
Learning-to-Rank for Real-Time High-Precision Hashtag
Recommendation for Streaming News

Bichen Shi
bichen.shi@insight-

centre.org

Georgiana Ifrim
georgiana.ifrim@insight-

centre.org

Neil Hurley
neil.hurley@insight-

centre.org
Insight Centre for Data Analytics

University College Dublin
Ireland

ABSTRACT
We address the problem of real-time recommendation of
streaming Twitter hashtags to an incoming stream of news
articles. The technical challenge can be framed as large scale
topic classification where the set of topics (i.e., hashtags) is
huge and highly dynamic. Our main applications come from
digital journalism, e.g., promoting original content to Twit-
ter communities and social indexing of news to enable better
retrieval and story tracking. In contrast to the state-of-the-
art that focuses on topic modelling approaches, we propose
a learning-to-rank approach for modelling hashtag relevance.
This enables us to deal with the dynamic nature of the prob-
lem, since a relevance model is stable over time, while a
topic model needs to be continuously retrained. We present
the data collection and processing pipeline, as well as our
methodology for achieving low latency, high precision rec-
ommendations. Our empirical results show that our method
outperforms the state-of-the-art, delivering more than 80%
precision. Our techniques are implemented in a real-time
system that is currently under user trial with a big news
organisation.

Keywords
learning-to-rank; dynamic topics; social indexing; news; hash-
tag recommendation

1. INTRODUCTION
Social media platforms such as Twitter have taken a cen-

tral role in the consumption, production and dissemination
of news [35]. Twitter has about 240 million active users
and receives more than 500 million tweets a day, a quar-
ter of which are tagged with hashtags [31]. Hashtags are
keyword-based tags, describing the content of a tweet, for
example #taiwan, #transasia, #ge235 were used for tweets
describing a recent plane crash in Taiwan. They tend to
appear spontaneously around breaking news or developing

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2882982 .

news stories, and are a way for news followers to connect to
a particular story and community, to get updates in real-
time (e.g., #parisattacks). News organisations use hashtags
to target Twitter communities in order to promote origi-
nal content and engage readers. Journalists sometimes in-
troduce new hashtags, but the Twitter crowd is the one
that most often creates and selects a few of the possibly
many competing hashtags, thus echoing the current social
discourse (e.g., #migrant, #refugee, #refugeeswelcome).

However, an automatic approach to real-time, high preci-
sion hashtag recommendation for news is currently missing,
and both journalists and news readers have to invest signif-
icant effort to manually search for relevant hashtags. Most
existing approaches use topic modelling [20, 15], by con-
sidering hashtags as topics, and mapping news articles to
topics using content similarity, regardless of whether users
actively engage with those hashtags. As the relevant hash-
tags change quickly (some die-off and new ones emerge),
and the news and Twitter environments are highly dynamic,
such approaches need to continuously retrain to adapt to
new content. In addition, since most existing approaches
are trained on static collections of noisy tweets, they do not
achieve high enough precision for practical use (e.g., pre-
cision of 38% [6]), and cannot deliver recommendations in
real-time.

In this paper, we model the problem of recommending
highly specific, actively used hashtags, to a stream of news
articles, as an Information Retrieval (IR) learning-to-rank
(L2R) problem. In our framework, a news article plays the
role of the query in classic IR, and the hashtags (represented
by tweets using those tags), play the role of documents. For
incoming articles, we split the recommendation process into
two steps: (1) a pre-ranking step based on automatic query
formulation to connect each article to the hashtag stream
and retrieve candidate hashtags and (2) a pre-trained L2R
approach to score the relevance of the candidate article-
hashtag pairs. From our analysis, the model of what makes a
hashtag relevant to an article doesn’t change over time. This
means that we can use a small amount of human-annotated
data to train the L2R model once, and at test time com-
pute features to describe and score the relevance of new
article-hashtag pairs. Thus, we can recommend new hash-
tags that were not previously seen in the training set, since
the relevance model is not hashtag specific, but encodes gen-
eral characteristics (learned from the human-labeled train-
ing data) of relevant versus irrelevant pairs. Classic IR ap-
proaches typically assume a static document collection and

