
An In-depth study of Mobile Browser Performance

Javad Nejati
jnejati@cs.stonybrook.edu

Aruna Balasubramanian
arunab@cs.stonybrook.edu

ABSTRACT
Mobile page load times are an order of magnitude slower com-
pared to non-mobile pages. It is not clear what causes the poor per-
formance: the slower network, the slower computational speeds,
or other reasons. Further, most Web optimizations are designed
for non-mobile browsers and do not translate well to the mobile
browser. Towards understanding mobile Web page load times, in
this paper we: (1) perform an in-depth pairwise comparison of
loading a page on a mobile versus a non-mobile browser, and (2)
characterize the bottlenecks in the mobile browser vis-a-vis non-
mobile browsers. To this end, we build a testbed that allows us to
directly compare the low-level page load activities and bottlenecks
when loading a page on a mobile versus a non-mobile browser. We
find that computation activities are the main bottleneck when load-
ing a page on mobile browsers. This is in contrast to non-mobile
browsers where network activities are the main bottleneck. We also
find that the composition of the critical path during page load is
different when loading pages on the mobile versus the non-mobile
browser. A key takeaway of our work is that we need to fundamen-
tally rethink optimizations for mobile browsers.

1. INTRODUCTION
Recent reports estimate the number of smartphone subscriptions

worldwide to be over the 2.6 billion mark [4]. Already, the num-
ber of users for whom the mobile phone is their only ÒcomputerÓ
has exceeded the number of PC-only users [10]. As a result, mo-
bile pages are becoming the primary portal for content, and mo-
bile browsers are one of the most popular applications on smart-
phones [18]. Unfortunately, the page load performance on mobile
devices does not match up to its importance: mobile page load
times are an order of magnitude slower compared to loading pages
on a desktop browser, often taking 10s of seconds to load just the
landing page [17].

It is not easy to improve mobile Web performance: most of the
Web optimizations [12, 25, 24] are designed for desktop browsers1.
For example, HTTP/2 [12, 9] was designed to improve page load
1We use the term non-mobile browsers and desktop browsers inter-
changeably

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2883014.

performance for primarily non-mobile browsers, and their effect
on mobile pages have not been significant [20]. The problem is
that mobile and desktop browsers have different bottlenecks and
resource constraints. As a result, Web optimizations designed for
desktop page loads cannot be directly ported to mobile page loads.

Some recent research works [16, 30, 17] have specifically opti-
mized mobile pages. FlyWheel [16], Google’s data compression
proxy, significantly reduces data usage on mobile devices, but its
effect on page load time is mixed. Others target specific aspects
of the page load process such as the network latency [30] or user
QoE [17] instead of the page load time.

The problem is that the mobile pages are varied; an optimiza-
tion that works well for one page may not work well for another.
In addition, mobile page load bottlenecks are not well understood.
Mobile devices are scaled down versions of desktops: they have
limited CPU, poorer network capacities, and lower memory. It is
unclear what the bottleneck is, and how this bottleneck compares to
loading pages on non-mobile browsers. It is critical to understand
the bottlenecks in mobile browsers to design appropriate optimiza-
tions.

Towards understanding mobile page load times, in this paper we:
(1) perform an in-depth pairwise comparison of loading a page on
a mobile versus a non-mobile browser, and (2) characterize the bot-
tlenecks in a mobile browser vis-a-vis a non-mobile browsers. This
in-turn can inform us on how and when to port desktop optimiza-
tions to mobile.

Unfortunately, it is not straightforward to isolate the effect of the
browser and the mobile device on the page load performance. Even
if we load the same page on the desktop and the mobile device, the
difference in their performance could be due to several factors. Web
page performance is influenced by the underlying network, changes
to the Web page, the latencies at the Web server, the device, and
the browser. It is challenging to determine what part of the page
load performance is affected by the mobile device and the mobile
browser, and what part is affected by other factors.

Further, extracting the browser dependencies is challenging. The
browser is a complex piece of software consisting of a series of in-
terdependent network and computation activities [31]. Because of
the interdependence, some of the activities can be performed only
after a previous activity finishes, leading to bottlenecks, and creat-
ing a critical path [6]. Identifying the bottlenecks require knowl-
edge of the internal browser structure and browser policies.

To address the bottleneck problem, we leverage WProf [31]. WProf
is an in-browser profiler designed for desktop browsers that in-
fers the dependency policies of browsers. WProf instruments the
browser to log fine-grained timing information. It combines the
timing information and the dependency policies to build the de-
pendency graph and to identify the bottlenecks. We port WProf

1305



to mobile by instrumenting a mobile browser. We call this instru-
mented mobile browser WProf-M. Similar to WProf, WProf-M ex-
tracts the dependency graph and identifies the bottlenecks, but does
so for mobile page loads.

To better isolate the effect of the browser and the mobile device
on the page load performance, we build an experimental testbed
to perform controlled experiments. The testbed uses several virtu-
alized Web servers that serve local pages under a controlled net-
work environment. The controlled environment reduces the vari-
ances caused by external factors and helps us isolate the effect of
the mobile browser/device. We use a WProf instrumented desktop
browser, and a WProf-M instrumented mobile browser to log low
level page load activities. By combining the testbed and the low
level activity logging, we are able to compare the desktop and the
mobile page load performance at a fine-grained level.

We experiment with 200 Web pages, choosing pages from a mix
of popular and not-so-popular pages from Alexa [1]. Our key find-
ing is that it is computation activities, not network activities, that
are the main bottleneck in mobile browsers. On a mobile browser,
computation activities such as HTTP parsing constitutes for over
60% of the page load bottleneck in the median case. In contrast,
computation activities constitutes less than 40% of the page load
bottleneck on a desktop browser under the same network condition.
When network conditions worsen, network activities become even
more of a bottleneck when loading pages on the desktop browser.
In contrast, on the mobile browser, even when the network condi-
tions get worse, computation activities continue to be the primary
bottleneck. We verify that, even when loading pages in-the-wild,
without our controlled testbed, computation is the primary bottle-
neck on the mobile browser.

When loading mobile versions of a page (e.g., loading m.cnn.
com instead of cnn.com), we find that computation activities are
still the bottleneck during page load time. This is not surprising
because mobile versions of the page reduces object size, but it does
not simplify the computation required to load the page. As a re-
sult, computation activities become even more of a bottleneck when
loading mobile versions of the page.

