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ABSTRACT
This paper explores the possibility of injecting mobility into
wireless network infrastructure. We envision WiFi access points
on wheels that move to optimize user performance. Movements
need not be all around the floor, neither do they have to operate
on batteries. As a first step, WiFi APs at home could remain teth-
ered to power and Ethernet outlets while moving in small areas
(perhaps under the couch). If such systems prove successful,
perhaps future buildings and cities could offer explicit support
for network infrastructure mobility.

This paper begins with a higher level discussion of robotic wire-
less networks – the opportunities and the hurdles – and then piv-
ots by developing a smaller slice of the vision through a system
called iMob. With iMob, a WiFi AP is mounted on a Roomba robot
and made to periodically move within a 2x2 sqft region. The core
research questions pertain to finding the best location to move
to, such that the SNRs from its clients are strong, and the interfer-
ences from other APs are weak. Our measurements show that the
richness of wireless multipath offers significant opportunities –
even within a 2x2 sqft region, locations exist that are 1.7x better
than the average location in terms of throughput. When multiple
APs in a neighborhood coordinate, the gains can be even higher.
In sum, although infrastructure mobility has been discussed in
the context of Google Balloons, ad hoc networks, and delay tol-
erant networks, we believe that the possibility of moving our per-
sonal devices in homes and offices is relatively unexplored, and
could open doors to new kinds of innovation.

Categories and Subject Descriptors
•Networks → Network architectures; Wireless access points, base
stations and infrastructure; Cyber-physical networks;
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1. MOTIVATION AND VISION
The last 30 years have witnessed significant advancements in
wireless networking, ranging from hardware improvements to
breakthroughs in theory, algorithms, and protocols. In the re-
cent years, however, there is growing agreement in the research
community that gains from the lower layers (MAC and PHY)
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are reaching saturation. Many are beginning to believe that
the next “jump” in network performance will emerge from new
ways of organizing networks [1–5]. In considering new network
organizations, we explore the possibility of merging wireless
networking with robotics. Specifically, we ask: what if network
infrastructure of the future – WiFi APs, enterprise WLANs, cell
towers – are empowered with the ability to move physically? In
pursuit of this thought, we began surveying the current state of
robotics, as well as the pros and cons of physically moving in-
frastructure (e.g., WiFi APs on wheels, or cell towers on drones).
We make a few initial observations below.

(1) Infrastructure mobility may not be viewed as a one-size-fit-all
solution, rather as a spectrum of opportunities illustrated in Fig-
ure 1. The opportunities range from centimeter scale antenna
mobility to exploit multipath opportunities [6], to feet scale teth-
ered mobility to evade wireless shadows and interferences, to full
scale macro-mobility that minimize distance to clients. Network
designers can choose to operate at different points on this spec-
trum, depending on user’s requirements, budget, applications,
and psychological comfort.

(2) Mobility is expected to bring a new degree of freedom (DoF) to
network design, but more importantly, this DoF compliments ex-
isting dimensions of wireless innovation. Techniques for power
control, channel allocation, localization, topology control, can
all benefit if APs are able to move, even in the scale of inches.

(3) The time scale of mobility can be regulated as necessary.
Small scale mobility can be used to compensate for small
changes in network conditions, while full scale mobility can be
triggered occasionally when the system moves to a skewed state,
or a strict QoS requirement is ordered. In cellular networks, for
instance, quad-copters could occasionally fly out from cell tow-
ers and position themselves strategically to meet users’ demands
– like a network cloudlet [2, 3]. Infrastructure mobility could
evolve as an on-demand service, a cost-effective and scalable
alternative to over-provisioning.

Of course, some basic questions arise.

(1) Is moving infrastructure really practical? Concerns on fea-
sibility are valid, but could perhaps be alleviated by building the
vision in small systematic steps. Advances in personal robotics,
beginning from the popular Roomba [7] to the more recent quad-
copters [8–11] are already mainstream. Hardware is rapidly be-
coming cheap and reliable – an Arduino based robot car chassis
adequate for cradling WiFi APs is $16 today [12]. Based on where
robotic technology stands today [13], it is certainly not the fun-
damental barrier to infrastructure mobility.

Questions on the architectural aspects are certainly more rele-
vant, such as maintaining power/Internet connectivity to a mo-
bile AP, tangling wires, awkward moving objects on the floor, etc.
However, we do not envision an all-at-once technology deploy-
ment, rather we intend to activate functionalities incrementally.
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Figure 1: Regimes of infrastructure mobility, ranging from centimeter scale micro-motions, to feet scale mini-motion under couches,
to building scale macro-motion perhaps on tracks laid on ceilings. Further into the future, perhaps flying quadcopters can serve as
cell tower extenders, parking at strategic locations to meet client needs.

As a first step in home settings, a mobile WiFi AP might just re-
main tethered to power and Ethernet, and only move in small
spatial scales (say, under the couch or study table). In enter-
prises, airports, and hotels, the APs may also be tethered, but
they could move in a coordinated manner (like a joint topology
control problem) orchestrated by the cloud. Moreover, the AP
movements need not be continuous; the time scales could slowly
become more frequent as the system matures and gains social
acceptance. Of course, facilities management and other logisti-
cal/policy questions will arise, but we believe they can be miti-
gated if the core performance gains are compelling.

(2) How compelling are the gains? While the answer obviously
depends on numerous factors, the high level message is that the
upper bound can reach 3x and more, compared to the static case.
For example, in home environments, median throughput from
2 feet of mobility is 2x for single clients, with the possibility of
reaching 4x in 20% of the cases. With multiple homes, if APs co-
ordinate to avoid mutual interference and optimize client SNR,
median gain in overall network throughput can be 1.77x or more.

