debug tool gdb, we locate and confirm the 

GPPF’s scoring function ComputeScore(), which is a method of 

the Scorer class defined in the file scorer.cc. Combining a 

dynamically backward tracking of the execution path started from 

ComputeScore() and a static analysis on the source code, we 

conclude the workflow of the classification. As shown in Figure 3, 

first, the classifier extracts three kinds of page features from the 

current web page in the order of URL, DOM and Term features. 

Second, the collected page features are hashed with the SHA-256 

algorithm and are sent to the function ComputeRuleScore() to 

 

Figure 2. Phishing warning page. 
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compute the rule score for every scoring rule, along with the 

hashed model features. Third, ComputeScore() combines all the 

rule scores to generate a final score for the current page. Finally, 

the score is compared with a predefined threshold (fixed as 0.5). If 

the score is smaller than the threshold, the page will be identified 

as legitimate; otherwise, it will be regarded as a potential phishing 

page. The browser will send its URL to the Safe Browsing servers 

to check the URL against a remote blacklist. The servers may 

comprehensively analyze the page, e.g., feeding it to the internal 

phishing page classifier.  If the response from the Safe Browsing 

servers identifies the URL as phishing, the page will be blocked. 

Consequently, if we can decrease the score of a phishing page, it 

can escape from being checked and analyzed by Google’s servers, 

and be directly regarded as a legitimate one. 

Based on the analysis of the scoring process, we find the GPPF is 

a logistic regression classifier, which uses the following two 

expressions to compute the phishing score for the target page. 

GPPF computes the total score for the page in log odds using the 

expression (1), and uses the normalization expression (2) to 

transform the score in log odds to the final score. 
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According to expression (1), the computing of the log odds of the 

page involves 2,130 scoring rules. Every rule has a weight, 

namely W1 ~ W2130. Except for the first rule, every rule consists of 

one to four (i.e., ni for the ith rule) model features. Before 

computing the rule scores, the page features are first mapped into 

string forms, which will be hashed and compared with the model 

features. For every rule, the classifier creates a set of feature 

values (i.e., Vi, 1 ~ Vi, ni) for all matched model features. For 

Boolean feature, True is converted to 1.0 and False is converted 

to 0.0. The continuous features are scaled to be between 0.0 and 

1.0. If a model features of the rule is absent from the target page, 

its feature value will be set to 0.0. The score of the rule will be 

computed by combining the product of all the feature values and 

its weight. Finally, the log odds of the page will be produced by 

summing up all the rules scores.  

To crack the classification model, we need to recover the weight 

and model features for every scoring rule. The rule weight can be 

collected by debugging the Render process. We set a breakpoint 

in ComputeRuleScore(), in which an extractor written in gdb script 

is invoked to read the weight information from the rule objects in 

the memory and save them in a file. In a similar way, we also get 

the number of model features for every rule. However, the model 

features are not stored in plaintext; instead, they are hashed with 

the SHA-256 algorithm and are hidden in some complex data 

structures. With carefully tracking of the scoring process, we 

locate their addresses and design a gdb script to extract them from 

rule objects. Take two extracted rules as examples. As listed in 

Table 1, the rule R1494 is a negative rule with two features. This 

kind of rule is used to identify the good property indicative of 

legitimate pages. On the contrary, the rule R2050 is a positive rule, 

including only one feature. Some of the model features are 

presented in different scoring rules. After eliminating duplicates, 

in total, we collect 1,009 individual hashed model features. The 

decryption of them will be described in Section 3.2.  

3.1.2 Model Features 
To decrypt the hashed model features, we should first get clear 

about their semantics and how the page features are mapped into 

them. When computing the score, three kinds of page features will 

be mapped into corresponding model features in different ways. 

URL features. In practice, the phishers often obfuscate their 

URLs to hide suspicious addresses or confuse victims into 

believing they come from a trusted party. Based on the 

observation, in GPPF, some characteristics of the URL are 

employed to identify phishing pages. By analyzing the 

implementation of the classifier, we recover all seven kinds of 

properties of the URL being extracted as the page URL features, 

as shown in Table 2. The page URL features will be converted 

into string forms, which will be hashed and compared with the 

encrypted model URL features during computing scores. 