Next we compare the activities on the critical path (i.e., the bot-
tleneck path), when loading pages on the mobile versus the desk-
top browser. We find that, even when loading the same page under
the same conditions, the specific activities on the critical path vary
between the mobile and the desktop browser. Our observation indi-
cates that optimizing a specific URL corresponding to a Javascript
or image may not provide improvements on both desktop and mo-
bile browsers, since the specific URL may not be on both critical
paths. However, we find that the type of activities on the critical
path, for example, in terms of the percentage of Javascript evalua-
tion versus CSS evaluation activities, remain largely similar for the
desktop and the mobile browser.

Finally, we find that for small pages that are less than 250KB in
size, the performance difference between the desktop and the mo-
bile browser is insignificant. The performance difference is more
significant in larger pages, but the difference is because the time
taken to complete the computation activities on the mobile browser
is much longer when compared to the desktop browser.

Our findings have several implications for browser vendors and
mobile page developers. It shows that one of the keys to improving
mobile page load performance is to address the computation bottle-
neck. While several existing optimizations such as FlyWheel [16],
Parcel [30], and HTTP/2 [12], attempt to reduce the network la-
tency, there has only been limited effort in improving the compu-
tation latency. Our observations show that optimizations may not
help mobile and desktop browsers equally because of the differ-

ences in the critical path, even when loading the same page. Fi-
nally, our findings show that when loading smaller pages, the per-
formance on the mobile browser is similar to the performance on
the desktop browser. Therefore, we should focus on optimizing
larger pages.

2. BACKGROUND
The Page load Process: Figure 1 shows the various activities

involved in the page load process. The page load process is a
combination of network and computation activities. The page load
starts with Object loading, a network process that downloads the
HTML page for the input URL. Upon receiving the first chunk of
the HTML page, HTML parsing starts to iteratively parse the page.
Parsing is a computation process. As the page is being parsed, more
objects are loaded by the Object loader, thus creating a dependency
between the network and the computation activities. If the object
is a Javascript (JS) or a style sheet, it is Evaluated. The evaluation
may in turn trigger more object loading. In parallel, the Render-
ing process progressively renders the page. As the HTML is being
parsed, the Document Object Model, or DOM [14] is constructed.
The DOM is the intermediate structure constructed by browsers;
it provides a common platform for rendering. Both HTML parsing
and the JS evaluation manipulate the DOM, creating potential write
conflicts.

Critical path: If there were no dependencies, the four activities
run in parallel, and page load performance is determined by the
slowest of the four processes. However, there are several depen-
dencies imposed by browser policies, resource limitations, and po-
tential write conflicts [31]. Because of these dependencies, certain
activities can only be performed after a previous activity completes,
creating bottlenecks and a dependency graph. The critical path is
the longest path in the dependency graph, such that reducing the la-
tency of any activity not on the critical path cannot reduce the page
load time.

The critical path is the bottleneck path. Only optimizations that
reduce the activities on the critical path can reduce the page load
time. This makes critical path analysis crucial. For example, if
most of the activity on the critical path is HTML parsing (a compu-
tation activity), we can conclude that the page load time cannot be
significantly improved by speeding up the network.

WProf WProf [31] is an in-browser profiler that captures the
dependencies and identifies the critical path during page load. Fig-
ure 2 shows the dependency graph for an example page extracted by
WProf. The different page load activities such as HTML parsing,
JS downloading and evaluation, and image downloads, are shown
in the figure. The critical path (shown in red) is the longest bot-
tleneck path. In this example, HTML downloads, HTML parsing,
Javascript loading and evaluation, and an image download are all
part of the critical path.

3. DESIGN AND METHODOLOGY
The goal of this work is to study the root cause of slow page load

times on the mobile browser in comparison to the desktop browser.
First, we leverage WProf to build an instrumented mobile browser
called WProf-M. Together, WProf and WProf-M identify the low
level activities during page load times on the desktop and the mo-
bile browser, respectively. For any page we load, either on the mo-
bile or the desktop browser, we get a detailed dependency graph
similar to the one shown in Figure 2.

Next, we use an experimental testbed to run controlled load ex-
periments. The controlled environment allows us to isolate the page

1306



UI �

 
Object 

Loading 
 �

Cache, cookie, 
localStorage�

Network �

DOM �

HTML 
Parsing�

Evaluation�

Rendering�

Figure 1: The page load process involving four activ-
ities (shown in gray). Figure from [31]

Figure 2: The dependency graph when loading an example page. The figure shows
all the activities during the page load process. The line in red shows the critical path.
The Page Load Time (PLT) for this page load is 375ms.

load performance differences caused by the mobile device better,
by reducing the variances caused by external factors.

3.1 WProf-M
To perform critical path analysis on mobile devices, we built a

version of WProf [31] on Android Chromium Version 31.0.1626.0.
As a first step, we infer the set of dependency policies. Depen-
dencies occur because of the underlying browser policy. To un-
cover these dependencies, we use the same technique as described
in WProf [31]: we load a set of test Web pages and observe the
browser behavior when loading the Web pages. For example, to
infer the browser dependency policies in loading Web objects, we
create test pages with two objects. We then artificially create de-
lays in loading the first object. If the subsequent object is also
delayed, we infer that the two objects are dependent. The full set
of test pages we use to infer the dependency policies can be found
at wprof.cs.washington.edu/tests/.

From our analysis we find that the set of dependency policies
we observed in Android Chromium Version 31.0.1626.0 are the
same as the dependency policies observed in Chromium Version
31.0.1626.0 that we instrument for WProf. Therefore, we port
the WProf instrumentation to the Android Chromium version di-
rectly. The instrumentation logs the timing information for various
browser activities, and then uses the dependency policies to con-
struct the dependency graph and the critical path. Minor modifica-
tions were made to accommodate for changes between the desktop
and the mobile browser versions.

We call the instrumented Android Chromium application WProf-
M. Most of the instrumentation was done on Webkit, the open
source browser engine used by Chromium. In total, the difference
in lines of code between Android Chromium and WProf-M is 4191
lines, as indicated by the patch file.

The WProf-M browser application has been released and can be
downloaded from wprofx.cs.stonybrook.edu.

3.2 Testbed Design
The key to our analysis is to load pages on the desktop and the

mobile browser under the same conditions, to perform pairwise
comparisons. However, this is non-trivial: page load performance
exhibits high variance [32]. This means, the difference in page load
times may not only because of loading the page on the desktop ver-
sus the mobile device. It could be because of several other reasons
including network variations, changes to the Web page, or delay at
the Web server.