It is crucial to recognize that the performance gains are not ob-
tained by moving the AP close to one client – with multiple clients
associated to an AP, moving close to one client will adversely af-
fect others. The gains we observe actually arise from finding ap-
propriate AP locations from which the SNRs to all its clients are
strong. This is feasible due to rich spatial diversity in indoor en-
vironments, i.e., there exists certain nearby locations from which
many clients experience strong channel conditions. In fact, the
best AP locations could also experience lower interference from
other APs and clients, enabling greater spatial reuse. On the other
hand, blindly chosen AP locations can will fail to leverage these
benefits, resulting in far inferior performance.

iMob demonstrates the ability to improve throughput to 5+
clients simultaneously. If too many more clients are active si-
multaneously, iMob can choose the top-K demanding clients
and optimize their performance without affecting the others. If
no solution is feasible, i.e., no AP location is able to satisfy the
requirements, iMob could reduce the value of K . In the worst
case, iMob will degenerate to a “static” AP and behave exactly as
today’s WiFi technology.

(3) Why move? Why not use MIMO, beamforming, or other
software techniques? While these PHY layer techniques also
leverage spatial diversity, mobility is still complimentary. Micro-
shadowing scenarios are highly common in indoor environ-

ments [14, 15] – moving slightly can appreciably increase the
rank of the channel matrix, resulting in higher MIMO gains. Our
measurements confirm 3x3 MIMO gains with today’s 802.11 WiFi
cards. Further, interference at the MAC layer is a function of en-
ergy, implying that AP1 would need to move out of AP2’s carrier
sensing range to enable spatial reuse. With beamforming/MIMO,
AP1 will still sense AP2 and will defer communication. However,
if AP1 could physically move out of AP2’s range, or if AP1 and AP2
could jointly move to become “independent”, system perfor-
mance can improve further. Lastly, mobility and beamforming
can be performed jointly to harness the best of both worlds.

The above is a high level vision (and qualitative arguments)
aimed at motivating the overall research direction. We published
a part of this vision in a workshop paper [16], along with toy
measurements on USRPs using 1 MHz frequencies. This paper
focuses on systematically characterizing the research landscape
in real environments, and then builds a completely functional
robotic AP system – iMob – using off the shelf 802.11n hardware.
The key technical modules we develop are described next.

2. iMob: ROBOTIC WIFI ACCESS POINTS
As a first step of the broad vision, we focus on small scale mobility
in homes, in a way that is minimally disruptive to the established
notions of a WiFi network. The iMob system we develop will al-
low WiFi APs to move on wheels while being tethered to the same
power and Ethernet cable, as is currently used in most homes.
Ideally, the APs could be placed away from human movement,
such as underneath a couch or a side-table, or at the corner of
a room1. In this setting, the iMob system will be tasked to offer
performance gains to client devices. The main technical compo-
nents we develop are as follows:

• We begin by measuring the upper bound on performance gain
achievable through feet-length mobility of WiFi APs. These gains
are measured using a testbed of 8 laptops mounted on Roomba
robots – the laptops run 3x3 MIMO using Intel 5300 802.11n
cards. Using one of the devices as a mobile AP and others as
scattered clients, we find the optimal AP location from which
system performance is maximized. Besides serving as an Ora-
cle, these measurements also offer insights into the nature of
the gains, ultimately guiding the design of a real-time robotic
networking system.

1This is anyway the case in many homes, given that network de-
vices and wires are typically hidden from eyesight.
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• We cross-check the Intel card results with USRPs and Atheros
cards and verify that the gains scale across heterogeneous hard-
ware (and not a function of our hardware idiosyncrasies).

• We then develop a practical iMob system in which the AP ob-
serves channel conditions and moves in real-time to the best
estimated location. The motion planning algorithm uses insights
from channel measurements, properties of the robot, and results
from optimal stopping theory, to balance the tradeoff between
exploration and exploitation (i.e., whether the AP should con-
tinue to explore more locations or should stop and perform
remaining transmissions from its current location). This tradeoff
naturally arises because the channel changes over space and
time, and the AP does not possess the Oracle’s view.

• We also build a coordinated iMob system in which the cloud
moves multiple interfering APs (e.g., in neighboring apartments
or houses) to optimize performance. This is essentially a topology
control problem, with physical mobility as a degree of freedom.
Both signals and the interferences can now be controlled to opti-
mize desired performance metrics.

• We evaluate single AP iMob in faculty homes, student apart-
ments, and in our lab. Coordinated iMob is evaluated with 4 APs
deployed across 2 floors in our engineering building. Experiments
are designed to evaluate a range of parameters and scenarios, in-
cluding throughput and fairness, MIMO gains, impact of “leash
length”, impact of increasing number of clients, client mobility,
etc. The overall gains are promising, and achievable without
accurate prediction of wireless multipath and spatiotempo-
ral channel variations. The inherent statistical nature of the
environment offers viable opportunities.

3. MEASUREMENTS
To characterize performance upper bounds with mobility, we will
exhaustively move APs in small spatial granularities and pick the
best location that optimizes a given metric – we call this the Ora-
cle. We will then focus on understanding the nature of the gains,
and utilize the insights to guide the design of a practical, real-
time robotic WiFi system.