The page URL features can be categorized into two groups. For 

one of the first group of features (the first three in Table 2), if it is 

present in the URL, a hashed predefined string will be taken as its 

corresponding model feature. Take the first page URL feature as 

an example. If the hostname part of the URL is a numeric IP 

address, the string “UrlHostIsIpAddress” is hashed with the SHA-

256 algorithm to act as the model feature. For the second group of 

Table 1. Scoring rule examples 

Rule Features # Hashed Feature Weight 

R1494 2 

32ffbec120ed857f57f3d7bb37

e6652955b21da7a7efd81d9a9

aa2865173eb35 -1.26907706 
ec92914c7db4483437c84975

8c45cf8bbc6dd0148cdb2f72b

ec0a728e8c91a7d 

R2050 1 

760e98536a709d0fcb9b717eb

542cc5af77bbabf60a501dbf7d

f81a111d1e807 

2.5238471 
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Figure 3. Classification workflow. 
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features (the last four in Table 2), a string in equation form will be 

generated by concatenating a predefined string and the concrete 

URL property. For example, for the fifth page URL feature, if the 

URL is www.phishing.com, the string “UrlDomain=phishing” 

will be hashed as the model feature. In scoring rules, all the URL 

features will be assigned a Boolean feature value, i.e., 1.0 if it is 

present in the page or 0.0 if it is absent. 

The predefined strings used to generate the model feature (shown 

in the third column of Table 2) can be inferred from the 

implementation of the classifier. However, we cannot directly 

recover the complete plaintexts from the hashed model URL 

features in equation forms. In GPPF, there are hundreds of model 

features about the URL in equation forms. Based on their 

semantics discussed above, we design a collision attack to decrypt 

them as far as possible (described in Section 3.2). 

DOM features. GPPF also uses some features about the 

Document Object Model (DOM) elements of the page to tell 

whether it is phishing. As shown in Table 3, we recover all 12 

kinds of DOM features employed by GPPF. In a similar way to 

the URL features, these page DOM feature will also be converted 

to string forms. 

As listed in Table 3, the first seven page DOM features are used to 

identify the structure property of the page, e.g., to determine 

whether the page has some kinds of DOM elements or not. These 

features directly correspond to seven predefined strings 

respectively, which will be hashed and compared with the model 

features. For example, if the page has the <form> element, the 

string “PageHasForms” will be hashed to act as the 

corresponding model feature. The eighth page DOM feature 

records all external domains that the page links to, which will be 

mapped into a string in equation mode for every individual 

external domain. In scoring rules, all the above DOM features will 

be assigned a Boolean feature value. The last four page DOM 

features indicate the fraction of some certain kinds of DOM 

elements. They correspond to four predefined strings. In scoring 

rules, the values of matched features are set to the fraction value 

scaling between 0.0 and 1.0. 

For the DOM features, the related predefined strings can be 

directly recovered and are shown in the third column of Table 3. 

For the eighth page DOM feature, there are many related hashed 

model features in equation forms to identify different external 

domains. A collision attack is performed to recover their 

plaintexts (described in Section 3.2). 

Term features. In GPPF, the terms appearing in the page are 

taken as a kind of feature. A term feature can be a single word or a 

compound of multiple words (at most five).  

When fetching the page terms, the page text is first converted into 

a list of words in lowercase. In practice, using every word of the 

page text to construct features will greatly overburden the learning 

process. Instead, GPPF only handles the words contained in a 

predefined set. A fast hash algorithm, Murmurhash3, is employed 

to implement a word filter. GPPF maintains a list of candidate 

words, which are hashed with the Murmurhash3 algorithm. It was 

generated by collecting the words with the highest term 

frequency-inverse document frequency (TF-IDF) values [50] from 

a large dataset. 

GPPF uses an array named previous_words to construct the page 

term features. The array can store at most five continuous 

candidate words of the page text and is initially empty. The first 

word is fetched and removed from the page word list. Its 

Murmurhash3 value is computed to determine whether it is 

contained in the candidate list or not. If it is a candidate, the word 

will be added in the first element of previous_words. GPPF then 

checks the subsequent word in the list and adds it to the array in 

sequence if it is also a candidate word. Whenever a word is added, 

all words currently contained in the array (at most five) are 

connected and combined with a predefined prefix (“PageTerm=”) 

to construct a phrase. It will be hashed with SHA-256 algorithm 

and compared with the hashed model term features. For example, 

if three continuous words (“abc”, “def”, and “ghi”) have been 

added in the array, the generated corresponding phrases will be 

“PageTerm=abc”, “PageTerm=abc def”, and “PageTerm=abc 

def ghi”. In scoring rules, the values of a term feature will be set 

to 1.0 if there is a matched phrase; otherwise to 0.0. When 

encountering a non-candidate word or the array is full, GPPF will 

Table 2. URL features 

No. Page URL Features Model URL Features 

1 
The hostname is an IP 

address? 
UrlHostIsIpAddress 

2 

The number of other host 

components is greater than 

one? 