1191



dynamic user-queries, while in our case both documents and
tags come as streams, and the set of relevant tags for a given
document changes over time. For example, tweets discussing
the news story “Plane crashes in southern France” are first
tagged with“#planecrash #france”. Over time, the hashtags
for this story become more specific, such as “#germanwings
#4u9525 #a320” driven by the usage of Twitter users. To
address the dynamic relevance of article-hashtag pairs, we
investigate a set of low-cost, time-aware features.

We work with real-world data collected from existing RSS
news feeds which we connect to relevant Twitter streams,
and build a live demo system to test our framework1. To
give a feel for the data scale, over a time period of 12 months,
for about 1,000 news articles processed each day, we aver-
aged more than 1 millions tweets and 26,000 hashtags per
day (used in at least 10 tweets). Many of these hashtags
may be only relevant for 24h or 48h, e.g., #illridewithyou,
#icantbreath, #worldcancerday, with longer stories running
over weeks or months having a more stable set of hashtags,
e.g., #ebola, #ebolavaccine, #grexit.

Contributions. We summarise our main contributions
as follows:

1. We formulate real-time hashtag recommendation for
streaming news as a L2R problem, and show that the
L2R framework is more effective than topic modelling
for our dynamic problem setting.

2. We investigate time-aware features for high-precision,
low-latency hashtag relevance ranking.

3. We conduct a real-life study of the impact of our rec-
ommendations on news engagement and discuss appli-
cations to social indexing of news (a form of real-time
crowdsourced tagging of news).

2. RELATED WORK
Hashtag Recommendation for Tweets. Prior work

focusing on hashtag recommendation for tweets relies on
topic modelling on static datasets. The work of [7, 22] builds
Näıve Bayes, KNN or SVM classifiers for hashtags, where a
hashtag is seen as a category and the tweets tagged with that
hashtag as labeled data for that category. Hashtag recom-
mendation for tweets can be adapted to recommendation for
news, by treating the news headline as a rich tweet. As we
show in our experiments, this approach is overwhelmed by
the data scale, sparsity and noise characteristics of tweets.

Most other approaches focus on topic modelling with PLSA
and LDA [20, 15, 12, 6, 16]. For example [6] fits an LDA
model to a set of tweets in order to recommend hashtags.
They combine the LDA model with a translation model,
to address the vocabulary gap between tweets and hashtags.
LDA-type approaches face drastic challenges regarding both
scalability and accuracy of recommendation, where either
hashtags that are too general are recommended, e.g., #news,
#life, or ones that are not used at all by the Twitter users,
since the focus is on recommending hashtags solely driven by
the topic of tweets [6]. In addition, these models need to be
constantly retrained to adapt to the new emerging hashtags,
which makes the process more time consuming.

Hashtag Recommendation for News. There is little
prior work focusing specifically on hashtag recommendation
for news. The approach in [33] relies on a manual user query

1Insight4news: http://insight4news.ucd.ie

to retrieve related articles, which are then clustered to cre-
ate a topic profile. Similarly a hashtag profile is created
from tweets collected from a set of manually selected ac-
counts. This approach then recommends hashtags with a
similar profile to a topic/cluster profile, without regard to
user engagement with the hashtag, since the experiments
are done on a static collection. The work in [27] proposes
an approach that updates hashtag recommendations once
daily, while the emphasis in our work is on real-time recom-
mendation.

Real-time Tag Recommendation. Related to our work
are also recent approaches to real-time tag recommendation
for streaming scientific documents and webpages [29, 28]. In
that work, the set of tags is assumed to be static, and fairly
small, which facilitates a lot of pre-processing steps. In our
scenario, both articles and tags are continuously streaming
into the system, and the set of hashtags is very large and dy-
namic (i.e., have a variable relevance lifecycle), which makes
the problem more challenging.

