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ABSTRACT

Various topic models have been developed for sentiment analysis

tasks. But the simple topic-sentiment mixture assumption prohibit-

s them from finding fine-grained dependency between topical as-

pects and sentiments. In this paper, we build a Hidden Topic Sen-

timent Model (HTSM) to explicitly capture topic coherence and

sentiment consistency in an opinionated text document to accurate-

ly extract latent aspects and corresponding sentiment polarities. In

HTSM, 1) topic coherence is achieved by enforcing words in the

same sentence to share the same topic assignment and modeling

topic transition between successive sentences; 2) sentiment con-

sistency is imposed by constraining topic transitions via tracking

sentiment changes; and 3) both topic transition and sentiment tran-

sition are guided by a parameterized logistic function based on the

linguistic signals directly observable in a document. Extensive ex-

periments on four categories of product reviews from both Amazon

and NewEgg validate the effectiveness of the proposed model.
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1. INTRODUCTION
Topic models have become an important building block in sen-

timent analysis [18, 12, 11, 15, 31, 28]. It naturally decomposes

unstructured text content into topical aspects and sentiment polar-

ities via generative modeling. The automatically identified topics

and corresponding opinions provide a fine-grained understanding

of opinionated text data and enable a wide range of important appli-

cations, including public opinion tracking in social media [18, 15,

12], automated recommendation in e-commerce [16], contrastive

opinions summarization in political science [6], and many more.

One fundamental assumption in topic models is exchangeabili-

ty, i.e., topics are infinitely exchangeable within a given document

while the joint probability is invariant [3]. As a result, a common

practice is to model a document as a mixture over a set of latent
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topics; and given topic mixing proportion, the topic assignments

over words in a document are considered as independent from each

other. This overly simplified assumption fails to capture rich struc-

tures embedded in a text document: in reality, natural language text

rarely consists of isolated, unrelated sentences, but rather collocat-

ed, structured and coherent groups of sentences [10]. The exis-

tence of sentiment in an opinionated text document further increas-

es the complication of topic and sentiment mixture. For example,

most topic models for sentiment analysis assume the selection of

topics are independent given sentiment labels over words [18, 15,

12]. However, it is very unlikely for a user to express contradicto-

ry sentiment, i.e., both positive and negative, about the same top-

ical aspect in a document; and thus when sentiment switches, the

topic should also change. Enhanced independence assumption is

expected to yield better models in terms of latent aspect identifi-

cation and sentiment classification. Figure 1 illustrates this inter-

dependency between topic assignments and sentiment polarities in

a typical product review, which motivates our research in this paper.

By: Kindle Customer Date:June 25, 2014

I own an ultrabook and I like it for a number of specific tasks.

I especially like its portability (3 pounds with a small

footprint) {portability,+} and the speed of its solid state drive
{hard drive,+}. When it comes to looks you have to give it to the

Inspiron {appearance,+}. It definitely has the sleek look of an

ultrabook {appearance,+}. The combination of brushed aluminum

with black trim, keys and bezel make for a very classy,

“corporate” presence {appearance,+}. The fit and finish are first

rate {appearance,+}. However, the sound sucks{sound,-}. I have

owned 10 notebook and laptop computers over the past two

decades and this Inspiron has the worst sound of any before it
{sound,-}. It is weak, tinny and what low end it has is muddy

and indistinct {sound,-}. While we’ve all come to expect pretty

lousy sound from notebooks, this is subpar even considering

those low standards {sound,-}.

Figure 1: A review of a laptop from Amazon1. Topical aspects

and sentiment polarities are manually labeled in superscripts

with different colors on each sentence.

Three important observations can be found in the sample review

document annotated in Figure 1. First, topic assignments over

words in a document are not a simple mixture; instead, words in

close proximity tend to share the same topic, i.e., topic coherence.

Second, sentiment polarities expressed toward the same topical as-

pect tend to be consistent, i.e., sentiment consistency. We should

note that this observation is not contradicting with the fact that a

user might have mixed judgements about an item within a review

1http://www.amazon.com/gp/customer-reviews/
RQ4YYC5BXD021
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document, e.g., appreciate appearance but dislike sound quality of

the ultrabook in our motivating example. Sentiment consistency

suggests that a user tends to give the same opinion about a par-

ticular topical aspect, rather than expressing contradictory assess-

ments over it. This adds another dimension of regularity of topic

assignments over words in an opinionated text document: when

sentiment switches, the topic assignment should also switch. Last

but not least, there are clear linguistic cues indicating the transition

of sentiment and topics between successive sentences. For exam-

ple, conjunctions like “however” and “nonetheless” imply a switch

of sentiment in the current sentence, while an increased overlap

of content words suggest unaltered topic and sentiment assignment

between two adjacent sentences.

Some solutions have been developed to realize topic coherence,

i.e., assign words in a sentence to the same topic [12] and mod-

el topic transition among successive sentences [8, 29]. Linguistic

cues, e.g., POS tagging [31] and metadata [19], have been also ex-

ploited to guide topic generation. But exchangeability assumption

is still being made when modeling the compound of topic and sen-

timent in a document [18, 15, 12]: topics are modeled as simple

mixtures under sentiment labels. It renders erroneous posterior in-

ference results that assign opposite sentiment labels to the same

topical aspects in a document. This inevitably leads to suboptimal

performance in downstream sentiment analysis tasks.

In this work, we propose to explicitly model topic coherence and

sentiment consistency in an opinionated text document so that we

can accurately extract latent aspects and corresponding sentimen-

t polarities. Specifically, we introduce hidden Markov model into

topic modeling and name our solution as Hidden Topic Sentiment

Model (HTSM). In HTSM, topics are modeled as a compound of

latent aspects and sentiment polarities. Topic coherence is achieved

by enforcing words in the same sentence to share the same topic

assignment and modeling topic transition between successive sen-

tences [8]. Sentiment consistency is imposed by constraining topic

transitions via tracking sentiment changes – once sentiment assign-

ment changes, a new topic has to be sampled for the current sen-

tence. Both topic transition and sentiment transition are guided by

a parameterized logistic function based on the linguistic signals di-

rectly observable in a document, e.g., cosine similarity and POS tag

overlapping between adjacent sentences. A customized forward-

backward algorithm is developed to perform efficient posterior in-

ference for HTSM. The model configuration, including both word

distribution under topics and topic/sentiment transitions, is learned

in a fully unsupervised manner via expectation maximization. The

formalization of HTSM is so flexible that partially annotated docu-

ments, e.g., user-provided pros and cons, can be easily incorporated

for more accurate model estimation.

Extensive experimentations are performed on four categories of

product reviews crawled from both Amazon and NewEgg to vali-

date the effectiveness of the proposed model. A set of state-of-the-

art topic models for sentiment analysis are employed as baselines to

compare the quality of learned topics, accuracy of sentiment classi-

fication, and utility of aspect-based contrastive summarization from

our HTSM model.

As a summary, our contributions in this paper are as follows,

• We develop a unified topic model to explicitly capture topic

coherence and sentiment consistency in opinionated text doc-

uments. It provides more accurate extraction of latent topics

and sentiment polarities.