3.1 Experiment Platform and Methodology
Figure 2(a) shows a iMob AP assembled using a Roomba iRobot
2.1, a webcam, and a laptop equipped with Intel 5300 802.11n
cards. The laptop is mounted on the iRobot and connected to it
over the serial interface; it is also connected to a Microsoft live
cam (attached in front of the iRobot) to guide its motion. The
laptop acts as the controller for the whole system, sending mo-
tion commands to the robot (via the OSI interface), while also
controlling the network interface for transmission/reception. 8
laptop clients were uniformly scattered at various locations and
programmed to communicate back to the iMob AP.
The robot’s mobility is confined within a 2x2 feet square region,
demarcated by colored duct tapes pasted on the floor. If the
robot drifts out of the square box, the camera detects the color
of the duct tapes and triggers a change in heading direction.
These square regions are selected from realistic areas in homes
and apartments, i.e., near cable connection outlets. The AP
performs “raster scans” within the square box (Figure 2(b)) at a
speed of 10 cm/sec – during the scan, the AP continuously sends
around 200 packets/second, equivalent to 60 packets per 3cms.
Transmissions are performed on regular OFDM with 3x3 MIMO
at both 2.4GHz and 5GHz bands. Clients record the per-packet
channel state information (CSI) for offline analysis [17, 18].

Figure 2: (a) A laptop and a webcam mounted on a Roomba to
emulate a iMob AP. (b) Raster scan in a box while communicat-
ing to scattered client(s).

The experiments were conducted in 4 different settings: (1)
Student-office referred to as Office. (2) Various corridors open-
ing into the atrium of the engineering building, called Lab. (3)
Single bedroom graduate student apartment, called Apartment.
(4) Large single family home with APs placed in different rooms,
called Home. In all cases, people moved naturally during the
experiments, and clients scattered at realistic locations. Total
measurements exceed 100 hours, generating 5TB of data.

Metrics: We evaluate performance in terms of data rates,
throughput, and fairness. While the Oracle selects the loca-
tion with best data rate, our baseline scheme reflects today’s
static systems where the AP is placed at an arbitrary location
near cable connection outlets. In light of this, the median perfor-
mance among all locations inside the 2x2 feet square is treated
as the baseline. Thus, the upper bound gain, for throughput say,
is defined as:

Gai n = max∀i thr oug hput

medi an∀i thr oug hput

where i denotes location i to which the AP can move to. Of
course, when we design the real-time iMob system (later in
Section 4), the median gain is not known to the AP since contin-
uous raster scans are impractical. Still, the iMob AP should park
itself at “good” locations from which the performance exceeds
the median. We will discuss these later; for now, we focus on
characterizing the system’s upper bounds.

3.2 Characterizing Upper Bounds
The experiments are designed around 8 questions – the first 4
focussed on the amount of performance gain, and the next 4 on
understanding the nature of the gains.

(1) How much Data Rate Gain at Single Client?
Consider a case where the iMob AP moves within a box while
continuously transmitting packets, and 8 scattered clients record
the channel state information (CSI) for every location of the
AP. The CSI at each client can be accurately translated to the
achievable data rate for communication between this client
and the AP. For each tuple < Boxi ,C l i ent j >, we compute the
max, medi an, and mi n data rates (to avoid outliers, we always
use the 99th percentile as max and the 1 percentile as mi n).
Figure 3(a) plots the CDF of max minus medi an data rates due
to the mobile AP, as well as the static AP, across all tuples. The
key observation is that AP mobility induces large variations in
data rates, far greater compared to the variations from temporal
channel fluctuations. Figure 3(b) plots the CDF of medi an
minus mi n data rates for both mobile and static APs, and shows
that the reduction in data rates are also equally stronger due to
mobility. Figure 3(c) further compares the range of data rates
experienced in the same box by a mobile and static AP – the error
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Figure 3: (a) M ax minus Medi an data rates for mobile and static AP, verifying the greater diversity caused due to mobility. (b)
Medi an minus Mi n data rates confirms that mobility also induces low data rates. (c) Comparison of the range of data rates for
mobile and static APs in 10 randomly selected boxes (each bar representing Medi an and error bars representing [M ax, Mi n]).

bars represent the max and mi n (Static’s 1 percentile is some-
times the same as median due to low CSI variations). Clearly,
mobility induces diversity.

While these results validate the known intuition that the wire-
less multipath signals interfere constructively or destructively in
small spatial scales (causing diversity), it opens 2 specific oppor-
tunities for robotic WiFi applications.

(1) With centimeter scale mobility, an AP might appreciably im-
prove data rate to a given client.

(2) With centimeter scale mobility, an AP can relocate to mini-
mize interference from nearby APs/clients (potentially improv-
ing spatial reuse).

Assuming that the iMob AP is able to magically relocate to the
best position, what is the gain possible compared to a static AP?
Figures 4(a) plots the CDF of “rate gain” from 8 clients across 21
different boxes where the AP moved. We compute the rate gain
as the ratio of max

medi an data rate from each box. Evidently, an Or-
acle can easily double the data rate on average, and up to 4x in
≈ 20% cases. Figures 4(b) now plots the CDF of “SNR reduction”
to reflect how the mobile AP can move to avoid interference from
nearby interferers. SNR reduction is computed as the difference
between median and minimum SNR (note that interference is a
function of energy and not the interferer’s data rate, and hence
plotted in terms of SNR). The achieved SNR reduction is around
4.5dB on average, contributing to a modest improvement in spa-
tial reuse and throughput. In summary, the potential gains seem
substantial given that the AP moved within a box of side 2 feet.
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Figure 4: (a) CDF of (max/medi an) data rates in a box indi-
cates gain at a client. (b) CDF of (medi an −mi n) SNR in a box
indicates gain from avoiding interference.

(2) Does Gain Scale to Multiple Clients?
In most realistic settings, the AP must serve multiple clients.
So the natural question is: is there any AP location from which
the data rates can be simultaneously improved for all clients?
For this, we sum the data rates of all clients for each AP loca-
tion within a given box – let Si denote this sum for location
i . Then we compute the average per-client data rate gain, β,

defined as max∀i (Si )
medi an∀i (Si ) . As before, the median represents the

performance to be expected when the AP is placed statically at a

random location.