Learning to Rank. In classic IR learning-to-rank (L2R)
approaches, a ranked list of documents is returned for a user
query. The set of documents is typically assumed to be
static, which allows for clever indexing. The set of queries
is dynamic and a pre-processing step is used to produce an
initial document ranking, followed by a re-ranking step us-
ing machine learning [17, 26]. Depending on the input rep-
resentation and loss function, learning to rank algorithms
can be categorised [19] as pointwise [18, 23], pairwise [1,
30, 10] and listwise [34, 25, 2]. Although listwise/pairwise
approaches are commonly used, they are not suitable for
our problem setting, due to the nature of our data and effi-
ciency constraints. On average, there are about 1-5 relevant
hashtags for each article (as identified by our labelling study
involving journalists), so the key concern is to quickly iden-
tify the relevant few, in every time slot. From an efficiency
point-of-view, the computational complexity of listwise and
pairwise approaches is usually high [2, 11], making them less
suitable for a real-time setting. Pointwise approaches were
shown to be efficient and well suited for binary relevance
labels [18, 26], therefore we take this approach in our work.
We show how to model our problem in a L2R framework for
dynamic settings. We compare our method to existing topic
modelling approaches: Näıve Bayes [7], Support Vector Ma-
chines [36] and Latent Dirichlet Allocation [6] (see Section
4.5).

3. LEARNING-TO-RANK FOR REAL-TIME
HASHTAG RECOMMENDATION

In this section we discuss the proposed L2R framework
and the methodology for computing time-aware features for
the relevance model.

3.1 Learning-to-Rank Approach
In an IR setting, a system maintains a collection of doc-

uments D. Given a query q, the system retrieves a subset
of documents d ∈ Dq from the collection, ranks the docu-
ments by a global ranking model f(q, d), and returns the top
ranked documents. The f(q, d) model is constructed auto-
matically using supervised machine learning techniques with
labelled ranking data [13].

In our hashtag recommendation setting, the query q is ex-
tracted from an individual article a ∈ A, where A is a stream

1192



Table 1: Example article text used for extracting
keyphrases.

Headline Vladimir Putin in good health, insists Kremlin
Subheadline Spokesman says Russian president’s hand-

shake is strong enough to ’break hands’
First Sentence Kremlin spokesman Dmitry Peskov said on

Thursday that president Vladimir Putin is in
good health, but could not say when he would
next appear in public.

of news. The document collection is a stream of hashtags
H, extracted from a stream of tweets T . For the reasons
stated in Section 2, we take a pointwise L2R approach by
transforming the ranking problem into a classification prob-
lem [13, 18]: First, a subset of hashtags Ha is retrieved
for article a through a hashtag-sharding method explained
in Section 3.2. Then, for each article-hashtag pair (a, h),
h ∈ Ha, we create a feature vector x, with label y ∈ {0, 1}
(y = 1 if the hashtag is relevant for the article). Given m
training examples M = {xi, yi}, i = 1, 2, ...,m, we construct
a global classifier f(x) = y to predict y for any feature vector
x of an arbitrary article-hashtag pair.

To address the dynamic aspect of our problem (i.e., hash-
tags and articles come as streams, and the relevance of hash-
tags to articles is time-dependent since the hashtag represen-
tation changes due to the arrival of new tweets), we extract
time-aware features xt as shown in Section 3.3. We write
f(xt) = yt to denote that the feature vector is dependent
on time, while the classification function f is not. We em-
ploy two sliding time windows to transform the dynamic
environment to a static one, at current time point tn. The
global time window γ = [tn−24h, tn] corresponds to the past
24h from the current time tn, while the local time window
λ = [ta − 4h, tn], with ta the publishing time of article a, is
an article-dependent time window, where ta ≤ tn. The local
time window restricts the computation of features to a local
(in time) tweet subset. The choice of window parameters is
justified empirically and by the application domain, e.g., in
the news life-cycle most news either get updated (and be-
come new articles) or are ignored after 24h [3]. We explain
how we use these time windows in Section 3.2 and 3.3.