We design an experimental testbed that minimizes external vari-
ances when loading pages over the desktop and the mobile browser.
We perform the experiments in a controlled environment by:

• serving pages from our local server. We download the entire
page locally on the server and convert all the external links
to local links. This minimizes variances caused by changes
to the page.

• loading the same page on the mobile and the desktop browser,
rather than loading the mobile version of the page (or mpages)
to perform more direct comparisons.

• emulating different network conditions using a traffic con-
troller to ensure that both the mobile and the desktop browser
load pages under the same network conditions.

To ensure that the results we get from our controlled setting ap-
plies more broadly, we perform additional experiments where the
three restrictions are removed; i.e., we load pages directly from the
Web server, we load mpages, and we use real networks. Our ad-
ditional experiments show that the conclusions we derive from our
controlled experiments also apply more generally (§5.5).

Figure 3 shows our experimental testbed. At the client side, we
load Web pages on a phone using the WProf-M browser, and on
the desktop we load pages using the WProf browser. All Web page
loads go through the experiment manager. The manager stores the
logs generated by WProf and WProf-M. The manager also con-
figures the traffic controller and the Web server according to the
experiment. We use reverse USB tethering to connect the mobile
device to the experiment manager [33] rather than connect using
WiFi because we observed large variances in WiFi latencies.

On the server side, we leverage virtual machines to run mul-
tiple web servers on the same platform. To isolate the different
network stacks for the difference virtual servers, we use Linux net-
work namespace [11], similar to [26]. To emulate different network
conditions, we use Linux Traffic Control (TC). Before each exper-
iment, we use the ping and iperf tools to test that the emulated
network has the expected bandwidth and delay values.

3.3 Methodology
We load the same set of Web pages on the desktop and the mo-

bile browser and collect logs of the low level browser activities
as shown in Figure 2. We use the logs to identify the bottlenecks
and the critical path during the page load process. By comparing
the two log files, we are able to study the differences in page load
bottlenecks when loading a page on the mobile versus the desktop
browser.

1307



Virtual	Web		
Server	

Virtual	Web		
Server	

Local	
Web	
Pages	

Internet	

Reverse	USB	
Tethering	

	

Traffic		
Controller	

	

Ethernet	

WProf-M		
Chromium	

WProf		
Chromium	

Experiment		
manager	

Figure 3: Testbed architecture. All results presented in this paper
(except the “in-the-wild” experiments) are run on this testbed.

We divide the activities on the critical path into computation and
network activities as follows:

• Computation activities: HTML Parsing, Javascript/CSS eval-
uation, and rendering.

• Network activities: Downloading objects.

For example, in Figure 2, the critical path is a mix of computation
and network activities: JS evaluation and HTML parsing are com-
putation activities, and downloading the HTML, Javascript, and the
images are network activities. Note that several activities occur off
of the critical path. Unless stated, we do not consider the activities
that are not on the critical path in our analysis because they are not
bottlenecks.

4. EXPERIMENTAL SET UP
Server and Client: All Linux instances are virtual machines run-
ning inside a VMware ESXi 6.0 Bare-Metal Hypervisor. On aver-
age, 4 cores at 2.6GHz and 2GB of RAM has been assigned to each
virtual machine.

We use two Samsung Galaxy S4 phones each with 2GB of RAM
and powered by a 1.9 GHz Quad-core Krait 300 CPU running An-
droid KitKat. We also experiment with a Samsung Galaxy S6
phone with 3GB of RAM and Octa-core 1.5/2.1 GHz Cortex-A53,
Cortex-A57 CPUs running Android Lollipop. By default, we present
experiments conducted on Samsung Galaxy S4 phones on the con-
trolled testbed.
Network: We run the emulated network experiments on 6 different
network profiles under the following bandwidths: 1Mbps, 5Mbps
and 20Mbps. We experiment with two round trip delays with means
50ms and 150ms. The delays are varied according to a normal
distribution. We inject up to 2% packet loss rate based on real world
studies [19] and the losses are chosen from a random distribution.

lab_WiFi lab_3G lab_4G
Average b20-d50 b1-d50 b5-d50
Poor b20-d150 b1-d150 b5-d150

Table 1: Network profiles used in the experiments. “b” stands for
bandwidth in each direction and “d” stands for mean round trip
delay. For example, an Average lab_WiFi is denoted by b20-d50
and stands for a network whose bandwidth is 20Mbps and whose
mean round trip delay is 50ms.

Table 1 shows the different network profiles used in our experi-
ments. The network profiles are named after typical WiFi, 3G, and
4G conditions for ease of exposition. We map the profiles to the
closest network condition based on lab experiments.
Webpages: We experiment with 200 Web pages. We randomly
chose 40% of the Web pages from the top 200 Websites in Alexa [1],

30% from the pages from the bottom of Alexa’s 1 million Websites,
and the remaining 30% from news Websites on Alexa. We choose
a mix of Web pages for the following reason: typically the popular
top 200 Web pages on Alexa are smaller (for example, google.com)
and are highly optimized. The performance of such Web pages may
not be typical. Instead, we include unpopular pages in our mix be-
cause they are likely to not be optimized. We also choose news
Websites because they tend to be complex pages.

In the common case, we load the original page on both the desk-
top and the mobile browser. We perform addition experiments
where we load the mobile version of the page, that we call mpage.
For example, m.cnn.com is an mpage, where the original page
is www.cnn.com. By default, mobile browsers always redirect
to the mpage. We modify the user agent field to force the mobile
browser to load the original page. We do this to directly compare
the performance differences between the mobile and the desktop
browser.
Metrics: We measure page load performance using the Page Load
Time (PLT) metric. The Page Load Time metric is commonly de-
fined as the time between when the page is requested and when the
DOMLoad event is fired [31]. The DOMLoad event is fired when
all objects are fetched, processed, and added to the DOM. There
has been several alternate metrics to define page load performance
such as the above-the-fold metric [15]. However, these alternate
metrics are not easy to compute and are not yet widely used.
Limitations of the testbed: While our testbed allows us to perform
controlled experiments, there are several limitations. First, the PLT
metric does not take into account scrolling speeds, refresh rates,
and other user-perceived Quality of Experience metrics. These are
outside the scope of this work. Second, the page load performance
is not only affected by the network bandwidth and delay, but also by
network variance. By controlling the network, we lose the network
variances seen in real environments. However, there is a trade-off
between doing controlled experiments and doing experiments that
are close to the real world. In this work, we lean towards controlled
experiments so that we can perform meaningful comparisons be-
tween the desktop and the mobile browser.

Finally, our findings are specific to the version of the Chromium
browsers we choose. We believe that the findings from this work
will apply broadly and can help influence future browser versions.