• Our flexible modeling assumption enables both unsupervised

and semi-supervised estimation of model parameters.

• We performed extensive experiment comparisons on differ-

ent data sets under various application scenarios. Promising

performance confirms the value of modeling dependence be-

tween sentiment and topic in sentiment analysis.

2. RELATED WORK
The wide coverage of topics and abundance of opinions in social

media make it a gold mine for discovering public opinions on all

sorts of topics [22]. Significant research effort has been paid on

building statistic topic models to mine user-generated opinion data.

According to the notion proposed in Mimno and McCallum’s work

[19], we can categorize most of existing topic models for sentiment

analysis as upstream models and downstream models. Upstream

models assume that in order to generate a word in a document, one

needs to first decide the sentiment polarity of this word and then

sample the topic assignment for this word accordingly. In contrast,

downstream models assume the sentiment label is determined by

the topic assignment in parallel to the text content.

Our proposed solution falls into the category of upstream mod-

els. One typical upstream model is the Topic-Sentiment Model

(TSM) proposed in [18]. TSM is constructed based on the pLSA

model [9]: in addition to assuming a corpus consists of a set of la-

tent topics with neutral sentiment, TSM introduces two additional

sentiment models, one for positive and one for negative sentimen-

t. A new concept called “theme” is introduced in TSM for docu-

ment modeling, and a theme is modeled as a compound of these

three components: neutral topic words, positive words and nega-

tive words, in each document. However, this kind of division can-

not capture the interrelation between topic and sentiment, given a

document is still modeled as an unordered bag of words; and TSM

also suffers from the same problems as in pLSA, e.g., overfitting

and can hardly generalize to unseen documents.

Several follow-up work tries to address the limitations of TSM

from different perspectives. Based on the LDA model [3], Lin

and He proposed a joint sentiment/topic model (JST) for sentiment

analysis [15]. In JST, the combination of topic and sentiment is

modeled as a Cartesian product between a set of topic models and

sentiment models. Accordingly, each document exhibits distinct

topic mixtures under different sentiment categories in JST. To im-

prove topic coherence, Jo and Oh extended JST by enforcing words

in a single sentence to share the same topic and sentiment label in

their Aspect and Sentiment Unification Model (ASUM) [12]. Zhao

et al. introduced the Maximum Entropy LDA model (MaxEnt-

LDA) to control the sampling of words from a background topic,

aspect-specific topics and opinion-specific topics in [31]. Both JST

and ASUM strongly depend on sentiment seed words to differen-

tiate different sentiment categories. MaxEnt-LDA depends on a

set of manually labeled training sentences with background, aspect

and opinion words to estimate the maximum entropy model be-

forehand. Moreover, the simple sentiment-topic mixture assump-

tion prevents all the aforementioned models to recognize sentiment

consistency, i.e., sampling the same aspect assignment under dif-

ferent sentiment categories in a document.

Downstream models reverse the generation assumption between

sentiment labels and topic assignments, and provide some flexibili-

ty in modeling sentiment, e.g., continuous opinion ratings can also

be modeled [17, 28, 25]. However, downstream models usually as-

sume the sentiment labels are observable, and it thus limits their

applications in sentiment analysis.

Another line of related work is introducing Markov model in-

to topic modeling. Aspect-HMM model [2] combines pLSA with a

hidden Markov model [23] to perform document segmentation over

text streams. However, Aspect-HMM separately estimates topic-

s in training set and depends on heuristics to infer the transitional

relations between topics. HMM-LDA [7] distinguishes short-range

syntactic dependencies from long-range semantic dependencies a-
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mong the words in each document. But in HMM-LDA, only the

latent variables for the syntactic classes are treated as a locally

depended sequence, while latent topics are treated the same as in

other topic models. Hidden Topic Markov Model (HTMM) [8] is

the most similar model to ours. HTMM captures topic coherence

by assuming words in one sentence share the same topic assign-

ment and modeling topic transitions between successive sentences.

However, HTMM loosely models the transition between topics as

a binary relation: the same as the previous sentence’s assignment

or draw a new one with a certain probability. It ignores sentimen-

t consistence in a document: when sentiment switches, the topic

assignments should also switch. Our HTSM constrains topic tran-

sition via tracking sentiment changes; and linguistic cues directly

observable from adjacent sentences are leveraged to guide topic and

sentiment transitions.

3. METHODOLOGY
In this section, we describe the proposed Hidden Topic Senti-

ment Model and discuss how it captures topic coherence and sen-

timent consistence simultaneously within an opinionated text doc-

ument. Efficient posterior inference is performed via a customized

forward-backward algorithm, and Expectation-Maximization algo-

rithm is utilized to estimate the model parameters in both unsuper-

vised and semi-supervised settings.

3.1 Definition of Terminologies
We first specify the notations and definitions of aspect, sentiment

and topic used in this paper. Denote a set of review text docu-

ments about a particular type of entities, e.g., product reviews, as

D = {d1, d2, . . . , d|D|}, where each document di consists of m
sentences. We assume there is a shared set of aspects that attract

reviewers’ interest; and they can be defined as follows:

Definition (Aspect) An aspect of a particular entity is character-

ized by a set of words, which present a semantically coherent theme

of discussion. An aspect can be indexed by a discrete random

variable taking value from A = {a1, a2, . . . , a|A|}. For exam-

ple, words such as “price”, “value”, and “worth” describe the price

aspect of a product.

Beside describing the aspects, users also express their personal

attitudes toward those aspects in their review documents, e.g., favor

price aspect or criticize customer service aspect in product reviews.

The expressed attitude is defined as sentiment.

Definition (Sentiment) Sentiment represents a user’s emotional

feelings about a particular entity. It can be denoted by a discrete

random variable taking value from S = {s1, s2, . . . , s|S|}, e.g.,

positive or negative. In text documents, sentiment can be deter-

mined from content words. For example, “love” and “wonder-

ful” indicate positive sentiment, and “terrible” and “regret” indicate

negative sentiment.

In this paper, topic is defined as a compound of latent aspect and

sentiment polarity. For example, in tablet reviews, potential topics

could include positive aspect about battery life and negative aspect

about customer service. Formally, topic is defined as follows:

Definition (Topic) Topic is a compound of latent aspect and senti-

ment polarity in a given document collection. It can be represented

as a discrete distribution over words in a fixed vocabulary. Words

with high probabilities under a topic depict the corresponding as-

pect and sentiment.

Based on the above definitions, we strive to develop a probabilis-

tic generative model to automatically identify topics, i.e., aspects

and sentiment, from a collection of opinionated text documents.

The model takes an unstructured text document as input and re-

turns decomposed latent aspects and sentiment polarities as output.

In the following sections, we will discuss the detailed model as-

sumptions and specifications.