3.2 Sharding the Tag Stream
Similar to query sharding in classic IR, we identify a set

of tweets associated with each article, which we call the ar-
ticle’s tweet-bag, Ta. All hashtags contained in Ta are the
article’s tag shard, Ha. Starting at some initial time t0, at
time-step tn, the system carries out the following actions,
where the interval between time-steps is 5mins:

1. Read RSS feeds, download articles, and extract key-
phrases from each article (query formulation).

2. Pool the keyphrases for all articles published within
the global time window γ, and retrieve a corresponding
stream of tweets T .

3. If a retrieved tweet from T contains at least one key-
phrase of an article a, append it to Ta.

4. From each tweet-bag Ta, extract the hashtags and as-
sign them to this article-shard Ha.

5. Compute the feature vector xt of the article-hashtag
pair (a, h). Feed xt to the relevance classifier, get hash-
tag recommendation f(xt).

Table 2: Example process for extracting article-
keyphrases.

Original keywords Paired keywords Ranked keyphrases
dmitry peskov dmitry peskov putin vladimir
vladimir putin putin vladimir dmitry peskov

russian russian spokesman kremlin russian
spokesman kremlin russian health kremlin
kremlin health russian russian spokesman
health kremlin spokesman health russian

health kremlin kremlin spokesman
health spokesman health spokesman

Sharding the tag stream enables the retrieval of tags likely
to be relevant to the article, as well as quick computation of
feature vectors for the article-hashtag pairs.

We investigate several methods for keyphrase extraction
and show the impact of 3 such methods in our experiments
(Section 4.2). The goal is to extract article-keyphrases to
maximize the retrieved number of tweets (a form of tweet
Recall) and the content similarity of the retrieved tweets to
that article (a form of tweet Precision). The procedure for
extracting keyphrases is as follows. Since news are written in
an inverted pyramid form (i.e., the article focus is presented
in the beginning) we focus on the pseudo-article formed of
headline, subheadline and first sentence of each article, and
tokenize and POS-tag that text. In the best performing
method, only nouns are selected, giving priority to proper
nouns over common nouns, as a light form of entity detec-
tion. Single keywords are then paired and long proper nouns
are broken down into term-pairs. This step is important for
avoiding retrieval of noisy tweets. Finally, these pairs are
ranked based on the average tf-idf of the individual terms,
with term-frequency computed from the article body and
inverse-document-frequency computed from the article col-
lection within γ. The top-5 pairs are used as the keyphrases
of the article. Table 1 and 2 show an example article text
and the procedure for extracting keyphrases.

The tf-idf ranking extracts keyphrases that reflect the
main article focus, e.g., if several city names are extracted:
New York, London, Paris, but the article main focus is on
“London business”, then “London business” will be ranked
before “Paris business”. Limiting to top-5 pairs achieves
a good trade-off between scalability and quality of the re-
trieved tweet set.

3.3 Time-Aware Features
Given an article a and corresponding article-shard Ha,

we form article-hashtag pairs (a, h), h ∈ Ha, and for each
pair create a feature vector xa,h. Since the relevance of
a hashtag to an article is time dependent, we extract time-
aware features to describe the article-hashtag pair, and write
the classification function as f(xa,h,t) = yt.

We build on prior feature engineering work on Twitter and
news data [4, 24] to investigate useful features and adapt
them to our local and global time-windows λ and γ. One
important aspect in feature engineering for L2R, is that fea-
tures need to be comparable across queries, because we aim
to learn a single ranking function for all queries using the
same set of features. Additionally, all features have to be
normalized at query-level for dealing with the issue of dif-
ferent candidate set sizes, and the variance between queries.

We identify five classes of features: Local, Global, Trend-
ing, Headline and User. Four of them reflect properties of
the hashtag, while the fifth reflects social network character-

1193



istics of users. Considering the real-time and high precision
requirement of our approach, we only use low-cost features.