5. COMPUTATION IS THE BOTTLENECK
In this section, we present the page load times and bottlenecks in

loading pages on the desktop and the mobile browser. We load both
the original version of the page and mpages under all the network
profiles for all Web pages, as discussed in §4.

Our key findings are as follows:

• On the mobile browser, on almost all the network profiles
starting from Average lab_WiFi to Poor lab_3G, the time
spent on computation activities on the critical path is sig-
nificantly higher than on network activities. On the desktop
browser, the phenomenon is reversed; irrespective of the net-
work profile, almost always network activities are more of a
bottleneck.

• Computation is the key bottleneck even on newer Samsung
Galaxy S6 phones with arguably better computational capac-
ity.

• Our results are not specific to our controlled experimental
testbed. When pages are loaded in-the-wild, i.e., from the
original Web server on real WiFi links, computation is still
the bottleneck during page load on the mobile browser.

1308



5.1 Page load times
Figure 4 shows the page load times to load pages on the desk-

top browser and the mobile browser. In the median case, page load
times are two times slower on the mobile browser compared to the
desktop browser, even when both browsers see similar restrictions
in bandwidth and delays. The difference holds even in the top 20%
of the cases, not shown in the figure because of the long tail. Note
that the same pages are being loaded under the same network con-
ditions; the changes in page load performance are largely because
of the mobile versus the desktop device/browser.

0 1000 2000 3000 4000 5000

Page load time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

desktop
mobile

Figure 4: Page load times when loading original pages on the
mobile browser and the desktop browser. Results for Average
lab_WiFi.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(a) Mobile, Average lab_WiFi

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(b) Mobile, Average lab_4G

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(c) Desktop, Average lab_WiFi

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(d) Desktop, Average lab_4G

Figure 5: Fraction of network and computation time on critical
path when loading pages on the Average lab_WiFi and the Average
lab_4G networks. Under average connectivity, computation activi-
ties is more of a bottleneck for the mobile browser, while network
activities is the primary bottleneck for the desktop browser.

5.2 Bottleneck in mobile versus desktop browsers
Figure 4 showed significant difference in page load performance

between the mobile and the desktop browser even when pages are
loaded under similar conditions. To understand this further, we
study the bottleneck.

Figure 5 shows the fraction of computation and network activi-
ties on the critical path when loading pages on the mobile and the

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(a) Mobile browser, Poor lab_WiFi

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(b) Mobile browser, Poor lab_4G

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(c) Desktop browser, Poor lab_WiFi

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(d) Desktop browser, Poor lab_4G

Figure 6: Fraction of network and computation time on critical path
when loading pages on the Poor lab_WiFi and the Poor lab_4G net-
works. Even under poor network connectivity, computation activ-
ities is the primary bottleneck for the mobile browser. Under poor
connectivity, network activities becomes even more of a bottleneck
for the desktop browser.

desktop browsers. The results are for average network conditions,
under Average lab_WiFi and Average lab_4G networks. The defi-
nition of computation and network activities can be found in §3.3
and the network profiles are specified in §4.

Figure 5a and 5b show the fraction of computation and network
activities when loading the page on the mobile browser for the two
network profiles. In both cases, in the median case, computation
activities occupy more than 60% of the critical path. Network ac-
tivities occupy less than 40% of the critical path.

Figures 5c and 5d show that, in contrast, on the desktop browser,
network activities occupy 60% of the critical path. The results for
the Average lab_3G network is quantitatively similar (not shown
here).

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

Figure 7: Fraction of network and computation time on critical path
when loading mpages on the Average lab_WiFi network.

Next, we look at poor network environments. Figure 6 shows the
fraction of computation and network activities on the critical path,
when the mean round trip delay is 150ms. On the mobile browser,
Figure 6a shows that computation activities continue to be the main
bottleneck for page load, accounting for 55% of the critical path in

1309



0 2000 4000 6000 8000 10000 12000

Page load time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
S6
S4

(a) PLTs when loading Web pages on Samsung Galaxy S4 and
S6 phones. The pages were loaded on the Average lab_4G net-
work.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

(b) Fraction of network and computation time on critical path
when loading pages in Samsung Galaxy S6 phones on the Av-
erage lab_4G network.

Figure 8: Results from experiments on Samsung Galaxy S6

the median case. It is only in the Poor lab_4G environment that
the network activities become more of a bottleneck compared to
computation activities. As the network conditions worsen, network
activities start becoming the primary bottleneck during page load.

On the other hand, on the desktop browsers the poor network
condition only makes the bottleneck due to network activities more
pronounced (Figures 6c and 6d).

5.3 Bottleneck when loading mpages
Figure 7 shows the bottlenecks when loading mpages on the

mobile browser. Continuing the trend, we find that when loading
mpages, computation activities are the primary bottleneck. In the
median case, 65% of the critical path constitutes computation ac-
tivities, and only 35% of the critical path constitutes network activ-
ities.

Mobile pages such as m.cnn.com are smaller versions of the
original cnn.com page, with smaller object sizes. Therefore, the
network activities for loading an mpage should not take as long
compared to loading the original page. Our analysis of the number
of bytes downloaded when loading an mpage versus loading the
original page confirms this hypothesis (§6.3). However, mpages
do not significantly reduce the computation activities required to
load the page. Therefore, it is not surprising that the computation
activities continue to be the bottleneck when loading mpages.

5.4 Experiments on Samsung Galaxy S6
We repeated the controlled page load experiments on Samsung

Galaxy S6. The goal of this experiment is to observe if the bottle-

0 1 2 3 4 5 6 7

PLT of mobile/PLT of non-mobile

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Desktop loads pages faster than mobile

Figure 9: The ratio of page load times on the mobile
browser versus the desktop browser, when loading pages
in-the-wild.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of network and computation time on critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation
Networking

Figure 10: Fraction of network and computation time
on critical path when loading pages on mobile browser
in-the-wild.

neck due to computation activities in mobile browsers are a func-
tion of a weaker processor. The S6 phone has four ARM Cortex-
A57 cores clocked at 2.1GHz, and four Cortex-A53 cores clocked
at 1.5GHz, compared to the quad-core, 1.7GHz Samsung S4 phones.
First we look at the page load time differences: Figure 8a shows
that the page load times on S6 is not significantly different com-
pared to the page load times on S4.