3.2 Hidden Topic Sentiment Model
From linguistic analysis perspective, document exhibits inter-

nal structure, where structural segments encapsulate semantic units

that are closely related [13]. As a result, in the proposed Hidden

Topic Sentiment Model (HTSM), we treat sentence as the basic

structure unit and assume all the words in a sentence share the same

topic (as illustrated in our motivating example in Figure 1). Based

on this, HTSM drops the simple mixture assumption employed in

conventional topic models [3, 9], and explicitly models topic transi-

tion in successive sentences via a first-order hidden Markov model.

Because in HTSM a topic is modeled as a compound of latent as-

pect and sentiment polarity, two factors control the transition of

topics. First, once the sentiment labels switch between two con-

secutive sentences, a topic has to be generated for the subsequent

sentence with a different aspect assignment. This enforces senti-

ment consistency. Second, when the sentiment labels stay intact,

two adjacent sentences are assumed to be highly related: the subse-

quent sentence will inherent the topic assignment from the previous

sentence, or select a distinct one from a document-specific topic

mixture with certain probability. This imposes topic coherence.

Formally, we assume there are K topics embedded in a given

collection of review documents. A topic indexed by zk has two

components: ak indicates aspect label and sk indicates sentiment

label, i.e., zk = (ak, sk). Topic zk is specified as a multinomial

distribution over a fixed vocabulary V , i.e., {p(w|βk)}w∈V , where

βk is the corresponding model parameter. To avoid overfitting, we

impose a shared Dirichlet prior over βk, i.e., βk ∼ Dir(η). In this

paper, to simplify our discussion, we only consider binary senti-

ment polarities in HTSM, i.e., sk = {0, 1}. But HTSM is flexible

enough to model multi-class sentiment polarities, e.g., five-star rat-

ing scales [21].

In a given document d, the document-level topic proportion θd is

assumed to be drawn from a shared Dirichlet distribution [3], i.e.,

θd ∼ Dir(α). Among m sentences in d, each sentence ti has Ni

words and is associated with a topic zi, which is sequentially drawn

from a document-specific Markov chain. Because the aspect label

and sentiment polarity of sentences are unobservable, we introduce

two latent variables τ and ψ on each sentence to control the sam-

pling of topics with respect to the topic coherence and sentiment

consistency requirements. Specifically, τi and ψi are binary ran-

dom variables indicating whether there is a sentiment switch and

an aspect change on sentence ti accordingly. Their combination

determines topic transition: 1) when τi = 0 and ψi = 0, ti will

inherent previous sentence’s topic assignment; 2) when τi = 0 and

ψi = 1, a new topic zi will be drawn from θd, with the constraint

that si = si−1 and ai 6= ai−1; 3) when τi = 1 and ψi = 1,

a new topic zi will be sampled from θd with the constraint that

si 6= si−1 and ai 6= ai−1. The combination of τi = 1 and ψi = 0
is not allowed in HTSM, because the sentiment consistency con-

straint enforces aspect change when sentiment is switched.

To capitalize on the linguistic features directly observable in doc-

ument content, e.g., overlapped sentence content indicates intact

topic assignments, we use parameterized logistic functions to de-

fine the generation probability of τ and ψ in each sentence. Aspect

transition feature function fa(d, i) takes document d and sentence

ti as input, and outputs an l-dimensional feature vector describ-

ing aspect change. Accordingly, fs(d, i) generates a p-dimensional
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Figure 2: Graphical model representation of Hidden Topic Sen-

timent Model. Dark and light circles represent observable and

latent random variables, and plates denote repetitions. Solid

arrows encode dependency relation and dashed arrows denote

the generation of transition features.

feature vector describing sentiment switch. Hence, we define,

p(τi = 1|d, σ) =
1

1 + exp
(

− σTfs(d, i)
) (1)

p(ψi = 1|d, ǫ) =
1

1 + exp
(

− ǫTfa(d, i)
) (2)

where σ and ǫ are the corresponding feature weights for modeling

sentiment switch and aspect change. The detailed specifications of

fa(d, i) and fs(d, i) and the feature weight estimation procedures

will be discussed in Section 3.4.

Putting above assumptions together, the generative process of a

document postulated in HTSM can be described as follows,

1. For every topic z, draw βz ∼ Dir(η).

2. For each review document d ∈ D,

(a) Draw topic proportion θd ∼ Dir(α).

(b) For each sentence ti ∈ d, i = 1, 2, . . . ,md,

i. Sample τi ∼ p(τi|d, σ); set τi = 1 when i = 1.

ii. Sample ψi ∼ p(ψi|d, ǫ); set ψi = 1 when τi = 1.

iii. Sample zi by,

zi=







zi−1 if τi=0, ψi=0
z∼Mul(θd), s.t. a 6=ai−1, s=si−1 if τi=0, ψi=1
z∼Mul(θd), s.t. a 6=ai−1, s 6=si−1 if τi=1, ψi=1

iv. Sample each word wn in ti, wn ∼Mul(βzi).

To make the above generation process consistent at every sen-

tence in a document, we define a0 = ∅ and s0 = ∅, such that there

is no constraint when sampling new topics for the first sentence in a

document. Using the language of graphical models, this generation

process can be visualized in Figure 2.

Conditioned on the model parameters (α, β, ǫ, σ), the joint prob-

ability of sentences and latent topics in document d is thus given by,

p(z, θ,ψ, τ , w1, ..., wNi
|α, β, ǫ, σ) (3)

=p(θ|α)

md
∏

i=1

p(τi|d, ǫ)p(ψi|d, σ)p(zi|zi−1, τi, ψi, θ)

Ni
∏

n=1

p(wn|βzi)

The above joint distribution differentiates HTSM from conven-

tional topic models for sentiment analysis, which are built on the

simple topic mixture assumptions. Due to the sequential generation

of topic assignments in sentences from a Markov chain, HTSM is

no longer invariant to permutation of words nor sentences in a doc-

ument. Documents in which successive sentences share coherent

topics are more likely than any random shuffling of the same sen-

tences. This leads to linearly coherent topic inference in a docu-

ment: successive sentences tend to share similar topics, rather than

fluctuated assignments. More importantly, sentiment consistency is

especially emphasized in HTSM: in every sentence of a document,

one needs to first determine if he/she wants to keep the sentiment

polarity from previous sentence; if not, a new topic with differen-

t aspect label and sentiment polarity needs to be sampled. This

avoids assigning contradictory sentiment polarities to the same as-

pect in a document. To the best of our knowledge, no existing topic

models could achieve such regularity over topic assignments.

3.3 Posterior Inference
The latent variables of interest in HTSM are sentence-level topic

assignments z and document-level topic proportion θ. The aspect

switch indicators ψ and sentiment switch indicators τ can be eas-

ily decoded from the topic assignment sequence z. However, due

to the coupling between continuous random variable θ and discrete

random variables z, exact inference in HTSM is computationally

infeasible. In this paper, we develop a coordinate ascent based so-

lution to perform approximate posterior inference.

In a given document d, θ can be first randomly initialized from

its prior distribution Dir(α). With known θ, exact inference for

(z,ψ, τ ) can be efficiently performed via the forward-backward

algorithm [23]. Because of the special design in our Markov chain,

customization of the generic forward-backward algorithm can be

made to greatly reduce its computational complexity in HTSM.