Bag-of-words Representation A tf-idf bag-of-words rep-
resentation is formed from the text in each pseudo-article
(headline, subheadline, first sentence) as a vector a:

a = tf(w, a)× idf(w,A)

where tf(w, a) is the term frequency of the term w within
the whole article defined as in [21]:

tf(w, a) = 0.4 +
(1− 0.4) ∗ freq(w, a)

max{freq(w′, a) : w′ ∈ a} . (1)

The inverse-document-frequency is computed from the arti-
cle collection A, gathered in the time window γ:

idf(w,A) = log
|A|

{a ∈ A : w ∈ a} (2)

Similarly, given any tweet-bag, T ′ ⊆ T , we form a bag-of-
words representation as a vector h(T ′), whose components
are the term frequencies of all terms occurring in the tweets
in T ′: tf(w, T ′).

Local similarity LSa,h,λ: Compares the article text to
a local hashtag tweet bag via the cosine similarity as shown
in Equation 3. Let Ta,h,λ be the subset of tweets in Ta that
mention h within time window λ. ||.|| denotes the L2 norm.

LSa,h,λ =
a · h(Ta,h,λ)

‖a‖‖h(Ta,h,λ)‖ (3)

The local similarity is an important content feature that
indicates how relevant a hashtag is to an article.

Local hashtag frequency LFa,h,λ: Captures local pop-
ularity of usage for a given hashtag in the article tweet-bag
Ta within time window λ.

LFa,h,λ =
|Ta,h,λ| −min{|Ta,h′,λ|}

max{|Ta,h′,λ|} −min{|Ta,h′,λ|}
(4)

LF ′a,h,λ =
log |Ta,h,λ| −min{log |Ta,h′,λ|}

max{log |Ta,h′,λ|} −min{log |Ta,h′,λ|}
(5)

where h′ ∈ Ha. We choose to include both the absolute
size of the tweet-bag and the log of its size as separate fea-
tures, which are normalised using min/max feature scaling,
as shown in Equations 4 and 5. The local frequency feature
compares all hashtags from the same set Ha, and indicates
whether a hashtag is dominating the topic.

Global similarity GSa,h,γ : Distinguishes between gen-
eral and topic specific hashtags. It builds on similar equa-
tions as for local similarity, but now the article bag-of-words
representation is compared with the whole hashtag tweet-
bag Th within global window γ:

GSa,h,γ =
a · h(Th,γ)

‖a‖‖h(Th,γ)‖ (6)

General hashtags like #news, may seem relevant to an
article when looking at only the article tweet-bag Ta, but if
we consider all tweets in Th, #news is irrelevant since it is
used with all news stories. A topic specific hashtag should
maintain a high global similarity score to the article.

Global hashtag frequency GFh,γ : Captures global pop-
ularity of usage for a given hashtag. Let |Th,γ | denote the
number of tweets in Th within global time window γ. GFh,γ

is computed as in Equations 4-5, after replacing |Ta,h,λ| by
|Th,γ |. A globally popular hashtag usually indicates a break-
ing news, with more news articles published on that topic,
which increases the probability of such hashtag being rele-
vant to an article.

Trending hashtag TRa,h,tn : Captures a significant in-
crease in local hashtag frequency and aims to identify article-
wise trending hashtags. In order to separate emerging topic
specific hashtags (e.g., #charliehebdo, #jesuischarlie for a
recent terrorist attack in France) from hashtags with a high
general usage rate (e.g. #news, #breaking), being able
to identify trending hashtags early on is very important.
Therefore, it is not enough to only capture the current hash-
tag frequency, but we also need to check how quickly this is
increasing.

Given time window Wn = tn− tn−1, the number of tweets
mentioning h in tweet stream Ta in time window Wn is
|Ta,h,Wn |, then:

TRa,h,tn =
|Ta,h,Wn | − |Ta,h,Wn−1 |

|Ta,h,Wn−1 |
(7)

Expected gain EGa,h,Wn : Captures the potential of h
in the near future (a few minutes later), and is expected to
boost trending hashtags while punishing fading ones.