As before, we next look at the bottlenecks in S6. Figure 8b shows
that computation activities is still the primary bottleneck, constitut-
ing 62% of the critical path in the median case. There are two
possible reasons for this result. Either, the browsers are not able to
use the additional CPU capacity effectively, or the increase in CPU
is not enough to change the bottleneck. We will explore this further
as part of future work.

5.5 Experiments in-the-wild
Finally, we load web pages on the desktop and the mobile browser

outside of our experimental testbed. The web pages are fetched
from the Web server. The desktop browser uses the campus Eth-
ernet connection (bandwidth 250Mbps), while the mobile browser
uses the campus WiFi connection (bandwidth 30Mbps). The goal
of this experiment is to study if the observations we make in the
controlled setting also hold true in general.

We first perform a pairwise comparison of loading pages on the
desktop versus the mobile browser. Figure 9 shows the ratio of
the time to load the page on the mobile browser versus the desk-
top browser. The line x = 1 shows the points when the page load
times of the mobile and the desktop browsers are equal; all points
to the right show cases when the desktop browser is faster. Figure 9

1310



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Similarity metric

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Figure 11: Similarity metric: the fraction of
time the same <URL, activity> pair occur on
the critical path when loading the page on the
mobile browser and the desktop browser. Each
activity is associated with a unique URL. Re-
sults from all network profiles.

Download HTML parsing JS eval CSS eval
0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
in

cr
iti

ca
lp

at
h

desktop
mobile
mpage

Figure 12: Looser similarity metric: the frac-
tion of time an activity occurs on the critical
path when loading the page on the mobile and
the desktop browser. The URL associated with
the activity may be different. Results from all
network profiles.

0 2 4 6 8 10

Ratio of the mobile vs desktop latency for activities on the critical path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Computation

Figure 13: Ratio of the time taken to complete
computation activities on the mobile browser
versus the desktop browser. The activity
should be on the critical path of at least one
of the two browser loads. Pages loaded on the
Average lab_WiFi network.

shows that in all cases, the desktop browser is faster than the mobile
browser to load the same page. In the median case, loading a page
on the mobile browser is three times as slow compared to the desk-
top browser. Note that these experiments are not performed in a
controlled setting. So the difference in performance between load-
ing the pages on the desktop browser versus the mobile browser
may be due to several factors.

Figure 10 shows the fraction of computation versus network ac-
tivities on the critical path when loading pages on the mobile browser
in-the-wild. We find that computation activities are even more of
a bottleneck; in the median case, close to 70% of the critical path
is composed of computation activities. On the desktop browser, as
before, we find that network activities continues to be the primary
bottleneck (not shown here). Our in-the-wild experiments show
that our observations about the mobile and the desktop browser
bottlenecks holds true more generally, and is not specific to our
testbed.

6. CRITICAL PATH ANALYSIS
In the previous section, we looked at the differences in critical

path between the mobile and the desktop browser at a macro-level.
Next, we study the critical paths at a more micro-level. Our key
findings are as following:

• Even when loading the same page on the same network pro-
file, the critical path on the mobile browser and on the desk-
top browser are different in terms of the exact objects down-
loaded, the Javascript executed, etc. However, in terms of
the fraction of page load activities on the critical path, the
two critical paths are similar.

• For each computation activity on the critical path, it takes 4
times as long to perform the activity on the mobile browser
compared to the desktop browser.

• On the mobile browser, of all the computation activities, HTML
parsing is the most dominant on the critical path; rendering
activities are the least dominant.

6.1 Comparing critical paths on the desktop
and the mobile browser

The critical path consists of a series of activities such as HTML
loading, HTML parsing, downloading images, JavaScript, and CSS,

and evaluating the CSS and Javascript (see Figure 2). Going one
level deeper, each of the activities are associated with a unique
URL. For example, two activities that are both downloading an
image are downloading different images associated with different
URLs.

Our goal is to study the similarity between the critical path when
loading a page on the desktop versus the mobile browser. We de-
fine the similarity metric as follows: the fraction of time the same
<URL, activity> pair occurs on the critical path when loading the
page on the desktop browser and the mobile browser.

Figure 11 shows the similarity metric across all network profiles.
Even when the same page is being loaded under the same network
profile, the critical path is identical only for 20% of pages. For an-
other 20% of the pages, only 50% of the critical path is similar. This
result has implications for optimization. It shows that optimizing a
specific activity, such as making the content of a specific Javascript
object smaller, may not have the same effect on the mobile browser
as they would on the desktop browser.

Next, we relax the definition of similarity and look at the per-
centage of time the same activity occurs on both the critical paths,
but not necessarily associated with the same URLs. For example, if
the desktop critical path contains the image download activity for,
say downloading image1, but the mobile critical path contains an-
other image download activity, for a different image, image2, we
consider them to be similar. Note that, in Figure 11, these two
activities will be considered dissimilar because they are not down-
loading the same image.

Figure 12 shows the percentage of each activity on the critical
path across all pages and network profiles. For every page, the ac-
tivities on the critical path in terms of Javascript evaluation, HTML
parsing etc are similar on the desktop and the mobile browser. One
of the implications of this result is that optimizations that target
a class of activities, such as reducing the time to download all
Javascript objects, are likely to provide benefits across mobile and
desktop browsers.

6.2 Comparing the latency for each activity
on the critical path

Figure 12 showed that in terms of the number of the activities
on the critical path, the desktop and the mobile browser are similar,
even though the URL of the activities may be different (Figure 11).
However, we know that the length of the critical path (i.e., the PLT)
is much smaller for the desktop browser compared to the mobile

1311



0 1000 2000 3000 4000 5000

Total number of bytes downloaded (KB)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

mobile
mpage

Figure 14: Total bytes downloaded when load-
ing the original versus mpage on the mobile
browser. Results from all network profiles.

0 200 400 600 800 1000

Number of bytes on critical path (KB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

desktop
mobile
mpage

Figure 15: Bytes downloaded on the critical
path when loading the original page on the
desktop and the mobile, and loading mpages.
Results from all network profiles.

0 100 200 300 400 500

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CSS
Javascript
HTML parsing
Rendering

Figure 16: The breakdown of the computation
activities on the critical path. Results from
experiments on the S6 phone on the Average
lab_WiFi network.

browser (Figure 4). To understand this, we measure the time taken
to complete an activity on the mobile versus the desktop browser.

We consider all activities that are on the critical path of at least
one of the two browsers. We then compare the time taken for
each of these activities to complete on the mobile and the desk-
top browser. Since we load the exact same page, each activity has
to be performed both by the desktop and the mobile browser.