UrlNumOtherHostTokens>1 

3 

The number of other host 

components is greater than 

three? 

UrlNumOtherHostTokens>3 

4 Top level domain UrlTld=* 

5 
The first host component 

below top level domain 
UrlDomain=* 

6 Other host components UrlOtherHostToken=* 

7 Path token in URL UrlPathToken=* 

 

Table 3. DOM features 

No. Page DOM Features Model DOM Features 

1 Page has <form> element? PageHasForms 

2 
Page has <input type=text> 

element? 
PageHasTextInputs 

3 
Page has <input type=password> 

element? 
PageHasPswdInputs 

4 
Page has <input type=radio> 

element? 
PageHasRadioInputs 

5 
Page has <input type=checkbox> 

element? 
PageHasCheckInputs 

6 
The number of <script> elements 

in the page is greater than 1? 
PageNumScriptTags>1 

7
The number of <script> elements 

in the page is greater than 6? 
PageNumScriptTags>6

8 
Token feature containing each 

external domain that is linked to 
PageLinkDomain=* 

9 

Fraction of form elements whose 

action points to an external 

domain 

PageActionOtherDomainFreq 

10 

Fraction of links in the page 

which point to an external 

domain 

PageExternalLinksFreq 

11 
Fraction of page links that use 

https 
PageSecureLinksFreq 

12 
Fraction of images whose src 

points to an external domain 
PageImgOtherDomainFreq 
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clear the array, fetch the next word and repeat the above steps 

until the list is empty. 

In GPPF, there are 432 hashed model term features. Every one 

corresponds to a phrase that may consist of one to five words. We 

also use a collision attack to recover their plaintexts. 

3.2 Collision Attacks 
As discussed in Section 3.1, besides 14 features being directly 

recovered in the model extraction, there are still 995 hashed 

model features needed to be decrypted. As shown in Table 4, they 

can be divided into two categories: URL-related and term-related. 

According to their semantics, we design different collision attacks 

to decrypt them. 

3.2.1 Decrypting URL-related Features 
In total, there are 563 hashed URL-related features. So far, it is 

impossible to directly construct a collision for a given SHA-256 

hash value. Instead, we collect four datasets related to URLs to 

perform targeted brute force attacks to find potential collisions as 

much as possible. To prevent the adversary from reproducing the 

attacks, the sources of the datasets are not presented in this paper. 

1) We use a dataset with about 8,000 top level domain names 

to decrypt UrlTld features. We select the name from the set 

one by one and add the prefix “UrlTld=” to generate a test 

case. By hashing it with SHA-256 and comparing the hash 

value with all URL-related features, we successfully recover 

69 UrlTld features with a desktop computer in about five 

minutes. 

2) We collect over 30,000 URLs of history phishing pages, and 

use the different elements of the URLs (e.g., hostname) to 

generate test cases for other four kinds of URL-related 

features. In a similar way as above, 171 features are 

successfully decrypted in about four minutes, including 20 

UrlDomain, 27 UrlOtherHostToken, 17 UrlPathToken and 

107 PageLinkDomain features. 

3) With the URLs of legitimate pages in thousands of top sites, 

we get 3 UrlDomain features and 34 PageLinkDomain 

features in less than one minute. 

4) A very large URL database with over 2,000,000 records is 

leveraged to construct test cases. The decryption process 

takes about 20 minutes. As a result, we get 46 UrlTld, 21 

UrlDomain, 28 UrlOtherHostToken, 201 UrlPathToken and 

107 PageLinkDomain features. 

After removing duplicates, as listed in Table 4, we eventually 

recover a total of 426 (75.7%) URL-related features, including 69 

UrlTld, 21 UrlDomain, 28 UrlOtherHostToken, 201 

UrlPathToken and 107 PageLinkDomain features. 

3.2.2 Decrypting Term-related Features 
GPPF employs 432 hashed term features to detect phishing pages 

based on the page text. In practice, the text of a phishing page can 

be written in various languages. To this end, we collect some full-

text corpora for seven popular natural languages (English, French, 

German, Spanish, Dutch, Chinese and Japanese) to perform 

collision attacks. The basic steps are as follows. 