Based on trending feature TRa,h,tn , we also have the ex-
pected number of tweets in Ta mentioning h for the next
time window Wn+1, denoted by E(|Ta,h,Wn+1 |):

EGa,h,Wn = E(|Ta,h,Wn+1 |) = (1+TRa,h,tn) · |Ta,h,Wn | (8)

We create two features, the absolute expected gain and the
log of this value with min/max scaling as in Equations 4-5.

Hashtag in headline HEa,h: After observing user be-
haviour and trending hashtags over time, one can notice
that many hashtags literally reflect their topic. They are a
variation of the name of the people/place/event being dis-
cussed. It could be an acronym (e.g. #cwc2015 for cricket
world cup 2015), or concatenated names (e.g. #sydneysiege
for the Sydney hostage attack). Although this is not al-
ways the case (e.g. #carrythemhome for England Rugby,
#icantbreathe for Eric Garner’s death), being able to use
such information may help the classifier. We define HEa,h
as a binary feature equal to 1 if the hashtag is in the pseudo-
article (headline, sub-headline, first sentence) after removing
space between terms.

Unique user ratio URa,h,λ: The ratio of unique Twitter
users using h in Ta within time window λ, to the number of
tweets. Function User(T ) returns the set of users in tweet
stream T .

URa,h,λ =
|User(Ta,h,λ)|
|Ta,h,λ|

(9)

Noise filtering is extremely important for Twitter hashtag
recommendation, because there are many spam users and
twitter-bots posting spam tweets with self-created hashtags.
The unique user ratio can help the classifier separate the
genuinely popular hashtags from spammy hashtags, some-
thing that local/global frequency cannot achieve.

User credibility UCa,h,λ: The quality of a hashtag de-
pends on the users using it. A commonly used Twitter
user credibility indicator is the number of followers. Users
with more followers are usually celebrities, domain experts

1194



and experienced users that work hard to attract followers.
Therefore, we define user credibility as the maximum, the
average and the median of the followers of users tagging h
in article tweet bag Ta in λ.

MaxFa,h,λ = max(Follower(u)), u ∈ User(Ta,h,λ) (10)

UCmax is the min/max scaled MaxFa,h,λ; we also com-
pute UCavg and UCmedian using a similar approach.

Cost of features. As shown by the previous equations,
most of our features are based on the local article tweet-bag
Ta, which is fairly small. Hence they are cheap to obtain.
The experiment in Section 4.5 shows that the execution time
for feature computation, which is the most time consuming
step in our approach, grows linearly with the number of
tweets for the entire article collection.

4. EVALUATION
In this section we discuss our methodology for gathering

labeled data and show extensive experiments analysing our
techniques in comparison to the state-of-the-art (SOTA).

4.1 Gathering labeled data
As discussed in the previous sections, we model hashtag

recommendation as a L2R problem via a relevance classifi-
cation approach. Here we describe the process of gathering
labeled data for the classifier. We define three classes of
relevance for each article-hashtag pair:

• A hashtag is specifically on the topic of the news arti-
cle. For example, for articles describing the recent Ger-
man Wings plane crash, “#germanwings, #4u9525,
#a320” fall in this category.
• A hashtag is generally on the topic of the news ar-

ticle. For example, for the same story, “#barcelona,
#france” fall in this category.
• Irrelevant hashtags, including off topic and spamy hash-

tags. For example “#news, #bbc, #breaking” fall in
this category.

One way to gather cheap labels is to use the tweets that
contain both article URLs and hashtags, and consider those
hashtags as relevant labels. However, in our initial exper-
iments, we found such data too little and too noisy. Most
tweets with hashtags, although relevant to the article, do
not contain the article URL. Additionally, a quarter of the
tweets with article URLs are tagged with #news #break-
ing, which are too general, while many others are tagged
with spam hashtags or a mixture of relevant and irrelevant
hashtags. It is therefore difficult to directly use this data for
training, so instead, we decided to collect high quality la-
bels by involving manual annotators in a real-time labelling
exercise.