In particular, we treat the combination of (zi, ψi, τi) at sentence

ti as latent states in our Markov chain for document d, and derive

the corresponding transition function as,

p(zi, ψi, τi|zi−1, θ, d, ǫ, σ) = p(zi|zi−1, θ, ψi, τi) (4)

p(ψi|d, ǫ)p(τi|d, σ)

in which p(ψi|d, ǫ) and p(τi|d, σ) can be pre-computed beforehand

since they are invariant during inference. And the first term of right-

hand side in Eq (4) has a simple linear structure,

p(zi|zi−1, θ, ψi, τi) ∝ (5)










1 if τi=0, ψi=0, zi=zi−1

θzi , s.t. ai 6=ai−1, si=si−1 if τi=0, ψi=1
θzi , s.t. ai 6=ai−1, si 6=si−1 if τi=1, ψi=1
0 otherwise

This enables us to maintain a blockwise transition matrix in d and

reduce the quadratic computational complexity in standard forward

and backward computations to linear in HTSM.

After one round of forward-backward computation, posterior of

θd can be computed by the expected frequency of words assigned to

a topic that is drawn from the document-specific topic proportion,

rather than inherited from a previous sentence. More specifically,

θd,z ∝

md
∑

i=1

Ni
∑

n=1

p(zi = z, ψi = 1|d) + αz − 1 (6)

The inference of θ and (z,ψ, τ ) can be alternatively performed

in a given document. And it can be proved that this coordinate

ascent method will converge to a local maximum of data likelihood

function in d, because the forward-backward algorithm gives us

exact posterior of (z,ψ, τ ) (refer to the EM algorithm proof [5]).

3.4 Parameter Estimation
Motivated by the insights gained from the annotated example

shown in Figure 1, in HTSM we leverage content features direct-
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ly observable in documents to define the probabilities of aspect

change and sentiment switch. In order to differentiate the aspect-

driven transitions from sentiment-drive transitions, two sets of tran-

sition features are constructed.

The aspect transition features fa(d, i) include: 1) content-based

cosine similarity between ti and ti−1; 2) sentence length ratio be-

tween ti and ti−1; 3) relative position of ti in d, i.e., i/m; and 4) an

indicator function about whether ti is more similar to ti−1 or ti+1.

The sentiment transition features fs(d, i) include: 1) content-based

cosine similarity between ti and ti−1; 2) sentiWordNet [1] score d-

ifference between ti and ti−1; 3) sentiment word count difference

between ti and ti−1; 4) Jaccard coefficient between POS tags in ti
and ti−1, and 5) adversative conjunction count in ti. We also add

bias terms in fa(d, i) and fs(d, i) to capture unconditioned aspect

and sentiment transitions in documents. Detailed descriptions of

these transition features can be found in Table 3.

The feature weights ǫ and σ in the transition functions defined

in Eq (1) and Eq (2) can be efficiently estimated together with the

other model parameters in HTSM by EM algorithm. In this work,

we treat α and η as hyper-parameters of the model and manually

tune their settings, given they have considerably less influence in

model fitting [24] comparing to the other parameters, i.e., (β, ǫ, σ).
We should note optimizing α and η with respect to data likelihood

[3] is also feasible in HTSM.

The EM algorithm executes iteratively between E-step (for pos-

terior inference) and M-step (for expectation maximization). In E-

step at iteration T , the approximate inference procedures developed

in Section 3.3 is executed in each document with the current mod-

el parameter (βT , ǫT , σT ). The following sufficient statistics are

collected in documents after inference,

E[c(z, w, d)] =

md
∑

i=1

Ni
∑

n=1

δ(wn = w)p(zi = z|d) (7)

E[ψi] = p(ψi = 1|d), s.t. i > 1 (8)

E[τi] = p(τi = 1|d), s.t. i > 1 (9)

In M-step, maximum likelihood estimator is used to compute

(βT+1, ǫT+1, σT+1) as follows,

βT+1
z,w ∝

|D|
∑

d

E[c(z, w, d)] + ηw − 1 (10)

ǫT+1 = argmax
ǫ

|D|
∑

d

md
∑

i=1

E[ψi] log p(ψi = 1|d, ǫ) (11)

σT+1 = argmax
σ

|D|
∑

d

md
∑

i=1

E[τi] log p(τi = 1|d, σ) (12)

where the optimization of ǫ and σ can be effectively solved via

a gradient-based optimizer. The E-step and M-step will be alter-

natively executed until the data likelihood function on the whole

collection D converges.

In some review data sets, external signals about sentiment po-

larities are directly available. For example, some reviewers will

explicitly organize their reviews in pros and cons sections 1; and

in NewEgg (http://www.newegg.com/), reviewers are re-

quired to do so. Such signals can be easily incorporated in HTSM

to refine model estimation. In the documents with identified pros/cons

sections, sentences in pros section will be considered as having

sentiment label s = 1, and sentences in cons section will have

s = 0. During posterior inference, the sentiment switch indicator

1http://www.amazon.com/gp/customer-reviews/
R12HYQYZX5TNT9

τ can be directly computed from the sentiment labels in such docu-

ments, while all the rest inference steps stay the same. Hence, mod-

el parameter estimation in M-Step will be affected by such direct

observations. As a result, HTSM effectively exploits such side in-

formation in document content and estimate the model parameters

in a semi-supervised manner. In our quantitative evaluation, such

semi-supervised model training greatly improves HTSM’s senti-

ment classification performance.

4. EXPERIMENT
In this section, we perform experiment evaluations of the pro-

posed HTSM model from both quantitative and qualitative perspec-

tives. We compare HTSM with several state-of-the-art topic mod-

els for sentiment analysis on four different collections of product

reviews from both Amazon and NewEgg.

4.1 Data Sets & Preprocessing
We have collected four categories of product reviews, i.e., i)

camera, ii) tablet, iii) tv and iv) phone, from Amazon (http:

//www.amazon.com) and NewEgg (http://www.newegg.

com). The reviews from NewEgg are segmented into pros and cons

sections by their original authors, since this is required by the web-

site. The complete data set can be found at http://www.cs.

virginia.edu/~hw5x/dataset.html.

Standard pre-processing is performed before the subsequent ex-

periments. Firstly, punctuation, numbers and other non-alphabet

characters are removed. Stopwords are also removed based on a

standard stopword list [14]. Secondly, all the words are convert-

ed to the lower cases and stemming is performed on the remain-

ing words in a document using the Porter’s stemmer [30]. Finally,

all the reviews which have less than five words are removed. Be-

sides, since we are modeling topic transition between successive

sentences, those reviews containing less than two sentences are al-

so removed. Table 1 summarizes the resulting review data sets.