 According to the semantics of the term feature, we build a 

candidate word filter based on the implementation of the 

Murmurhash3 algorithm in Chromium. With it, we extract 

all possible word sequences consisting of one to five 

continuous candidate words from these corpora respectively. 

 For every word sequence, adding the prefix “PageTerm=” 

to generate a test case.  

 Hashing every test case with SHA-256 and comparing the 

hash value with all term features to find potential collisions. 

Via the above steps, we successfully recover 292 (67.9%) term 

features in various languages in about 8.8 hours. The result is 

detailed in Table 5. 

To further improve the cracking result about term features, we 

also perform blind brute force attacks. We construct an alphabet 

consisting of letters in western languages. With the alphabet, all 

possible combinations of no more than eight letters are produced. 

After filtering, they are used as candidate words to generate test 

cases to find collisions. Surprisingly, in about 16 hours, we 

recover 281 term features only using a part of test cases. In a 

similar way, we also quickly recover 40 term features based on a 

set of Chinese, Japanese and Korean (CJK) ideographs. The 

related results are detailed in Table 6 and Table 7 respectively.  

After combining all above attacks results and removing duplicates, 

we eventually recover a total of 375 (86.8%) term 

features.

 

Table 6. Decrypting the term features with an alphabet

Term Size Candidate Words Decrypted Time 

1-word 1-letter to 8-letter 186 1 minute 

2-word 1-letter to 8-letter 76 8.6 hours 

3-word 1-letter to 6-letter 15 14 minutes 

4-word 1-letter to 4-letter 4 7.4 hours 

Sum 281 16.25 hours 

 

Table 4. Model features needed to be decrypted 

Category Model Features Total Decrypted % 

URL-related 

UrlTld=* 

563 

69 

426 75.7% 

UrlDomain=* 21 

UrlOtherHostToken=* 28 

UrlPathToken=* 201 

PageLinkDomain=* 107 

term-related PageTerm=* 432 375 86.8% 

Sum 995 801 80.5% 

 

Language Decrypted Time 

English 201 1.7 hours 

French 6 2.3 hours 

German 51 3.2 hours 

Spanish 5 1.1 hours 

Dutch 1 6 minutes 

Chinese 27 20 minutes 

Japanese 1 5 minutes 

Sum 292 8.8 hours 

 

Table 5. Decrypting the term features with seven corpora 
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3.3 Result Analysis 
As shown in Table 4, we successfully decrypt 801 (80.5%) model 

features with collision attacks. Together with 14 features being 

recovered in the model extraction, we eventually get the complete 

plaintexts of a total of 815 (80.8%) model features. 

After applying the decryption result to 2,130 extracted scoring 

rules, we can completely reverse engineer 1807 (84.8%) rules 

(every feature of them is decrypted). Besides, there are also 196 

(9.2%) rules we cannot completely crack, but at least one of their 

features is decrypted. Only 127 (6.0%) rules remain confidential, 

no one of their features is cracked. 

According to their weights, GPPF’s scoring rules can be 

categorized into two types: positive rules and negative rules. As 

their names suggest, the former are assigned with a positive 

weight and can cause a rise in the phishing score for the page, 

while the latter are just the opposite. Naturally, the top-weighted 

positive or negative rules will make remarkable contributions to 

tell whether a page is phishing. After analyzing top 100 most 

weighted positive rules, we learn that 66 of them are completely 

reverse engineered, and 20 are partially cracked. For the top 100 

most weighted negative rules, 77 of them are completely reverse 

engineered, and 21 are partially cracked. In other words, given the 

cracking result, the adversary has a great chance to disguise a 

phishing page as a legitimate one by targetedly manipulating its 

content. 

4. EVASION ATTACKS 
In this section, we perform some evasion experiments to 

demonstrate the effectiveness of the classifiers cracking via 

exploiting the recovered knowledge. 

For a specific phishing page, we can infer which features can be  

added or removed to reduce its phishing score based on the 

cracking result presented in Section 3. If a feature can provide 

negative contributions to the phishing scoring for a page, we call 

it as a good feature from the adversary’s point of view. On the 

contrary, if a feature only has positive contributions, we call it a 

bad feature. Correspondingly, we design two kinds of evasion 

attacks, good features insertion and bad features elimination. The 

basic idea behind them is to add or remove appropriate good or 

bad features into or from a phishing page to make its phishing 

score lower than the threshold, resulting in a misclassification. 

The latest 100 real phishing pages are collected from PhishTank 

as the attack dataset. We will try to use the two evasion attacks to 

manipulate them to evade the detection of GPPF. To minimize the 

potential side-effects, we will use pseudonyms when referring to 

specific good features or bad features in the following part of this 

section. 