Figure 5 plots the CDF of β for increasing number of clients. The
gains are obviously expected to diminish since the AP must sat-
isfy a stricter condition, nonetheless, the gains are still upwards
of 1.35x on average even with 7 clients, and up to 1.45x for 3
clients. Homes mostly fall within this regime, where greater than
3 simultaneously backlogged connections are rare. In enterprises
and hotspots (e.g., coffee shops), perhaps iMob can serve the 7
most data-hungry clients or the 7 weakest clients, improving the
overall performance of the entire network. This result confirms
the richness in indoor multipath diversity, offering support for
robotic AP mobility even for the case of multiple clients.
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Figure 5: CDF of sum(data rate) gain over a static AP, where data
rates are summed over multiple clients.

(3) How much Gain in Throughput?
Figure 6(a) plots the CDF of throughput experienced by each
client due to AP mobility. If an Oracle were to pick the best AP lo-
cation, the throughput gain (compared to a random location) is
shown in Figure 6(b). Aligned with expectations, the throughput
gains are proportional to the data rate gains, although slightly
less due to wastage from backoff and DIFS/SIFS slots.
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Figure 6: (a) CDF of throughput for each client during AP’s mo-
bility. (b) CDF of (max/medi an), i.e., the Oracle’s gain over a
randomly placed static AP.

(4) Does the Gain Scale across Environments?
Figure 7 reports the Oracle’s median data rate gains from each of
4 environments, namely Office, Lab, Apartment, and Home. The
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Figure 7: Oracle’s median data rate gain in Office, Lab, Apart-
ment, and Home in entirely uncontrolled settings.

reported gains are computed using the same metrics as above
(i.e., max/median), and the experiments executed at 4 to 8 dif-
ferent places/rooms in each environment. The environment was
entirely uncontrolled with natural human and object/furniture
movements. Improvements are consistent, especially in the
larger Office where the the clients are relatively further away
from the AP (i.e., lower SNR). This is because modest improve-
ment in SNR here can translate to greater rate improvement due
to their logarithmic relationship.

To verify portability across hardware platforms, we performed
similar measurements on USRPs and Intel cards. Figure 9 sum-
marizes the results – this is loose in the sense that experiment
conditions differed and some parameters were not identical
(e.g., packet aggregation, MIMO, etc.) The key message is that
the gains are consistent over static (single client), precluding any
misgivings on our hardware.

Figure 9: Comparison across platforms.

3.3 Understanding the Nature of Gains
While the upper bounds on performance are valuable, the extent
to which the bounds can be achieved is also important. The next
4 questions are focussed on achievability.

(5) How Many High Gain Locations?
The existence of high gain locations is a necessary but not suffi-
cient condition – if such locations are rare, the AP would have to
spend a large time searching for it, affecting performance. Now,
instead of targeting only the maxDat aRate locations, we define
high gain locations as those that achieve greater than 0.95 times
the maximum data rate in that box. Figure 8(a) plots the CDF
of the fraction of these high gain locations, computed across 64

boxes from all experiments (we define “locations” as a 3x3 cm2

area as will be clear soon). Evidently, ≈ 40 high gain locations are
available on average in a box, with some boxes offering far more.
This is a favorable indication.

(6) How Scattered are High Gain Locations?
It is important to also characterize the scattering of the high gain
locations within the box – if all the high gain locations are clus-
tered in a small region, searching one of them can still be time
consuming. Figure 8(b) shows one example of the scattering in
one box – the white marks denote high gain locations and visu-
ally illustrate that they are “well scattered”. However, to quantify
this, we compute the distance, δ, that an AP must travel to en-
counter at a high gain location. Figure 8(c) plots the CDF of δ
with randomly chosen starting positions, and with mobility sim-
ilar to a 2D raster scan within the box. Evidently, δ is quite small
for a large fraction of the cases, suggesting that high gain loca-
tions can be encountered without searching for too long. This
brings hope that the potential gains might actually be achievable.

Of course, the above graph also suggests that in some cases, the
AP needs to move a large distance to encounter a high gain lo-
cation. However, this does not mean that for these cases, the
performance will be poor. To capture this, we attempt to answer
the following question: if the AP moves a pre-specified distance δ,
what is the best performance that can be achieved? Specifically,
for increasing values of δ, we record the best data rate encoun-
tered, and compare this data rate against a static AP (i.e., median
data rate in the box) and the Oracle (i.e., the max data rate in the
box). Figure 10(a) and (b) plot the two comparisons, respectively
– δ is defined as a fraction of a full raster scan in the box. Fig-
ure 10(a) suggests that even when the AP travels a small distance
(δ= 5% of the raster scan), the data rate gain over static AP is still
1.5x. Figure 10(b) suggests that this gain reaches close to the Or-
acle. Thus, the overall message is that strong locations are not
elusive – even if the best location is unavailable, “good” ones can
be found quite quickly.