Table 1: Statistics of evaluation data sets.
Data set Amazon NewEgg Vocabulary Positive

size ratio

camera 6919 3020 1406 0.606

tv 4729 1662 1410 0.551

tablet 6147 407 1515 0.494

phone 6899 268 1282 0.530

For comparison purposes, we include Latent Dirichlet Alloca-

tion (LDA) [3], Hidden Topic Markov models (HTMM) [8], Aspect

and Sentiment Unification model (ASUM) [12], and Joint Senti-

ment/Topic model (JST) [15] as baselines. Among these baseline

models, ASUM and JST are specialized for sentiment analysis, and

HTMM and ASUM explicitly model sentences in a document. As

unsupervised topic models, both ASUM and JST require sentiment

seed words as input. Following the settings in their original pa-

per, two sets of sentiment seed words are used in our experiments.

The first one is from Turney’s PARADIGM [26] contains seven

positive words and seven negative words, and the second one is

PARADIGM+ which contains all Turney’s paradigm words plus

other sentiment words. To conduct a fair comparison, we also in-

clude those sentiment seed words in our HTSM model, i.e., adding

positive seed words to topics with sentiment label s = 1, and neg-

ative words to topics with sentiment label s = 0 as priors. We

should note that unless otherwise specified, we have used 26 topics

for camera and phone, 30 topics for tablet and 16 topics for tv for

all the models. In addition, we fixed the hyper-parameters α and η
in Dirichlet priors to 1.01 and 1.001 for all the topic models.
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Figure 3: Perplexity with increasing training size on four different review document sets.

4.2 Topic modeling evaluation
We first compare the quality of learned topics from all the topic

models. Perplexity and word intrusion experiments are performed

to quantitatively evaluate this aspect, and we also demonstrate the

learned topical transition diagram from HTSM.

4.2.1 Perplexity comparisons

Perplexity, used by convention in language modeling, is mono-

tonically decreasing with respect to the likelihood of test data, and

is algebraically equivalent to the inverse of the geometric mean of

per-word likelihood. A lower perplexity indicates better general-

ization performance. More specifically, the perplexity of test docu-

ment set Dtest can be computed as:

perplexity(Dtest) = exp

{

−

∑M

d=1
log p(wd)

∑M

d=1
Nd

}

(13)

whereM is the total number of documents in test corpus andNd is

the total number of word in a test document Dtest.

We trained all the topic models (HTSM, HTMM, LDA, JST and

ASUM) on the described corpora to compare their generalization

performance in modeling text documents on a held-out test set via

the perplexity measurement. Since our goal is to evaluate the den-

sity estimation quality, all documents in the corpora are treated as

unlabelled (e.g., ignore the pros/cons segmentation in NewEgg re-

views). The detailed experiment setup for perplexity comparison is

as follows: we start with a training set containing only the reviews

from NewEgg, refer this training set as the origin in plots of Figure

3, and gradually add more training reviews from Amazon (train-

ing size 1000, 2000 etc.). This experiment setting is to make the

results aligned with the later sentiment classification experiments.

Figure 3 demonstrates the average perplexity from five-fold cross

validation (test sets are selected from both Amazon and NewEgg

reviews accordingly). It is clear from Figure 3 that HTSM out-

performed all the other topic models on all four datasets, except

HTMM. There are two possible explanations. First, HTMM mod-

els topic transitions loosely as a Bernoulli distribution: the same

as the previous sentence’s assignment or drawing a new topic with

certain probability. But HTSM models this topical transition with

a more complicated logistic function. Overfitting might be caused

by this parametric model. Second, HTMM does not consider senti-

ment in a document, i.e., less constraints in modeling a document.

But in HTSM, once the sentiment label switches, a different topic

has to be sampled for the subsequent sentence. As a result, HTMM

has more freedom to allocate words under one topic, which results

in a lower perplexity in modeling unseen documents. We should

note that the perplexity metric only measures the quality of esti-

mated word distribution in unseen documents. It cannot assess the

sentiment prediction quality, which HTMM is unable to achieve. In

later experiments we found that the increased complexity in HTSM

benefits sentiment classification greatly. Finally, we can find that

the simple sentiment-topic mixture assumptions in both JST and

ASUM fail to capture the topic-word distribution in the test set and

lead to much worse perplexity than HTSM.

It is also important to investigate how a topic model’s generaliza-

tion capability varies under different number of topics. In particu-

lar, we test different models’ perplexity at the last testing point in

Figure 3, i.e., five-fold cross validation on 5000 Amazon reviews

with NewEgg reviews for training. Due to space limit, we only

demonstrate the perplexity result from our HTSM model on all four

categories of reviews in Figure 4. The baseline models exhibit sim-

ilar patterns. From the results, it is clearly to observe that within

a reasonable range of topic size, the perplexity of HTSM increas-

es moderately. When we have more than 40 topics, the perplexity

increases dramatically on all data sets, i.e., an indication of over-

fitting. The results justified our setting of the number of topics in

HTSM and all baseline topic models, and we fix this setting in all

our following experiments.

4.2.2 Word intrusion comparisons

Perplexity only measures the quality topic modeling from den-

sity estimation perspective; it is also necessary to evaluate whether
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Figure 4: Perplexity of HTSM under different number of topics

across all four categories of reviews.

the topics identified by those statistical models are human inter-

pretable. More specifically, we prefer a model that generates more

semantically coherent and meaningful topics.

In this experiment, we employ word intrusion discussed in [4]

to evaluate four different topic models, namely LDA, HTMM, A-

SUM and HTSM (because ASUM and JST are quite similar in

model assumptions, we do not include JST in this experiment).

During the first phase of evaluation, our experiment setup is as fol-

lows: we first selected the top five words from each topic zk under

every model as topical words. Then we select two intruding word-

s. The first intruding word is referred to as intra-topic intrusion

word, which has a very low probability in topic zk of correspond-

ing models. The second intruding word is referred to as inter-topic

intrusion word, which is selected from a different topic zl 6= zk
and has a high probability in topic zl but a very low probability in

topic zk. To select a word which is considered as having a very

low generation probability, we rank all the words under a topic in a

descending order with respect to p(w|z) and then randomly selec-

t a word with rank between 90 to 100 (given our vocabulary size

on all collections is around 1400). Hence, in total we have seven

words for each topic zk from every topic model: among those, five

are regular words, one is intra-topic intruding word and the last one

is inter-topic intrusion word.

In the second phase of this evaluation, we randomly shuffled the

topical words with the intruding words under each topic from ev-

ery model and present the shuffled words to three annotators. The

annotators do not have any knowledge about which topics or words

have been generated by which model, and they are only informed

of the category of the product. The task of the annotators is to i-

dentify at least one and at most two intruding words under each

topic presented to them. In order to reduce annotation bias, we

evenly separate the learned topics from each model into two parts,

and present them to different annotators. We ensure that each top-

ic is annotated by three different annotators. Since we have four

different categories and four different topic models, for this task

we take feedback from twenty four annotators. The agreement a-

mong annotators was calculated by pairwise Kappa statistics [27]

and then these kappa values were averaged across all pairs of an-

notators. For example, on tablet data set, the average kappa value

for original topical words is 0.885, which indicates annotators agree

with each other most of time. However, for the intra-topic intrusion

words and inter-topic intrusion words the average kappa values are

0.533 and 0.386 respectively, which imply that annotators might

have different ways of interpreting the inferred topics.