4.1 Good Features Insertion 
Given a phishing page, there may be many features that can be 

leveraged to reduce its phishing score. By utilizing plenty of 

negative rules having been completely reverse engineered, we can 

adopt a very primitive but effective way to choose desirable good 

features. In fact, we can sort all negative rules only with one 

recovered feature by their weights, and directly use the features of 

top-weighted rules as good feature candidates for all target pages. 

More surprisingly, for many phishing pages in the dataset, we can 

easily convert them to legitimate pages only by inserting just one 

such good feature. Moreover, as detailed in Table 8, we find that 

it is also effective to use only one kind of good feature. For 

example, we can reduce the scores of all test pages to be lower 

than 0.5 by inserting at most six good DOM features into the page. 

On average, 2.2 good DOM features are required. 

It should be noted that a sophisticated adversary can carefully 

introduce the good features to preserve the utility of phishing 

pages.  For example, to prevent the inserted terms from attracting 

the attention, their color can be set as the background color. 

After introducing above good features, the manipulated test pages 

are deployed in our Web server. We then use the latest version of 

Chrome (45.0.2454) to visit them one by one to check whether 

they can successfully evade the detection of GPPF. We find all the 

dressed-up pages (100%) are regarded as legitimate pages and 

display properly in the browser. For example, there is a phishing 

page which imitates the login page of Chase Bank. When 

browsing it, Chrome can successfully block it as a phishing page 

and jump to the warning page as shown in Figure 2. In fact, the 

page is given a very high phishing score 0.9986. However, after 

inserting six good term features T1 ~ T6 into its text, the score is 

reduced to only 0.2784. As a result, the dressed-up page can be 

normally visited with Chrome as shown in Figure 4. 

4.2 Bad Features Elimination 
Compared with the good features insertion, selecting proper bad 

features from a given phishing page to perform an effective 

evasion attack is not a trivial task. The number of available bad 

 
Figure 4. The dressed-up phishing page can evade GPPF. 

Table 7. Decrypting the term features with CJK ideographs 

Term Size Candidate Words Decrypted Time 

1-word 1-ideograph to 

3-ideograph 
31 1 minute 

2-word 1-ideograph to 

3-ideograph 
7 < 1 minute 

3-word 1-ideograph to 

3-ideograph 
2 < 1 minute 

4-word 1-ideograph to 

3-ideograph 
0 2 minute 

Sum 40 5 minutes 

 

Table 8. The required number of Good features 

Feature  MIN MAX Average 

URL 1 10 2.5 

DOM 1 6 2.2 

Term 1 17 3.7 
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features is limited for a given page. Additionally, some features 

can be referred by multiple scoring rules. A feature may be not 

only present in a positive rule but also in a negative rule. Directly 

removing the features in positive rules may also result in some 

negative rules losing their efficacy. 

To this end, we design a search-based method to automatically 

select proper bad features for a given page. Specifically, we 

implement a script to compute the contribution of one feature or a 

set of features to the final score, by removing the feature or the set 

from the page and re-computing the score. For a given page, we 

apply the script to all its recovered features to search for a feature 

or a set of features whose contribution is enough for the 

exploitation. In other words, after removing the feature or the set 

of features, the score of the page will become lower than the 

threshold, allowing it to be classified as a legitimate page. 

With the method, we successfully find proper bad features for 

every test page respectively. By eliminating corresponding bad 

features from the pages respectively, all test pages (100%) can 

evade the classification and be normally rendered by Chrome. 
Take the phishing page shown in Figure 4 as an example. We find 

four bad term features BT1 ~ BT4 for the page and eliminate them 

with some obfuscation techniques, such as changing a word from 

singular to plural form. As a result, we successfully reduce its 

score from 0.9986 to 0.4591 and dress it up as a legitimate page. 

In the experiment, we find that removing at most five bad features 

is enough to make the page evade the classifier. On average, 3.1 

bad DOM features are required. 

5. MITIGATION 
Google developers have discussed the potential adversarial attacks 

that their server-side phishing page classifier might encounter [58]. 

They believe that possible attacks on the classifier are either 

limited or expensive. From their points of view, the adversary 

who tries to evade the classifier by disguising the phishing page as 

a legitimate one cannot preserve both its utility and visual 

similarity at the same time. However, the assumption is incorrect 

to the client-side classifier. Thanks to the cracking results, we can 

purposely introduce some easy-to-hide good features to evade 

GPPF with a very low cost. For example, we are able to make the 

newly added term features invisible by setting their color to be the 

same as the background color of the target page. 