Figure 13 shows the time take for each computation activity to
be performed on the mobile versus the desktop browser. Each ac-
tivity takes over 4 times longer to perform on the mobile browser
compared to the desktop browser. This is one of the reasons for
the mobile browser performance to be much worse compared to
the desktop browser performance even under similar network con-
ditions.

Surprisingly, the time taken for network activities is also smaller
on the desktop browser compared to the mobile browser (not shown
in figure). In 40% of the cases, the difference is insignificant, but
for the remaining 60%, the difference is higher, even though the
pages are loaded under the same network conditions. This can pos-
sibly be because of a less optimized network stack on the mobile
browser compared to the desktop browser. We will investigate this
further as part of future work.

6.3 The breakdown of network and computa-
tion activities on the critical path

Figure 14 shows the total bytes downloaded when loading the
original page and loading the mpage on the mobile browser. Even
though mpages are designed to be smaller, for 60% of the pages,
the total objects downloaded remains the same. But for 30% of the
pages, the difference in size is over 60%. The results suggests that
mpages significantly reduces the size of a small number of pages,
but for a large fraction of pages, there is not much difference be-
tween the mpage and the original page.

Figure 15 shows the bytes downloaded on the critical path when
loading the original page on the desktop and the mobile browser,
and when loading mpage. Here we find that mpages do reduce
the number of objects loaded in the critical path for over 40% of
the pages. In a separate experiment (not shown here), we find that
loading mpages does not reduce the computation time on the criti-
cal path.

With respect to computation, Figure 16 shows the breakdown
of the various computation activities on the critical path. HTML
parsing is the dominant activity on the critical path, far outweighing
the time spent on Javascript and CSS evaluation. Rendering only

occupies a small part of the critical path, as also shown by other
researchers [33].

7. EFFECT OF PAGE TYPE AND NETWORK
In this section, we present our results on the effect of page type

and network on the page load time. Our key findings are as follows:

• For page sizes of less than 250 KB, there is no significant dif-
ference in performance between the mobile and the desktop
browser. For larger pages, there is significant performance
difference.

• Under poor bandwidth conditions, changes in round trip de-
lays does not affect page load times. Similarly, when the
round trip times are high, bandwidth does not have signifi-
cant effect on page load times.

• The desktop browser is able to use good network conditions
better than the mobile browser.

7.1 Effect of page type
In this section, we look into desktop and mobile page load times

based on the page size. In our experiments, 25% of analyzed Web
pages had size less than 250KB. We define these Web pages as
small pages and the rest as large pages.

Figure 17 shows that there is no significant difference in page
load time when loading small pages on the mobile versus the desk-
top browser. But for large Web pages, the page load times on the
mobile browser is almost twice as high compared to the desktop
browser in the median case. The results were similar for other net-
work settings.

Figure 18 shows the time spent on network activities on the crit-
ical path to load the small versus large pages. For both small and
large pages, the time spent on network activities on the critical path
is not very different on the mobile and the desktop browser.

Figure 19 shows the time spent on computation activities on the
critical path to load small versus large pages. In this case, as before,
for small pages, the computation time on the critical path is not
significantly different when comparing page loads on the desktop
and the mobile browser. But for the larger pages, we find that the
computation time when loading the page on the mobile browser is
almost two times that of loading the page on the desktop browser
in the median case.

In effect, the difference in page load performance when load-
ing pages on the mobile versus the desktop browser is more pro-
nounced for larger pages. This difference is because of the addi-

1312



0 2000 4000 6000 8000 10000

Page load time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Desktop large pages
Desktop small pages
Mobile large pages
Mobile small pages

Figure 17: Page load time for small and large
Web pages in mobile and desktop browsers on
the Average lab_WiFi network.

0 2000 4000 6000 8000 10000

Networking time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Desktop large pages
Desktop small pages
Mobile large pages
Mobile small pages

Figure 18: Time spent on network activities on
the critical path to load small and large Web
pages on the Average lab_WiFi network.

0 2000 4000 6000 8000 10000

Computation time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Desktop large pages
Desktop small pages
Mobile large pages
Mobile small pages

Figure 19: Time spent on computation activi-
ties on the critical path to load small and large
Web pages on the Average lab_WiFi network.

0 2000 4000 6000 8000 10000

Page load time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Average Lab 3G
Poor lab 3G
Average lab Wifi
Poor lab Wifi

Figure 20: Page load time under Average
lab_3G, Poor lab_3G, Average lab_WiFi, and
Poor lab_WiFi networks when loading pages
on the mobile browser.

0 2000 4000 6000 8000 10000

Page load time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Good Lab 4G
Poor lab 4G
Good lab Wifi
Poor lab Wifi

Figure 21: Page load time under Good
lab_4G, Poor lab_4G, Good lab_WiFi, and
Poor lab_WiFi network profiles when loading
pages on the mobile browser.

0 1 2 3 4 5

Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Desktop loads faster

Mobile/Desktop PLT, Good lab 4G
Mobile/Desktop PLT, Poor lab 4G
Mobile/Desktop PLT, Good lab Wifi
Mobile/Desktop PLT, Poor lab Wifi

Figure 22: The ratio of the page load time
when loading pages on the mobile and the
desktop browser under Good lab_4G, Poor
lab_4G, Good lab_WiFi, Poor lab_WiFi net-
work.

tional time taken by the mobile browser to complete computation
activities on the critical path.

7.2 Effect of network
Figure 20 shows the page load times under various network con-

ditions on the mobile browser, starting from Average lab_WiFi to
Poor lab_3G. When the bandwidth is poor, as in the case of lab_3G
(with 1Mbps bandwidth), round trip times does not affect the page
load time; for instance, the page load time under Poor lab_3G (RTT
= 150ms) and Average lab_3G (RTT = 50ms) is similar.

Figure 21 shows that, similarly, when the network experiences
high RTTs, the bandwidth does not affect page load time. Under
high RTT of 150ms, both lab_WiFi (bandwidth = 20 Mbps) and
lab_4G (bandwidth = 5 Mbps) perform similarly. In these graphs,
we define Good lab_Wifi and Good lab_4G to be the same as Aver-
age lab_WiFi and Average lab_4G networks, respectively, in terms
of bandwidth, but with mean round trip delays of 5ms.

Finally, Figure 22 shows that ratio of the page load time on the
mobile browser and the desktop browser for different network pro-
files. Points to the right of x = 1 line shows the area where
the desktop browser is faster. The difference between the desktop
browser and the mobile browser is highest for the Good lab_WiFi
network, which is the network with the best bandwidth and round
trip times across our network settings. In this setting, the page load
time on the mobile browser is 3.5 times higher than the desktop
browser in the median case. As the network conditions worsen, as
in the case of Poor lab_4G, the difference in performance between
the mobile and the desktop browser decreases. One possible hy-

pothesis is that the desktop browser is able to utilize good network
conditions much better than the mobile browser.