To quantitatively measure the quality of inferred topics from all

these four models, we define a metric named model word-intrusion

recall (MR) as follows:

MRm =
K
∑

k=1

∑S

s=1
1(imzk,s, w

m
zk
)

K ∗ S
(14)

Table 2: Word intrusion measurement across different topic

models of four categories of product reviews.

Inter-topic MR

Category LDA HTMM ASUM HTSM

camera 0.167 0.218 0.218 0.282

tablet 0.356 0.256 0.244 0.389

phone 0.192 0.179 0.231 0.333

tv 0.188 0.188 0.271 0.313

Intra-topic MR

Category LDA HTMM ASUM HTSM

camera 0.474 0.385 0.436 0.346

tablet 0.478 0.533 0.456 0.522

phone 0.551 0.500 0.487 0.346

tv 0.625 0.646 0.563 0.500

where wm
zk

is the vocabulary index of the intruding word among

the words generated from the zthk topic inferred by topic model m,

imzk,s is the corresponding index of the intruding word selected by

annotator s. S denotes the number of annotators, and K denotes

the total number of topics.

From Table 2, it is evident that annotators can interpret the topics

inferred by HTSM more effectively than those from the other mod-

els in terms of inter-topic intrusion word. For example, out of 90

actual inter-topic intrusion words in tablet category, 35 words have

been picked out by annotators from HTSM’s topics. This empirical

evidence implies that our HTSM model is inferring more human

interpretable topics than other topic models. However, in terms of

intra-topic intrusion, the performance of HTSM is not as compet-

itive as other models. The procedure of selecting low probability

intra-topic intrusion word and the concentration of the learned word

distribution under topics from HTSM might be contributing factors

to the relative inferior performance of HTSM.

4.2.3 Topic transitions

Given HTSM explicitly models topic transitions in an opinion-

ated review document, we visualize the learned transition using a

transitional diagram to qualitatively demonstrate the topical coher-

ence obtained by HTSM. Due to space limit, we only report the

results extracted from tablet data set.

First, we train an HTSM with 30 topics on all the reviews from

tablet category. To automatically differentiate domain-specific sen-

timent polarity, we train HTSM in a semi-supervised mode: the

pros/cons sections in NewEgg reviews will be used to specify sen-

timent labels on sentences; while Amazon reviews will be used in

fully unsupervised training. Then, for each sentence ti in a review

document d from training set, we infer its most probable topic zk
from HTSM via the Viterbi algorithm. As a result, for two con-

secutive sentences ti−1 and ti, we have the corresponding pairwise

topic transition zj → zk. We accumulate the transition count based

on all the consecutive sentences in the training corpus, and normal-

ize the resulting transition matrix to construct the diagram.

Figure 5 illustrates the learned topic transition diagram in the

tablet category. It is to be noted that in order to get a more perceiv-

able view, we have ignored the transitions with probabilities less

than 0.01 and also removed less popular topics in it. In this figure,

each topic is denoted as a pair of Aspect_Sentiment. For example,

screen_P represents positive sentiment about the screen aspect.

In this transition diagram, there is also a special node named start,

which is used to represent a dummy topic, which “generates” the

initial topic for the first sentence in every document. Besides, we

also highlighted the top six words under some selected topics (the

selection of annotated topics is purely based on space constrain-
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Figure 5: Estimated topic transition and top words under selected topic on tablet data set.

t). From Figure 5, we can clearly identify some interesting topical

transitions in tablet reviews. For example, when reviewers hold

positive feeling about their purchased tablets, they usually start

with positive sentiment about “price,” which is followed by pos-

itive sentiment about “battery life”, “service” and so on. However,

if a reviewer plans to criticize a tablet, he or she usually starts with

negative sentiment about “price” and then transits to negative sen-

timent about “battery life”, “screen”, “app”, and etc. This learned

transition is of particular importance in opinion summarization: it

helps organize the generated sentences in a coherent order.

4.3 Sentiment classification
In this section, we evaluate HTSM in terms of sentiment classifi-

cation. We use the already segmented NewEgg reviews as ground-

truth sentence-level sentiment annotations: we treat all sentences

in the pros section as positive and all sentences in the cons section

as negative. We should note such annotations are different from the

overall ratings of reviews. The overall ratings are of low resolution

in sentiment annotation: a review with high overall rating might

still contain some negative sentences, and vice versa. In contrast,

the self-annotated pros/cons sections are with finer-granularity in

sentiment annotations. Therefore, in this experiment we did not

use the overall ratings in model training and testing.

During the training phase of HTSM, we use a mixture of review

data sets obtained from NewEgg and Amazon. Besides, since we

have sentiment labels on sentences from the NewEgg data set, the

sentiment transition indicator τ can be directly inferred. Hence we

train our HTSM model in a semi-supervised manner. Specifically,

during the training phase of HTSM, if the input document is from

NewEgg, τ is fixed based on the sentiment labels on sentences;

otherwise, HTSM has to infer τ according to Eq (1). To make a

fare comparison across all the models, ASUM and JST were also

modified to utilize the annotated pros/cons sections in NewEgg data

set during the training phase. In addition, we also include EM-

NaiveBayes [20], a semi-supervised algorithm, as a baseline in this

experiment. It exploits the sentiment annotation in NewEgg data

during the training phase.

We use only NewEgg data set to construct the test set, since we

do not have such fine-grained annotations in Amazon data set (so

we refer Amazon data as unlabelled data). Besides, we start our

training set containing only the reviews from NewEgg (training

size 0 in Figure 6) and then keep adding more and more unlabelled

data from Amazon (training size 1000, 2000 etc.) into the train-

ing set, i.e., the exact setting that we used in perplexity evaluation

in Section 4.2.1. We report the average F-1 score from five-fold

cross-validation as the performance metric in this experiment.

Figure 6 illustrates the sentiment classification performance of

HTSM over all the four categories against ASUM, JST and EM-

NaiveBayes baselines. We can clearly notice that with the same

amount of training data, HTSM outperformed all the other model-

s, which treat sentences as independent in a document. Sentiment

consistency enforced by HTSM helps to capture the dependence

between consecutive sentences better and therefore predicts their

sentiment polarities more accurately. The only exception is in the

tv category, where the performance of HTSM degenerated beyond

training size 3000 and became worse than EM-NaiveBayes. This

degenerated result is caused by the divergent products reviewed in

the Amazon and NewEgg data sets. We manually checked the prod-

ucts in tv category from these two data sets and found there are less

common products than other categories. As a result, adding more

Amazon reviews increases the discrepancy of the learned model on

testing set, which is only from NewEgg reviews.

The improved classification performance of HTSM results from

its unique capability in modeling sentiment consistency inside a re-

view document, i.e., when sentiment switches, topic assignments

have to change in successive sentences. The transitions are con-

trolled by the parameterized logistic functions on the observable

linguistic features described in Section 3.4. In Table 3, the learned

feature weights for topic switch ǫ and sentiment switch σ on cam-

era data set are demonstrated (we have very similar results on the

other three categories as well, but due to space limit we cannot list

them in the table). For example, the bias term controlling sentiment

switch is more negative than that for topic transition. It implies that

sentiment in two consecutive sentences are less likely to change

than the topics. The learned weights for the content-based cosine
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Figure 6: Sentiment classification performance with increasing training size on four different review document sets.