In order to gather relevance labels quickly, we have im-
plemented our methods in a system that can be accessed
via a Web interface2. We continuously track the RSS news
feeds of 7 news organizations: Reuters, BBC, Irish Times,
Irish Independent, Irish Examiner, RTE, and The Journal,
publishing around 900-1,000 articles each day. Using the
methods described above, we extract article-keyphrases and
retrieve tweets using the Twitter Streaming API, updating
the tweet-bag of each article every 5 mins over a 24h period.

2The Insight4News system for gathering labeled data:
insight4news.ucd.ie/

Table 3: Details on the labeled data pairs.
Total Positive Negative Collection Period
1238 348(28.1%) 890(71.9%) 04/12/2014-08/01/2015

Articles Involved Hashtags Involved
217 725

Figure 1: The system interface used to gather feed-
back on hashtag relevance with respect to an article.

The users can see the hashtags retrieved via simple baselines
for each article and can provide feedback for each hashtag.
The baselines use simple frequency of usage for a hashtag or
the local cosine similarity between the article and hashtag
profiles for h ∈ Ha over local time window λ. The inter-
face as shown in Figure 1 enables users to quickly provide
feedback while browsing the news presented.

One interesting aspect of labeling in this dynamic con-
text is that for the same article-hashtag pair the label may
change depending on the time of labeling, in particular more
specific hashtags emerge as users engage with news stories
on Twitter. To simplify the labeling procedure, users were
instructed to decide only if a hashtag is relevant (specifically
or generally on the topic) or irrelevant to the article, at the
time they are labeling it. We exposed this Web interface
with the above instructions to a group of researchers and
journalists over 1 month, allowing us to gather around 1,200
labeled examples3. We use this data as ground truth for
evaluating various features and approaches. Details on the
labeled data distribution are given in Table 3. Note that ar-
ticles are only paired with subsets of hashtags, rather than
all hashtags (e.g., the labeled pairs are a subset of the full
cross-product of articles and hashtags).

4.2 Experiment 1: Keyphrase Extraction
In this section we evaluate three different approaches for

extracting keyphrases with the goal of maximizing a form of
precision and recall on the retrieved tweet set for the article.
The methods compared are:

1. Tf-idf unigrams: Select all unigrams (single words) in
the pseudo article (headline, sub-headline, first sen-
tence). Compute tf-idf of single words using full arti-
cle. Pair words to form 2-gram phrases. Rank pairs
by the average of tf-idf scores of individual terms, take
the top 5 pairs as the article’s keyphrases.

2. POS-tag: Apply part-of-speech-tagging to the pseudo
article. Take the first 5 nouns/phrases by giving prior-
ity to entities (noun-phrases, proper nouns), frequent
nouns, all other nouns. Pair the single nouns to 2-gram
phrases, break long noun phrases into 2-grams. Take
the first 5 pairs as the article’s keyphrases (alphabeti-
cal order).

3Labeled data available from https://sites.google.com/
site/bichenshi/

1195



Table 4: Example article and extracted keyphrases using three approaches.
Headline Putin re-emerges in public after rumours over 10-day absence

Subheadline Russian president jokes to media that life ’would be boring if there was no gossip’
First Sentence Vladimir Putin has reappeared in public after a mysterious 10-day absence

that sparked frenzied speculation about the whereabouts of the Russian president,
his health and mental wellbeing, and even his grip on power.

Tf-idf president whereabouts, mysterious whereabouts, wellbeing whereabouts,
frenzied whereabouts, absence whereabouts

POS-tag gossip president, life power, media president, absence president, health media
POS-tag + Tf-idf president russian, absence russian, putin vladimir, power russian, grip russian

Table 5: Similarity versus number of tweets re-
trieved via keyphrase extraction using 3 methods.