(7) How Predictable are High Gain Locations?
In designing a practical system, it would be useful if the exis-
tence of a nearby high gain location can be predicted. Such pre-
dictions may be possible if the locations surrounding the high
gain location form a gradient, like a “hill”. On the other hand,
if the surrounding locations exhibit significantly less correlation
to the high gain locations, then predictions are difficult. To this
end, we compute the CSI at a given location and measure how
the correlation degrades as we move gradually away from it. If
the correlation degrades gradually, it would indicate the “hill” we
desire. Figure 11 shows the results of this experiment. Unfortu-
nately, we observe that CSI correlations are strong until separa-
tions of 2.5cms, but plummets drastically at separations of 3cms
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Figure 10: (a) The best location encountered after moving a
small distance (local max) can still offer good gains over a static
AP. (b) Local max is not too inferior compared to the Oracle.

and more. This implies that the coherence region of a signal is
around 3cms, and locations outside that region is a poor indica-
tor of its neighborhood. We term this 3x3 cm2 coherence region
as a pixel – which now defines a “location” – and recognize that
neighboring pixels will vary drastically in SNR or data rate. Thus,
the data rate landscape is like a “jagged mountain range” in the
granularity of 3cms, making predictions difficult. These results
and conclusions are consistent with multipath theory and inde-
pendent measurements in literature [19–21].
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Figure 11: Data rates within a 5 cm shift of the mobile AP

(8) How Persistent are High Gain Locations?
If small changes in environmental factors cause the channel to
change drastically, then iMob may not be worthwhile, since the
AP will need to move very frequently. We classify environmen-
tal factors in 3 categories, namely human mobility, object mo-
bility (e.g., doors, furniture), and device mobility (e.g., a smart-
phone moving in the user’s hand). We then extensively investi-
gate temporal stability by perturbing each of these factors – a hu-
man user typing on the keyboard, many people walking around,
furniture moving, client laptops moving, etc. In the interest of
space, we distill our key findings: (1) Client device mobility at the
centimeter scale induces drastic change in the CSI, causing the
channel to heavily fluctuate. iMob may not be beneficial to such
devices (tablets, smartphones) when they are being held/carried
in the hand. (2) For a static device (e.g., laptop, TV), human and
object mobility impact the channel only when they block dom-
inant signal components between the AP and the client. How-
ever, as shown in Figure 12(a) and (b), the channel revives once
the human/objects have moved past. (3) Only when the human

or object moves to a new position, and also blocks the dominant
signals, the CSI (and data rate) changes persist. However, such
changes occur in the time scale of minutes [19] and can be de-
tected by tracking changes in the CSI (detailed later). Thus, the
take away message is that iMob could be effective even under dy-
namic environments, so long as the clients are static.
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Figure 12: Data rate fluctuates when (a) humans, (b) objects go
close to client, dwell for 10s, and walk past; the rate revives.

4. SYSTEM DESIGN
We take away 3 important messages from the measurements
above: (1) The achievable performance improvement due to
robotic AP mobility is substantial, available under realistic con-
ditions (multiple clients and different indoor environments),
and hence worth pursuing. (2) The high gain locations are
challenging to model because they are randomly located, spa-
tially small, and often juxtaposed next to poor SNR locations
(making predictions difficult). (3) Although challenging, some
opportunities offer hope – the high SNR locations are many, well
scattered in a box, and stable for reasonable time scales even in
real environments. This section is aimed at designing a practical
AP motion planning algorithm that will suitably cope/leverage
the above challenges and opportunities.

Some Design Guidelines
The core task of the algorithm is to search through different pix-
els (called exploration) and stop at a pixel that is expected to of-
fer maximum performance gains (called exploitation). In the in-
terest of space, we omit the various trials and deliberations that
led to our final design; instead, we briefly discuss the key design
guidelines that emerged from them. We will then assemble these
guidelines into a practical iMob AP.

(1) Since AP mobility is at far slower time scales than packet
transmissions, the exploration process must be speedy. Other-
wise, an AP would spend unnecessary time at suboptimal pixels.

(2) Robotic motion is not accurate due to skidding of wheels,
noisy compass values, mechanical turns – thus a robot cannot
go back on the exact path on which it has traveled. This implies
stopping decisions need to be made on-the-spot based on the
SNR at that pixel. Performing a search and then retracing back to
the max pixel on that path is not an option.

(3) The need to stop immediately at a high SNR pixel limits the
maximum speed of the AP. Specifically, the inertial displacement
after applying the brakes should be no more than a pixel width –
to allow the AP to be within the same pixel once it decides to stop.
(4) Stochastic hill climbing or simulated annealing algorithms
are not an option. Simulated annealing either incurs excessive
time, or the starting point of the algorithm must jump to different
random locations, which is impractical for the physically mov-
ing AP. Also, as mentioned earlier, these algorithms assume that
backward motion is possible, which in our case is difficult.

(5) When clients move, or the environment changes too much,
the CSI at the AP exhibits substantial change. This can be a trig-
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ger for the AP to re-explore the best pixel, since the current one
may have become sub-optimal. This is particularly necessary
when this client is data hungry and optimizing its performance
will boost the overall network performance.

Finally, and perhaps needless to say, the mobility heuristic must
be lightweight to run on a simple robot in real time.

Optimal Stopping Theory
The crux of our heuristic is designed around a result from opti-
mal stopping theory (OST) in applied statistics [22,23]. The prob-
lem definition of OST is as follows. An employer intends to hire 1
individual out of n applicants (all of whom can be ranked based
on quality). The applicants are interviewed one by one in a ran-
dom order. However, unlike typical situations, in this case the in-
terviewer must make a decision immediately after the interview;
once rejected, an applicant cannot be recalled. Of course, dur-
ing the interview, the interviewer can rank all candidates seen
thus far, but is unaware of the quality of yet unseen candidates.
OST asks: which candidate should be selected to maximize the
probability of recruiting the best candidate. Selecting too early
can leave many good candidates unseen; picking too late might
mean that the best candidate is already rejected. The OST re-
sult dictates that the first n

e candidates should be rejected, and
among the subsequent candidates, the first on that ranks better
than all n

e candidates should be recruited.