Table 3: Learned feature weights in HTSM for sentiment and

topic transition on camera data set.

Sentiment transition feature Weight

bias term fs(d, i) -2.271

content-based cosine similarity between ti and ti−1 -0.393

sentiWordNet [1] score difference between ti and ti−1 0.106

sentiment word count difference in ti and ti−1 0.251

an indicator function about whether ti
is more similar to ti−1 or ti+1 0.521

jaccard coefficient between POS tags in ti and ti−1 0.049

negation word count in ti 0.104

Topic transition feature Weight

bias term fa(d, i) -0.016

content-based cosine similarity between ti and ti−1 -0.895

length ratio of two consecutive sentences ti and ti−1 0.034

relative position of ti in d, i.e., i/m 0.225

an indicator function about whether ti
is more similar to ti−1 or ti+1 0.233

similarity are negative for both transitions. It follows our expecta-

tion that the more similar two consecutive sentences are, the less

likely we will observe sentiment or topic switch. These kind of ob-

servations well support our decision of using observable linguistic

features to guide topic transition modeling and it ultimately helps

HTSM to achieve improved topic coherence and sentiment consis-

tency in modeling opinionated documents.

To provide a thorough evaluation of sentiment classification, we

also tested all the topic models with varied number of topics. Fol-

lowing the same settings as in Figure 4, we reported the F1 measure

of HTSM under all four categories of reviews. Due to space lim-

it, we did not include the results from the baselines in Figure 7.

Similar conclusion as that in perplexity evaluation can be reached:

with a moderate number of topics in HTSM, its classification per-

formance is satisfactory and stable; but with an increased number

of topics, the classification results varied and even degenerated on

some data sets (e.g., tablet data set).

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 20  30  40  50  60

F1
 m

e
a

s
u

re

Number of Topics

Camera
Tablet
Phone

Tv

Figure 7: Sentiment classification performance of HTSM under

different number of topics across all four categories of reviews.

4.4 Aspect-Based Contrastive Summarization
In order to evaluate the utility of the aspects and sentiments iden-

tified by our model, we study aspect-based review summarization,

which aims at finding the most representative sentences for each

topic (a combination of aspect and sentiment) from a collection of

reviews. In Table 4, we demonstrate a sample aspect-based con-

trastive summarization result for two comparable tablet products.

We selected Samsung Galaxy Note 10.1 and Amazon Kindle Fire

HDX based on their popularity in Amazon tablet data set. The

practical value of this type of contrastive review summaries is to

help customers easily digest vast amount of opinionated data and

make informed decisions.

Table 4 shows the side-by-side comparison on six aspects (‘+’ in-

dicates positive aspects and ‘-’ indicates negative aspects) of these

two tablets identified by HTSM. Imagine a user is making a choice

between these two tablets. If the user cares battery aspect the

most, he or she can easily find out from the summary that Samsung

Galaxy Note 10.1 is a better choice than Amazon Kindle Fire HDX

by consulting this aspect-based contrastive review summarization.

This saves the user considerable amount of time in reading the de-

tailed reviews.

We perform user studies to understand whether these kind of

summaries are meaningful for the actual users. In this experiment,
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Table 4: Aspect-based contrastive summarization on tablet dataset.

Topic Samsung Galaxy Note 10.1 Amazon Kindle Fire HDX

(+, battery)
Battery life is very good, it is easily an all day device

with wifi on and high brightness while taking notes

Battery life is ok - probably need to recharge every

other day with normal use

(-, battery)

My only issue is that it takes a long time to take a full

charge and does not charge rapidly enough to use while

charging, but the battery life is not bad

Everything works great, but the battery life is not

nearly as long as advertised

(+, sound)

it has pretty good battery life, it also has an excellent

quality sounding speakers, which i wasn’t expecting on

any tablet

Sound is really good (not home theater quality or

anything) but better than any phone I’ve heard.

(-, sound)
The audio became occasionally inoperative and the

headphone jack would crackle when using my ear buds

Users can get confused with volume buttons on the

other side

(+, cpu)
quad core processor runs everything quickly and

smoothly

The device features a fast 2.2GHz quad-core

processor and 2GB of RAM for fast that run apps,

games, and videos smoothly without an issues.

(-,cpu)
The OS was fast at first but as I added Apps it got

slower and choppy

Compared to a galaxy note which is the same price,

the Kindle HDX seems to have a slower processor

Table 5: Interleaved document summarization quality test.

Category ASUM HTMM HTSM

camera 0.078 0.362 0.560

tablet 0.153 0.370 0.477

phone 0.118 0.439 0.443

tv 0.173 0.338 0.489

we choose three different topic models, including HTMM, ASUM

and HTSM, given they all explicitly model sentences. We select

the top two most probable sentences under each topic from every

selected topic models, i.e., rank by p(t|z). Since there are many

different products under each category, we select three mostly re-

viewed products from each category for this user study. Once we

have all sentences generated from those three topic models, we ran-

domly interleave those sentences (to avoid position bias when an-

notating the results) and present them to the human annotators. The

annotators do not have any knowledge of which sentence is picked

by which model. Only the product name, the selected aspect and

the corresponding sentiment are presented to the annotators (as we

shown in Table 4). They were asked to pick one or two sentences

which provide the most useful information about the presented as-

pect along with the required sentiment. In total, we recruited six

annotators for each of the four categories. Inter-annotator agree-

ment rate on document summarization quality judgment is calculat-

ed based on the pairwise Kappa statistic and then averaged across

all pairs of annotators. For example, the average kappa value on

tablet data set is 0.511 and on tv data set is 0.554. We define the

following metric to evaluate the quality of generated summaries,

MSm =

∑S

s=1

∑K

k=1
N

m,zk
s

∑M

m=1

∑S

s=1

∑K

k=1
N

m,zk
s

(15)

where Nm,zk
s is the number of sentences picked by annotator s

and selected by model m for topic zk, S is the total number of

annotators, K is the total number of selected topics and M is the

total number of models.

Table 5 represents the summarization quality obtained by dif-

ferent models. We can find that annotators tend to select more

sentences from HTSM than the other models as informative sum-

maries. For example, in the tablet category, the annotators have

selected in total 227 sentences, out of which 147 sentences are gen-

erated by HTSM. Comparing to HTMM, although both models im-

pose transitional structure between consecutive sentences, HTMM

cannot identify opinionated sentences in the generated summary.

Comparing to ASUM, although it models sentiment polarities in

sentences, the independence assumption limits its recognition of

topical aspects in sentences. Therefore, based on this experimental

evidence, we can conclude that quantitatively, HTSM is selecting

sentences of better quality in both aspect recognition and sentiment

polarities than the other topic models for aspect-based contrastive

summarization, which is of particular value for customers to digest

the opinionated information and make wise decisions.