In practical applications, the phishing page classifier is proved to 

be a very valuable tool against phishing attacks under the non-

adversarial environment. Tens of thousands phishing sites are 

detected by Safe Browsing per week [7]. To this end, the 

developers may want to improve its robust as well as change the 

architecture as little as possible. A natural and direct idea is to 

select the features difficult to be recovered by brute force attacks. 

For example, the developers can just select the comparative long 

phrases, 5-word phrases or even longer, as the term features. This 

would result in a combinatorial explosion when the adversary 

performs a blind brute force attack for cracking. The computation 

of enumerating and hashing all possible compounds of five words 

is unacceptable. Unfortunately, this idea is not effective enough if 

the adversary is aware of the feature extraction method. In fact, 

the adversary can still reverse engineer sufficient features by 

collecting appropriate page-related data as test cases to perform 

collision attacks. The adversary can take the data as a web page to 

extract the possible word sequences according to the feature 

extraction method and then hash the sequences to check whether 

they are term features. For a concrete feature extraction method, 

the amount of sequences is actually limited regardless of how long 

the sequence is. Given appropriate test cases, the adversaries have 

a fair chance to find sufficient collision instances. As presented in 

Section 3.2.2, we recover 292 (67.9%) term features only using 

seven full-text corpora in 8.8 hours. These features are already 

enough for evasion attacks. 

Based on the above discussions, we can learn that the most 

effective form of defense is to essentially increase the complexity 

of reverse engineering the classification model, especially the 

semantics of features. A direct approach is to convert the classifier 

to a closed-source component of the system. This will improve the 

security of the classifier to some extent. The adversary cannot 

easily understand the implementation of the classifier by reading 

its source code. However, it is not enough when the adversary 

leverages some modern analysis techniques, e.g., [11][24][51][56], 

to extract exploitable knowledge from binary-format software. A 

more sophisticated approach is to employ the code obfuscation 

technique to conceal the logic of the classifier as far as possible. 

Although the complexity and the cost of analyzing code are 

remarkably improved, cracking still cannot be thoroughly 

prevented by using code obfuscation. In fact, some deobfuscation 

techniques have been developed to reverse engineering obfuscated 

code [55][59]. Because the client-side classifier does run in the 

environment may be completely controlled by adversaries, they 

always can find a way to observe its running and gather 

exploitable information. 

In conclusion, we believe that how to protect the client-side 

classifiers still remains an open problem. 

6. DISSCUSSION 
In this study, we present an attack methodology, classifiers 

cracking, aiming at client-side classifiers and successfully 

demonstrate its effectiveness with a widely-used classifier, GPPF. 

In theory, the methodology is generic and applicable to other 

client-side classifiers. However, when applying the methodology 

to a specific classifier, we need to develop a specially designed 

crack techniques according to its implementation. In fact, there 

are many classifiers equipped with different classification 

algorithms, e.g., [8][38]. To further demonstrate the security 

challenges brought by classifiers cracking, in the future, we will 

pay attention to some other types of classifiers and investigate 

their security from the point of cracking. These classifiers may 

take security into consideration to different extents and be 

deployed in different ways. More reverse engineering techniques 

may need to be employed to crack them. 

As described in Section 3 and 4, we eventually completely reverse 

engineer 84.8% scoring rules of the GPPF classification model, 

which is proved to be sufficient for launching effective evasion 

attacks. However, in fact, we can get better cracking results by 

introducing more appropriate corpora. For example, using a 

comprehensive database of history phishing pages can decrypt 

more term features. Sometimes, the adversary may want to get 

perfect knowledge about a classifier for some special purposes, 

such as stealing its techniques to reengineer a new classifier. 

Besides, it needs to be emphasized that some seemingly unrelated 

dataset, e.g., a corpus, can also be leveraged to compromise the 

security of client-side classifiers. The developers should collect as 

much as possible datasets, especially publicly available, to 

evaluate the robust of their classifier before releasing it. 

We have got sufficient knowledge about the GPPF classification 

model by cracking it. This allows us to easily find exploitable 

good and bad features for a given page. In this study, it is not 

necessary to design a sophisticated algorithm to more effectively 
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and efficiently find exploitable features. However, if the adversary 

has only limited knowledge about the target classifier, she can 

develop a powerful algorithm to discover exploitable features. 