8. RELATED WORK
In this section, we will discuss related literature on mobile browsers.

We will also discuss literature on desktop browsers when applica-
ble, since mobile browsers have not yet seen the kind of extensive
research as compared to desktop browsers.

Improving mobile browsers: Erman et al. [20] show that unlike
desktop browsers, optimizations such as SPDY/HTTP2 does not
improve performance of Web pages on mobile browsers. They
show that this is because of the negative interactions between the
cellular state machine and the transport protocol. Similarly, Qian
et al. [27] show that caching does not provide page load improve-
ments for mobile browsers.

Many of the research on explicitly improving mobile browser
performance has seen mixed results. Flywheel [16] is Google’s
compression proxy that compresses web content to significantly
reduce the use of expensive cellular data. The authors note that
while FlyWheel succeeds in reducing data usage, its effect on page
load performance is more mixed; it helps performance of certain
pages and hurts performance of others. FlexiWeb [29] is built over
Google’s compression proxy to ensure that the proxy does not hurt
page load times. But FlexiWeb is not designed to explicitly improve
page load performance. Wang et.al [34] show that speculative load-
ing is one of the only client-only approaches that can improve mo-

1313



bile browser performance. However, speculative loading requires
knowledge of what objects are likely to be requested by the user.

Other research works have looked at metrics orthogonal to the
page load time metric. Parcel [30] uses a proxy approach to divide
the page load process between the mobile device and the proxy. Be-
cause Parcel is a network approach, the evaluations are largely with
respect to reduction in network latencies. Klotski [17] focusses on
increasing the number of objects rendered in the first 5 seconds to
improve user Quality of Experience.

While there has been several recent efforts on improving mobile
browser performance, they have not been uniformly successful. In
our work, we are studying the fundamental bottlenecks in mobile
browsers as a first step towards designing effective mobile Web op-
timizations. Importantly, our goal is to compare the page load per-
formance between the desktop and the mobile browser, to under-
stand why and how mobile browsers differ from desktop browsers.

Measurement Studies: The browser study presented by Wang
et.al [33] in 2011 is the closest to our measurement set up. Similar
to our set up, their work also uses an instrumented Webkit and ex-
tracts dependency relations in the browser load process. Our find-
ings are largely consistent with the What-If analysis presented in
the paper [33] for a small set of 10 Web pages. Notably, they find
that rendering does not significantly contribute to browser delays,
and a more powerful operating system can improve browser perfor-
mance.

Different from our findings, their work finds that higher band-
width does not effect performance because Web page sizes are
small. However, Web pages have become more complex now com-
pared to 2011 [36]; as a result, we find that for current Web pages,
higher bandwidth does improve page load times. Our work expands
on this study by performing a more extensive dependency analy-
sis for a larger number of pages. Importantly, we enable pairwise
comparisons between mobile and desktop browsers to understand
the critical differences between the two.

Qian et al. [28] provide one of the first detailed measurement
study of mobile browsers, but focus on cellular data and energy us-
age rather than page load times. Zaki et. al [38] measure the mobile
browser performance in Ghana, focussing only on the network de-
lays. They find that the network delays in Ghana are largely caused
by DNS, HTTP redirections, and SSL handshake.

Industry tools: All major browsers, including Chrome, Firefox,
and Internet explorer, provide developer tools to study browser per-
formance [5, 21, 3]. Many of these tools are designed for desktop
browsers, but they are starting to be developed for mobile. While
the developer tools provide network timings, they ignore the tim-
ings for the computational activities, and cannot be used to con-
struct the critical path [31]. New tracing tools such as chrome://
tracing [13] provide more fine-grained information about chrome
internals, but again, do not have enough information to extract the
critical path.

Google Octane [7] benchmarks the performance of the Javascript
engine of a browser by running a suite of tests. Browsermark [2]
is a browser benchmarking tool which helps a user to decide which
browser offers the best Web experience. We, on the other hand,
are focused on characterizing the bottlenecks during mobile page
loads. We believe that once the bottlenecks are identified, each of
the above mentioned benchmarking tools can play a role in improv-
ing page load performance.

Measurement platforms such as WebPageTest [35] and HTTP
Archives [22] allow researchers to perform Web page measure-
ments from several vantage points. They provide measurement data

from a large number of networks and devices. However, we still
lack tools to directly compare the performance of desktop and mo-
bile browsers, or to analyze the critical path.

Finally, Google’s PageSpeed Insight [8] and Yahoo’s YSlow [37]
are industry tools that take a Webpage URL as input and suggest
optimizations. The tools apply static rules to the page. For ex-
ample, if an object is not compressed, the tool may suggest that
the object be compressed, even if loading the object is not the bot-
tleneck. Analyzing page load bottlenecks can greatly improve the
optimization suggestions of these tools.

Testbeds: In terms of experimental testbed, Mahimahi [26] is the
closest to our work. Mahimahi uses an HTTP-based record and re-
play tool for repeatable page load experiments on desktop browsers.
Our goals on repeatability are similar. But we focus on studying the
critical path, and therefore record the page load time at the object
level rather than at the HTTP level.

WebProphet [23] was one of the first works to discuss depen-
dencies for desktop browsers. WebProphet uncovered dependen-
cies in desktop browsers, assuming the computational activities to
be a black box. Our previous work WProf [31], improved over
WebProphet by uncovering both network and computation depen-
dencies. In this work, we port WProf to a mobile browser.

9. IMPLICATIONS/CONCLUSIONS
In this work, we perform an in-depth study of bottlenecks in

mobile browsers vis-a-vis desktop browsers. To identify the low
level page load activities and extract the bottlenecks when loading
a mobile page, we leverage our past work to build WProf-M, an in-
browser profiler for Android Chromium. We build an experimental
testbed that allows us to directly compare the low-level page load
activities and bottlenecks when loading a page on a mobile versus
a desktop browser. We use the testbed to better isolate the differ-
ences in page load performance caused by the mobile device and
the mobile browser.