OST bears a strong resemblance to our problem of selecting the
best pixel, primarily because the pixels are scattered in an en-
tirely random manner, with little spatial correlation (3cms) (Fig-
ure 11). Hence, there is hardly a notion of “gradient” to lever-
age. Moreover, channel modeling or ray tracing seemed imprac-
tical since the iMob AP does not have details of the environment
(floorplan, furniture, etc.) that would influence the multipath
signal components. A statistical approach seems inevitable. In
fact, since high SNR pixels are not rare and quite well scattered
(recall Figure 8(b) and (c)), a statistical approach may be able to
find such a pixel within a short time. The time to search can be
reduced by moving the AP fast during the exploration phase, and
slowing it down during exploitation (i.e., when its time to stop).
With this background, we now describe the heuristic precisely.

Mobility Planning Heuristic
Figure 13 shows the flow-chart for iMob’s mobility planning
heuristic. The AP is placed at a random location by the user.
Once it observes a stream of packets from a client, it begins an
exploration phase. In this phase, it performs a raster scan at its
maximum permissible speed, Vmax , recording the channel state
information (CSI) from each packet transmitted by client(s). Of
course, the AP continues to communicate during exploration,
moving through pixels of varying quality. The exploration con-
tinues until the AP has moved through N

e pixels, where N is the
total number of pixels in the box. At this point, the AP computes
the best pixel among these N

e pixels, where “best” is defined as
an utility function of CSI:

Umax = max
p∈[1, n

e ]

(∑
i l og (SN Ri )

Ip

)
where p denotes a pixel covered by the AP, i denotes the index
of its own clients. Ip denotes the number of interfering APs and
clients sensed at p. The AP now enters the exploitation phase.
During exploitation, the AP computes every pixel’s utility, and
stops whenever a pixel’s utility is ≥Umax . However, to brake and

Figure 13: Core flow diagram of iMob’s heuristic

stop in the same pixel, the velocity of the AP must be reduced
during exploitation. Otherwise, inertia and skidding of wheels
will propel the AP forward, and returning back to this exact pixel
will be time consuming. The reduced speed, Vmi n , is designed
such that inertial displacement (after the application of brakes) is
less than a pixel length (3cms) (discussed earlier). Once stopped,
the AP continues communication with the client(s), expectedly
at a near optimal data rate. The AP remains in this location un-
til a new data hungry client joins, or until it observes a substan-
tial change in the CSI of a client. Substantial CSI changes sug-
gest mobility of the client or appreciable changes in the environ-
ment. Under both these conditions, the AP triggers the explo-
ration phase again, and relocates to a new pixel. Additionally, the
AP proactively relocates if it has been static for a very long time.

A common perception is that the exploration phase incurs a per-
formance penalty because the AP is moving during this time and
communicating from sub-optimal pixels. We observe that this
sub-optimality is true with respect to the Oracle but not with re-
spect to the static AP. Note that a mobile AP should statistically
achieve the same performance as a static AP during exploration
because the mobile AP will move through equal number of strong
and weak pixels. Evaluation results confirm this (Figure 14(c)).

A natural question might be: what if the channel quality at other
locations improve over time – an iMob AP will not be able to proac-
tively exploit this opportunity. We observe that this is unlikely
when CSI is used as the indicator function. If some other pixel
has to improve substantially, then either the client must move
to a new location, or the environment must change appreciably.
Unlike SNR, both the effects will manifest in CSI variations.

Improvements to the Heuristic
We discuss a few optimizations to the core heuristic above.
(1) In some cases, the exploitation phase may not end quickly –
the AP may not encounter a pixel offering Umax for a long dis-
tance. In such cases, the AP could be made to lower its expecta-
tions in proportion to the time spent in the exploitation phase.
In other words, the AP starts with the hope to achieve Umax , but
progressively lowers the bar to some fraction of this value. The
rational is stop soon at a pixel that offers reasonable utility, as op-
posed to paying the cost for finding the perfect pixel.

(2) Data hungry clients, such as those that perform video stream-
ing, are likely to be the highest beneficiaries of iMob. However,
most video streaming clients buffer data, leaving bursts of time
in which packet downloads are much less. The AP could exploit
these gaps to explore – if new pixels are discovered with greater
utility, it could relocate. Recall that the pixel at which the AP
stopped moving is not guaranteed to be optimal – its only a sta-
tistical estimate using OST. Exploring more can still be beneficial.

Multi-AP Coordinated Motion Planning
We extend the above heuristic to multiple APs (e.g., in residential
neighborhood) by engaging the cloud as a mobility coordinator.
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Figure 14: Throughput from real-time iMob with 4 clients: (a) Overall average throughput. (b) Average throughput when the AP is
mobile, showing that AP mobility does not impose a performance penalty. (c) Data rate variation before and after stopping – the
mobile AP’s rates are comparable to the Static until it stops, and higher thereafter.

For ease of explanation, let us assume K APs numbered from 1 to
K . The cloud instructs the APs to enter the exploration phase to-
gether, and each AP computes the maximum utility among the
first N

e visited pixels. Of course, these pixels not only experi-
ence different SNRs but also different interferences caused by the
other (simultaneously moving) APs. Each AP reports at the end
of the exploration phase, and once all APs have completed ex-
ploration, the cloud again instructs them to begin exploitation.
However, the exploitation phase is executed in series, meaning
that AP1 performs exploitation first, followed by AP2, and so on.
This partially ensures that APi has at least accounted for inter-
ferences from all (i − 1) APs. Each AP searches for a pixel that
matches or exceeds its target utility, and stops upon finding one.
Of course, this does not position APs in the optimal manner, but
settles down in one reasonable configuration quickly. This also
ensures convergence of AP movement.

5. EVALUATION
We evaluate a completely functional single and multi-AP iMob
system and focus on (1) the throughput and fairness comparison
with today’s static APs, (2) gap from the Oracle, and (3) impact of
various parameters, such as client density, traffic sessions, mo-
bility area, etc. We begin with a description of the methodology.