Furthermore, in theory, combining the good features insertion and 

bad features elimination can produce better performance. It is also 

helpful for the adversary to attack a classifier. To this end, 

developers should prevent the information of their classifier from 

being inferred by the adversary as far as possible. 

7. RELATED WORK 
Many existing studies have paid much attention to the security of 

classifiers, and the arm race between adversaries and defenders 

will never end.  

Attacks on Classifiers. The attacks can be categorized into two 

types by their influences: causative attacks and exploratory attacks.  

In causative attacks, the adversary has the chances to affect the 

training process by contaminating training data (e.g., injecting 

many specially crafted samples). This kind of attack has been 

used to degrade the performance of a lot of learning-based 

applications, such as biometric authentication [17][19], spam 

filtering [44], and network intrusion detection [34][49]. In [17], a 

method is proposed to mislead an adaptive biometric system to 

perform self-update by submitting a proper sequence of spoofed 

biometric traits to the sensor and cause a misclassification 

eventually. A further work [19] reveals that poisoning attacks can 

be used to compromise face templates in a more general case. 

Another study [44] succeeds in exploiting machine learning to 

compromise a spam filter by manipulating the filter’s training data. 

They proposed two kinds of poisoning attacks by inserting 

different sets of words into attack emails: dictionary attacks inject 

words indicative of legitimate emails to increase 

misclassifications, and focused attack tries to introduce words to 

have the filter block one specific kind of emails (e.g., emails from 

business rivals). Besides, the intrusion detection systems may also 

be vulnerable to causative attacks [21][34][49]. The adversary can 

inject carefully crafted malicious traffic samples into training 

dataset and finally force the classifier to learn a wrong model of 

the normal traffic. 

In exploratory attacks, the adversary tries to figure out as much 

knowledge (e.g., type of classifier, features, and threshold) of the 

classifiers as possible to effectively evade them. Exploratory 

attacks have been applied to various security applications. Lowd 

and Meek conduct an attack that minimizes a cost function [40]. 

They further propose attacks against statistical spam filters that 

add the words indicative of non-spam emails to spam emails [39]. 

The same strategy is employed in [44]. In [41], a simple but 

effective attack methodology called reverse mimicry is designed 

to evade structural PDF malware detection systems. The main 

idea is injecting malicious content into a legitimate PDF while 

introducing minimum differences within its structure. The related 

experiments show that some very popular classification 

algorithms (e.g., SVMs and neural networks) can also be evaded 

with this method. A recent work [52] uses PDFRATE, an online 

learning-based system for detection of PDF malware, as a case to 

investigate the effectiveness of evasion attacks. The study 

reconstructs a similar classifier through training one of the 

publicly available datasets by a few deduced features, and then 

evades PDFRATE by insertion of dummy content into PDF files. 

Additionally, in [18], a simple algorithm is proposed for evasion 

of classifiers with differentiable discriminant functions. The study 

empirically demonstrated that very popular classification 

algorithms, e.g., SVMs and neural networks, can still be evaded 

with high probability even if the adversary can only learn limited 

knowledge. 

Unfortunately, to our best knowledge, all of the existing studies 

don't pay any special attention to the client-side classifiers. As 

demonstrated in this study, the client-side classifiers have a larger 

attack surface and hence suffer from a larger number of potential 

attacks. The main contribution of this paper is revealing a very 

serious security threat to client-side classifiers. By employing 

some traditional reverse engineering and cracking techniques, 

such as the dynamic debugging and collision attacking, the 

adversary can extract enough knowledge from the implementation 

of the classifier to launch effective evasion attacks. 

Hash Cracking. Hash cracking technique is mainly used in 

inverting hashed passwords, including brute force attacks, 

dictionary attacks, and rainbow table attacks. In the brute force 

attack [1][35], the cracker will compute the hashes for all possible 

password candidates and compare them with the given hashed 

password. If there is a matched one, the plaintext of the password 

is found. Although it is easy to implement, the brute force attack 

is time-consuming. The dictionary attack [42][43][57] is a more 

intelligent variant of a straight brute force approach. It utilizes a 

dictionary of words to compute hashes and compares them with 

the given hash. This attack is usually fairly efficient and requires 

much less time than a brute force. However, if the password is not 

present in the dictionary, the attack will fail. The rainbow table 

attack [45] is a more sophisticated hash cracking method. Cracker 

will pre-compute all plaintext/hash pairs and store them in a file 

called rainbow table. The computation is also time-consuming. 