5. CONCLUSION
In this paper, we present a unified generative model which joint-

ly models sentiment and aspect in opinionated text documents. The

proposed Hidden Topic Sentiment Model (HTSM) captures topic

coherence by constraining the topic transition via tracking senti-

ment changes and utilizes the linguistic cues directly observable

from adjacent sentences to guide topic and sentiment transitions. In

contrast to the traditional sentiment-topic models which are built on

simple topic mixture assumptions, HTSM captures the dependen-

cy between consecutive sentences by modeling document structure

with a Markov assumption. Because of the sequential generation

of topic assignment from a Markov chain, HTSM is no longer in-

variant to permutation of words or sentences in a document. Be-

sides, sentiment consistency is strictly encoded in HTSM’s transi-

tion modeling. Such properties enable HTSM to capture rich struc-

ture embedded in natural text documents. Extensive experiments

have been performed to compare the performance of HTSM against

several state-of-the-arts topic models on four categories of produc-

t reviews from Amazon and NewEgg. Improved topic modeling

quality and sentiment classification performance are achieved.

This work opens new direction in topic modeling for sentiment

analysis. The current HTSM only captures the first order Markov

dependency among consecutive sentences, i.e. the current sentence

is influenced only by the previous one. We can incorporate long-

term dependency into HTSM, e.g., skip-chain, with controllable

computational complexity. In addition, the semi-supervised train-

ing of HTSM depends on the availability of sentence-level anno-

tations. It is important to incorporate document-level sentiment

annotations in model training, e.g., utilize the companion overall

numerical opinion ratings.

6. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.

This paper is based upon work supported in part by a Yahoo Aca-

demic Career Enhancement Award and the National Science Foun-

dation under grants IIS-1553568.

164



7. REFERENCES
[1] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0:

An enhanced lexical resource for sentiment analysis and

opinion mining. In in Proc. of LREC, 2010.

[2] D. M. Blei and P. J. Moreno. Topic segmentation with an

aspect hidden markov model. In Proceedings of the 24th

annual international ACM SIGIR conference on Research

and development in information retrieval, pages 343–348.

ACM, 2001.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet

allocation. the Journal of machine Learning research,

3:993–1022, 2003.

[4] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-Graber, and D. M.

Blei. Reading tea leaves: How humans interpret topic

models. In Advances in neural information processing

systems, pages 288–296, 2009.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum

likelihood from incomplete data via the em algorithm.

Journal of the royal statistical society. Series B

(methodological), pages 1–38, 1977.

[6] Y. Fang, L. Si, N. Somasundaram, and Z. Yu. Mining

contrastive opinions on political texts using cross-perspective

topic model. In Proceedings of the fifth ACM international

conference on Web search and data mining, pages 63–72.

ACM, 2012.

[7] T. Griffiths, M. Steyvers, D. Blei, and J. Tenenbaum.

Integrating topics and syntax. Advances in neural

information processing systems, 17:537–544, 2005.

[8] A. Gruber, Y. Weiss, and M. Rosen-Zvi. Hidden topic

markov models. In International Conference on Artificial

Intelligence and Statistics, pages 163–170, 2007.

[9] T. Hofmann. Probabilistic latent semantic analysis. In

Proceedings of the Fifteenth conference on Uncertainty in

artificial intelligence, pages 289–296. Morgan Kaufmann

Publishers Inc., 1999.

[10] E. H. Hovy. Automated discourse generation using discourse

structure relations. Artificial intelligence, 63(1):341–385,

1993.

[11] W. Jin, H. H. Ho, and R. K. Srihari. A novel lexicalized

hmm-based learning framework for web opinion mining. In

Proceedings of the 26th Annual International Conference on

Machine Learning, pages 465–472. Citeseer, 2009.

[12] Y. Jo and A. H. Oh. Aspect and sentiment unification model

for online review analysis. In Proceedings of the fourth ACM

international conference on Web search and data mining,

pages 815–824. ACM, 2011.

[13] H. Kamp. A theory of truth and semantic representation.

Formal methods in the study of language, 1:277–322, 1981.

[14] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Smart stopword

list, 2004.

[15] C. Lin and Y. He. Joint sentiment/topic model for sentiment

analysis. In Proceedings of the 18th ACM conference on

Information and knowledge management, pages 375–384.

ACM, 2009.

[16] J. McAuley and J. Leskovec. Hidden factors and hidden

topics: understanding rating dimensions with review text. In

Proceedings of the 7th ACM conference on Recommender

systems, pages 165–172. ACM, 2013.

[17] J. D. Mcauliffe and D. M. Blei. Supervised topic models. In

Advances in neural information processing systems, pages

121–128, 2008.

[18] Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic

sentiment mixture: modeling facets and opinions in weblogs.

In Proceedings of the 16th international conference on World

Wide Web, pages 171–180. ACM, 2007.

[19] D. Mimno and A. McCallum. Topic models conditioned on

arbitrary features with dirichlet-multinomial regression. The

24th Conference on Uncertainty in Artificial Intelligence,

pages 411–418, 2008.

[20] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text

classification from labeled and unlabeled documents using

em. Machine learning, 39(2-3):103–134, 2000.

[21] B. Pang and L. Lee. Seeing stars: Exploiting class

relationships for sentiment categorization with respect to

rating scales. In Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics, pages 115–124.

Association for Computational Linguistics, 2005.

[22] B. Pang and L. Lee. Opinion mining and sentiment analysis.

Foundations and trends in information retrieval,

2(1-2):1–135, 2008.

[23] L. R. Rabiner. A tutorial on hidden markov models and

selected applications in speech recognition. Proceedings of

the IEEE, 77(2):257–286, 1989.

[24] M. Steyvers and T. Griffiths. Probabilistic topic models.

Handbook of latent semantic analysis, 427(7):424–440.

[25] I. Titov and R. T. McDonald. A joint model of text and

aspect ratings for sentiment summarization. In ACL,

volume 8, pages 308–316. Citeseer, 2008.

[26] P. D. Turney and M. L. Littman. Measuring praise and

criticism: Inference of semantic orientation from association.

ACM Trans. Inf. Syst., 21(4):315–346, Oct. 2003.

[27] A. J. Viera, J. M. Garrett, et al. Understanding interobserver

agreement: the kappa statistic. Fam Med, 37(5):360–363,

2005.

[28] H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis

without aspect keyword supervision. In Proceedings of the

17th ACM SIGKDD Conference, pages 618–626. ACM,

2011.

[29] H. Wang, D. Zhang, and C. Zhai. Structural topic model for

latent topical structure analysis. In Proceedings of the 49th

Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies-Volume 1, pages

1526–1535. Association for Computational Linguistics,

2011.

[30] P. Willett. The porter stemming algorithm: then and now.

Program, 40(3):219–223, 2006.

[31] W. X. Zhao, J. Jiang, H. Yan, and X. Li. Jointly modeling

aspects and opinions with a maxent-lda hybrid. In

Proceedings of the 2010 Conference on Empirical Methods

in Natural Language Processing, pages 56–65. Association

for Computational Linguistics, 2010.

165