5.1 Implementation and Methodology
The evaluation platform is similar to the measurement plat-
form, with the following key differences. The iMob explo-
ration/exploitation heuristic has been implemented in the Linux
kernel (Ubuntu 10.04) to completely operate in real time (e.g.,
pixel search, utility computation, Roomba speed control, brak-
ing). Performance is measured on the wireless link only – the
wired Internet connections at residences are the bottleneck, so
connecting to the Internet would not reflect the actual wireless
gains. We perform both single AP and multi-AP experiments.
In the multi-AP case, a central server controls 4 APs – deployed
across 2 floors of our university building – to extract holistic
SINR and topological gains. Clients associate to our AP and
upload/download packets over UDP/TCP while the AP moves
to optimize performance. To compare against the Oracle, we
performed experiments with continuous mobility and used the
CSI data to precisely infer data rates [18] and throughput of
each scheme. For realistic backlogged traffic, we record and use
packet traces from YouTube, Google Hangout, and casual brows-
ing sessions, captured from Wireshark. Across all experiments,
the AP and clients were placed at realistic locations (to the extent
possible). The environment was completely uncontrolled with
people naturally moving, working, etc.

As a final point, Figure 15 plots the inertial displacement of our
Roomba robot from the time of braking, for increasing AP speeds.
Given pixels width of 3cms, the maximum AP velocity prescribed
by this graph should be less than 20 cms/s – we conservatively
use 5cm/s since the braking may happen half-way into the pixel.
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Figure 15: Roomba’s inertial displacement after braking.

5.2 Real-time Single AP Experiments
Figure 14(a) plots the throughput comparison between iMob
and a Static AP for various sessions, using 4 static and fully back-
logged clients. Average throughput improvement is around 44%.
One of the cases shows Static performing slightly better, perhaps
because it was fortunately located at a strong SNR pixel. This is
statistically a rare event, but possible.

Figure 14(b) compares the throughput achieved during the time
the iMob AP was moving – this confirms that AP mobility does
not impose a performance penalty. The throughput achieved by
Static and Mobile are comparable since, statistically, the Mobile
AP moves through both strong and weak quality pixels. However,
once the AP stops at a strong SNR pixel, the performance ex-
ceeds Static thereafter, translating to net gain. Figure 14(c) zooms
into the data rates observed during the exploration and the ex-
ploitation phase, showing how iMob’s performance improves af-
ter stopping. Note that even while stationary, an AP (both Static
and Mobile) still experience rate variations by around a notch
due to temporal fluctuations (as seen earlier in Figure 3).

5.2.1 Coping with Environmental Dynamism
Observe that environmental dynamism will alter the optimal
AP position, hence the iMob AP will need to trigger a new ex-
ploration phase. iMob uses a CSI based classification method
that correlates the newly observed CSIs with recent CSIs, using
techniques similar to [19]. If the correlation drops greater than
a threshold, the AP triggers a relocation. For this, one of the
clients was mounted on a Roomba and programmed to move
periodically in our experiments – Figure 16(a) plots example
timings of the client mobility and the Mobile AP’s relocation
trigger. The detection accuracy is robust and not affected by
other humans moving in the environment. Figure 16(b) plots
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Figure 16: (a) AP detects when client moves and trigger relocation. (b) Detection accuracy for increasing client displacement.
(c) Variation of data rates when human typing on a laptop versus the absence of humans.

the detection accuracy across all experiment sessions, as a func-
tion of the distance the client moved from its prior position. In
some additional cases, the AP also triggered mobility because of
CSI changed (even though the client did not move), but we are
unable to verify if it was a valid trigger. This is because we do
not know the ground truth on whether the environment truly
changed or not, hence false positives cannot be computed in
such cases. To shed more light, Figure 16(c) shows the CDF of
throughput variation between two cases: (1) a human is typing
and working with the client laptop, and (2) the client laptop with-
out the human user. The similarity in deviation suggests that the
channel does not vary due to the human working, obviating the
need for iMob APs to move in such realistic cases.

5.2.2 Fairness and Leash Length
Figure 17(a) shows that throughput improvements with iMob is
not obtained at the cost of fairness. Using Jain’s Fairness Index,
we find comparable fairness performance as Static. Moreover, if
desired, iMob can explicitly optimize for fairness, or even a com-
bination of throughput and fairness. Figure 17(b) plots the vari-
ation of throughput with decreasing coverage area of the mobile
AP. The performance does not degrade too much, indicating that
the diversity is truly rich. This bodes well for iMob – even where
the AP has less than a feet to move around, the single AP through-
put gains can still be 40%.
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Figure 17: (a) Fairness does not suffer with iMob. (b) Through-
put loss for decreasing mobility area.

5.2.3 Comparison with Oracle
Figure 18 compares iMob’s performance against Oracle and
Static AP, for single client scenarios. The experiment sessions
are derived from wireshark traces of YouTube, Hangout, and a
casual browsing session. For example, for YouTube, active time
windows were concatenated, while intermediate gaps (typical
for buffered playback) were not considered. Evident from the
graphs, increasing session lengths improve throughput because
the sub-optimality during the exploration phase gets amortized
over longer session lengths, and the performance at the best
pixel begins to play a more dominant role. Figure 18(a) shows
that iMob remains reasonably close to the optimal, around 0.9.
Against Static AP, iMob continues to achieve around 40% gain on
average, but exceeds 80% in few cases of longer traffic sessions.
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Figure 18: CDF of throughput gain for increasing traffic burst.
(a) iMob over Oracle, (b) iMob over Static.