Our results have several implications for mobile browser opti-
mization. First we find that computation activities are the main bot-
tleneck is mobile browsers. This is in contrast to desktop browsers
where network activities are the main bottleneck. This has im-
plications for mobile browser optimizations which have focussed
more on reducing the networking latency during page load, and
not enough on reducing the computational bottlenecks. Second,
we find that the activities on the critical path can be different when
loading pages on the mobile browser compared to the desktop browser.
Therefore, optimizing a specific object on the critical path may not
provide similar benefits on the desktop and the mobile browser.
Finally, smaller pages do not see significant difference in perfor-
mance when loading on the mobile versus the desktop browser.
Therefore, we should focus on optimizing larger pages.

Acknowledgements
First, a special thanks to University of Washington undergraduate
student Tyler Jacoby who helped a great deal in porting WProf to
the Android version. Thank you to Xiao Sophia Wang for providing
helpful feedback and comments during the porting process. This
work was supported by the National Science Foundation, through
the grant CNS-1551909. Sincere thanks to Stony Brook Masters
students Naveen Nuthalapati (for help with experiments) and Pavan
Muguluri (for help with debugging the WProf visualization). We
gratefully acknowledge the anonymous reviewers.

1314



10. REFERENCES
[1] Alexa. http://www.alexa.com/.
[2] Browsermark. http://web.basemark.com/.
[3] Chrome developer tools.

https://developer.chrome.com/devtools/.
[4] Ericsson mobility report june 2015:

http://www.ericsson.com/res/docs/2015/
ericsson-mobility-report-june-2015.pdf.

[5] Firefox Developer Tools. https:
//developer.mozilla.org/en-US/docs/Tools.

[6] Google developers: Analyzing critical rendering path
performance. https://developers.google.com/
web/fundamentals/performance/
critical-rendering-path/?hl=en.

[7] Google Octane.
https://developers.google.com/octane.

[8] Google Pagespeed Insights. https://developers.
google.com/speed/pagespeed/insights.

[9] HTTP/2. https://http2.github.io/.
[10] Mobile-only users surpass desktop-only users.

http://marketingland.com/
mobile-only-users-surpassed-pc-only.

[11] Network Namespace.
http://blog.scottlowe.org/2013/09/04/
introducing-linux-network-namespaces.

[12] SPDY. https:
//www.chromium.org/spdy/spdy-whitepaper.

[13] The Trace Event Profiling Tool .
https://www.chromium.org/developers/
how-tos/trace-event-profiling-tool.

[14] W3C: Document Object Model.
http://www.w3.org/DOM/.

[15] Above the fold time.
http://www.webperformancetoday.com/.

[16] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan,
B. Greenstein, S. McDaniel, M. Piatek, C. Scott, M. Welsh,
and B. Yin. Flywheel: Google’s data compression proxy for
the mobile web. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’15, Berkeley, CA, USA, 2015.
USENIX Association.

[17] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and
V. Sekar. Klotski: Reprioritizing web content to improve user
experience on mobile devices. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
15), Oakland, CA, 2015. USENIX Association.

[18] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and
R. Vannithamby. Smartphone background activities in the
wild: Origin, energy drain, and optimization. In Proceedings
of the 21st Annual International Conference on Mobile
Computing and Networking, MobiCom ’15, pages 40–52,
New York, NY, USA, 2015. ACM.

[19] N. Dukkipati, M. Mathis, Y. Cheng, and M. Ghobadi.
Proportional rate reduction for tcp. In Proceedings of the
11th ACM SIGCOMM Conference on Internet Measurement
2011, Berlin, Germany - November 2-4, 2011, 2011.

[20] J. Erman, V. Gopalakrishnan, R. Jana, and K. K.
Ramakrishnan. Towards a spdy’ier mobile web? In
Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’13,
pages 303–314, New York, NY, USA, 2013. ACM.

[21] Firebug. http://getfirebug.com/.
[22] HTTP Archive. http://httparchive.org/.
[23] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M.

Wang. WebProphet: automating performance prediction for
web services. In Proc. of USENIX NSDI, 2010.

[24] L. A. Meyerovich and R. Bodik. Fast and parallel webpage
layout. In Proc. of the international conference on World
Wide Web (WWW), 2010.

[25] J. Mickens. Silo: Exploiting JavaScript and DOM Storage
for Faster Page Loads. In Proc. of USENIX conference on
Web Application Development (WebApps), 2010.

[26] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein,
J. Mickens, and H. Balakrishnan. Mahimahi: Accurate
Record-and-Replay for HTTP. In USENIX Annual Technical
Conference 2015, Santa Clara, CA, July 2015.

[27] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao,
S. Sen, and O. Spatscheck. Web caching on smartphones:
Ideal vs. reality. In MobiSys ’12, pages 127–140, New York,
NY, USA, 2012.

[28] F. Qian, S. Sen, and O. Spatscheck. Characterizing resource
usage for mobile web browsing. MobiSys ’14, pages
218–231, New York, NY, USA, 2014. ACM.

[29] S. Singh, H. V. Madhyastha, S. V. Krishnamurthy, and
R. Govindan. Flexiweb: Network-aware compaction for
accelerating mobile web transfers. In Proceedings of the 21st
Annual International Conference on Mobile Computing and
Networking, MobiCom ’15, pages 604–616, New York, NY,
USA, 2015. ACM.

[30] A. Sivakumar, S. Puzhavakath Narayanan,
V. Gopalakrishnan, S. Lee, S. Rao, and S. Sen. Parcel: Proxy
assisted browsing in cellular networks for energy and latency
reduction. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’14, New York, NY, USA, 2014.
ACM.

[31] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. Demystify page load performance with wprof.
In Proc. of the USENIX conference on Networked Systems
Design and Implementation (NSDI), 2013.

[32] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. How speedy is spdy? In Proceedings of the
11th USENIX Conference on Networked Systems Design and
Implementation, NSDI’14, pages 387–399, Berkeley, CA,
USA, 2014. USENIX Association.

[33] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are web
browsers slow on smartphones? In Proceedings of the 12th
Workshop on Mobile Computing Systems and Applications,
pages 91–96. ACM, 2011.

[34] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How far can
client-only solutions go for mobile browser speed? In
Proceedings of the 21st International Conference on World
Wide Web, WWW ’12, pages 31–40, New York, NY, USA,
2012. ACM.

[35] WebPagetest. http://www.webpagetest.org/.
[36] WebsiteOptimization. Web growth, 2014.
[37] YSlow. http://yslow.org/.
[38] Y. Zaki, J. Chen, T. Pötsch, T. Ahmad, and L. Subramanian.

Dissecting web latency in ghana. In Proceedings of the
Internet Measurement Conference (IMC). Vancouver,
Canada, November 2014., 2014.

1315