However, given the rainbow table, the cracker can immediately 

find the plaintext of a hashed password via a table query. 

In this paper, we take some corpora as the cracking dictionaries to 

recover as many hashed model features as possible. Besides, to 

improve the recovery rate, we further launch a brute-force attack 

to find model terms by generating possible terms with a western 

alphabet and a set of CJK ideographs. 

Dynamic analysis. Some existing approaches adopt dynamic 

analysis techniques to reverse-engineer the implementation of a 

software. Polyglot [24] uses dynamic binary analysis to extract the 

protocol message format used by a target software. Howard [51] 

instruments the QEMU [11] processor emulator to extract critical 

data structures from a software. TaintScope [56] performs a 

differential analysis on the branch instruction traces of program 

executions with well-formed and malformed inputs, to identify the 

checksum check point. 

Since Chromium is an open-source project, we can compile it to 

get a debug version with symbols of functions, variables and data 

structures. As such, we can directly use a debug tool (e.g., gdb) to 

locate the scoring point and identify critical data structures of the 

phishing model. If the target system to be cracked is not open-

source, crackers can employ the above dynamic analysis 

techniques to achieve the same goal. 

Defenses. Many countermeasures against evasion attacks have 

been proposed, such as using game theory [22][23] or 

probabilistic models [16][48] to predict attack strategy to 

construct more robust classifiers, employing multiple classifier 

systems (MCSs) [13][14][15] to increase the difficulty of evasion, 

and optimizing feature selection [30][36] to make the features 

evenly distributed.  

Game-theoretical approaches [22][23] model the interactions 

between the adversary and the classifier as a game. The 
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adversary’s goal is to evade detection by minimally manipulating 

the attack instances, while the classifier is retrained to correctly 

classify them. However, the retraining procedure is very 

expensive in the situation where the classifier is cracked. The 

adversary always can construct an attack instance to evade the 

current classifier. Similarly, for approaches based on probabilistic 

models [16][48], the adversary can also easily construct a hard-to-

predict attack instance based on cracked knowledge. 

MCSs [13][14][15], as the name suggests, uses multiple classifiers 

rather than only one to improve classifier’s robustness. The 

adversary who wants to effectively evade the classification has to 

fight with more than one classifier. Although MCSs actually 

increases the workload of classifiers cracking, it doesn’t improve 

the security of client-side classifiers fundamentally. 

In [30], the method weight evenness via feature selection 

optimization is proposed. By appropriate feature selection, the 

weight of every feature is evenly distributed, thus the adversary 

has to manipulate a larger number of features to evade detection. 

In [36], the features are reweighted inversely proportional to their 

corresponding importance, making it difficult for the adversary to 

exploit the features. However, given sufficient knowledge, the 

adversary can easily find enough exploitable features. Besides, in 

many cases, the adversary can hide the manipulation very deeply 

without attracting the attention. For example, a phisher can 

leverage various HTML techniques to make good features 

invisible.  

These defense techniques are built on the assumption that the 

classification model is kept confidential to the adversary or can be 

updated timely. However, when the adversary learned sufficient 

knowledge by cracking classifiers, they can easily and quickly 

construct effective evasion attacks targeted to the defense 

techniques. 

8. CONCLUSIONS 
In this paper, we presented a new attack methodology, classifier 

cracking, for evading the client-side classifier. Our approach is 

different from existing attack methods. We leverage various 

reverse engineering techniques to directly extract desirable 

knowledge from client-side classifier for launching evasion 

attacks. Our study took GPPF, a learning-based filter for phishing 

pages deployed in Chrome as a case to study, which owns over 

one billion users. Employing various reverse engineering 

techniques, we successfully cracked the GPPF model and 

completely recovered 84.8% encrypted scoring rules. Based on 

the information, we developed two kinds of evasion attacks: good 

features insertion and bad features elimination. The latest 100 real 

phishing pages collected from PhishTank were taken as the targets 

of evaluation. The attack experiments showed that we can easily 

manipulate all the phishing pages (100%) to make them 

successfully evade the detection of GPPF in the latest version of 

Chrome. Additionally, we analyzed the protection methods that 

can be potentially applied to client-side classifiers, but 

regretted to find that it is difficult to thoroughly prevent the client-

side classifiers from being cracked using the present technology. 

Our research revealed an important fact that the client-side 

classifiers have a larger attack surface and hence suffer from a 

larger number of potential attacks. In the future, we will further 

research potential defense techniques to develop more robust 

client-side classifier framework. 
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