Figure 19 shows the variation of iMob’s throughput against the
Oracle and Static for increasing number of clients. iMob out-
performs Static consistently and stays close to the upper bound.
This suggests the efficacy of the optimal stopping heuristic to
find a high quality pixel, even within 2 feet mobility.
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Figure 19: Median throughput for increasing clients.

5.3 Real-time Multiple AP Experiments
Figure 20(a) shows the topology setup in our engineering build-
ing. The testbed is spread over two floors (2nd and 4th ) and con-
sists of 4 APs with a total of 6 clients (each AP associated to 1-
2 clients). All APs were placed in the 2.4GHz channel such that
the neighboring APs are at the edge of each other’s interference
range. Transmit powers were assigned at 8dBm to all the nodes;
clients remain static for all the sessions. The topology mimics
an EWLAN network of access points where the APs in the same
channel are placed far from each other. A central server connects
to each AP over WiFi and coordinates their movements to config-
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Figure 20: (a) iMob testbed deployed in 2nd and 4th floors. (b) Downlink throughput comparison. (c) Uplink throughput compari-
son. (d) Gain due to spatial reuse only, caused by sidestepping mutual interference from the other APs.

ure an effective topology that offers strong SNR to the AP’s clients
but avoids interference (to the extent possible) from other APs.

Figures 20(b) and (c) report the downlink and uplink UDP
throughput comparison between the Mobile and Static AP. Gains
are higher – 65% for downlink and 90% for uplink on average
– implying that interference avoidance and better client SNR
together contribute to net benefits. Fairness remains greater
than the static case (not shown here). Figures 20(d) zooms into
this break-up and shows the improvements due to spatial reuse.
The “Gain %” on the Y axis shows how much extra opportunity
was created by evading interferers in comparison with the static
AP case. The average gain was about 12%, considerably less than
client throughput gains. This is because of the binary nature of
the carrier sensing threshold (APs need to find positions where
the interferer is outside the sensing range). Nevertheless, the
gains are still worthwhile because it combines multiplicatively
with data rate gains resulting in net amplification in throughput.

6. LIMITATIONS AND OPPORTUNITIES
This is an early attempt to characterize and exploit the landscape
of robotic wireless networks. Much remains to be done.

• Moving client devices. The key limitation with iMob is that
constantly moving clients will not benefit from AP mobility, since
the channel will change constantly. For such devices, however,
the performance will still match the static AP. On the other hand,
in favorable common scenarios where devices are static – video
conferencing on laptops, streaming on smart TVs, even watching
movies on a tablet on the table – gains are consistent.
• Joint Mobility and Power Control: Adding mobility to APs
warrants revisiting classical problems in wireless networking.
Power control and channel allocation can now be performed
jointly with mobility, and adapted to changing traffic conditions.
• Localization and Security: Micro-moving APs may be able to
mitigate the impacts of multipath, converging to a reasonably
accurate pathloss index for their observed channel. Moreover,
they could move macro distances to “look” at clients from differ-
ent vantage points, ultimately improving the various techniques
in triangulation and trilateration. Security benefits also emerge
from mobility, thereby changing the channel properties that are
used as the “secret key” between the transmitter and receiver.

7. RELATED WORK
Closest to this proposal is probably MoMiMo [6], where the
receiver adjusts its antenna in centimeter scales to perform in-
terference alignment. While MoMiMo is a specific optimization
for interference, this paper attempts to create a broader theme
of robotic wireless networks, and presents a case for the regime
of feet scale full-device mobility. Perhaps a further step in this

direction is “software defined mobility” where the cloud controls
the mobility of network infrastructure. Finally, MoMiMo is com-
plimentary to iMob – a WiFi AP can implement both. Google
Loon [24] provides Internet access to remote areas via ad hoc
network–style balloons drifting above the stratosphere. DARPA
envisioned the use of self-autonomous network of LANdroid
robots [25] to provide connectivity in warfare areas. Our broad
proposal certainly bears similarities, but focuses on injecting
controlled mobility to today’s established infrastructure.

Spatial diversity has been exploited in MIMO, beamform-
ing [26, 27], and through other opportunistic ideas [28, 29].
Infrastructure mobility is by no means an alternative to these.
Our results show that moving within a 2 feet box can yield higher
data rates even with a 3x3 MIMO interface – we believe that feet-
scale mobility can offer higher ranked channel matrices. From
the robotics side, authors in [30, 31] have researched how robots
cooperate to achieve a common wireless communication goal.
In one instance, robots plan their motion paths to constructively
beamform towards a specified receiver. Authors in [32] have en-
visioned robots forming a “chain route” to maintain connectivity
to first responders (e.g., fire fighters) moving into a catastrophe
stricken building. Delay tolerant networks have also considered
node mobility [33], even in under water [34] and mobile sensor
networks [35]. We believe this paper is still different in the sense
that it brings feet-scale controlled mobility to existing network
infrastructure that are conventionally viewed as static.

In [16], authors envisioned robotic wireless networks and pre-
sented initial upper bounds on USRPs. This paper builds signif-
icantly on top of [16], including (1) full scale testbed with Intel
5300 802.11n 3x3 MIMO turned on, (2) insights into the nature
of mobility gains, (3) a practical heuristic using optimal stopping
theory, (4) a real time system running with single and multiple
coordinated APs constructed out of Roomba robots.

8. CONCLUSION
This paper envisions WiFi APs-on-wheels that move in controlled
ways to optimize desired performance metrics. Early results are
promising, although a deeper treatment is needed to fully char-
acterize the interplay of many parameters underlying the success
of such technology. Nonetheless, mobility is a valuable degree of
freedom missing in today’s network infrastructure, and extend-
ing research attention to it, we believe, is entirely worthwhile.
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