Tf-idf POS-tag POS-tag + Tf-idf
Avg Cosine 0.1374 0.1321 0.1712
Avg No. Tweets 753.60 1092.13 1870.58

3. POS-tag + Tf-idf (our approach): Same process as
POS-tag but for selecting final subset, rank pairs by
average tf-idf score of individual terms and select the
top 5 pairs as the article’s keyphrases.

Experiment Setup. We collect 300 news articles and ex-
tract keyphrases using the above three approaches. We track
these article-keyphrases for 24h, via the Twitter Streaming
API, and for each article we gather 3 tweet-bags correspond-
ing to the three sets of article keyphrases. Table 4 shows
example keyphrases for a given article, under different selec-
tion strategies.

For each of the 3 approaches, we have 300 articles, and
each article has one tweet-bag. To estimate the precision
of each approach, we compute the cosine similarity between
the article and its tweet-bag tf-idf profile, then average over
the 300 articles. This gives us an indicator of the focus of the
tweet-bag. To estimate the recall, we average the sizes of the
tweet-bags (number of tweets per article) over all articles.

Evaluation. As shown in Table 5, combining POS-tagging
(for light entity detection) and tf-idf ranking (to focus on the
right terms), retrieves twice as many tweets as compared to
the other two approaches, and the tweets are also more sim-
ilar to the article content. Note that this article-keyphrase
extraction step is focused on retrieving relevant content from
a very noisy and fast-paced social media stream such as
Twitter, rather than being a generic article query formu-
lation method. Although still noisy, this step is followed by
a precision oriented ranking based on a learning approach.

4.3 Experiment 2: Feature Evaluation
Experiment Setup. We present a thorough analysis

of the influence of different features on learning a hashtag
relevance classifier. The evaluation is done via 10-fold cross-
validation on the full labeled set (1.2k examples). Since
the time effect is encoded in the feature vector, randomising
samples in the cross-validation step is not an issue. We show
further evidence for this statement in Section 4.4. For the
relevance classifier we use an ensemble approach: Random
Forest. Our choice is based on previous studies that showed
Random Forests are robust to noise and very competitive
regarding accuracy [9].

We test different combinations of the five types of fea-
tures (Local, Global, Trending, Headline, and User, 14 fea-
tures in total), and compare the classification performance.

Local Frequency Local Similarity Global Frequency

Global Similarity Tag In Headline Unique User Ratio

Avg Follower Max Follower Expected Gain

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE TRUE FALSE TRUE

Label

FALSE

TRUE

Features

Figure 2: Boxplot distributions of 9 features in rel-
evant (blue/TRUE) and irrelevant (red/FALSE) la-
belled data.

Figure 2 shows the distribution in the labelled data of 9
most important features. We use three standard machine
learning metrics to evaluate classification quality: Precision,
Recall and AUC [32]. The first two measure the classifica-
tion quality after a threshold is imposed on the classification
score. We show Precision and Recall on the positive class
(coined PP and PR) as well as the weighted average Preci-
sion and weighted average Recall over both classes (coined
WP and WR). The latter averages the Precision/Recall for
the 2 classes weighting performance on each class by class
size [32]. AUC measures ranking quality and is not depen-
dent on a classification threshold. In practice we are more
concerned with Precision and AUC quality, since for our ap-
plication domain it is more important to have high Precision
(recommend a few specific hashtags in top ranks), than high
Recall (retrieve all relevant hashtags).

Evaluation. Table 6 shows the results of using differ-
ent combinations of features. Basic refers to using Local
and Global article-hashtag content and popularity features.
Norm1 and Norm2 refer to min/max scaling of the original
versus the log of feature values (as described in Equation 4
and 5). All(Norm1&2) is the approach that includes all 14
features used in this work. Most related work in this area
has focused on the type of features included in approach
Basic. We observe that the three other categories of fea-

1196



Table 6: Evaluating features of the relevance classi-
fier for hashtag recommendation.

PP PR WP WR AUC
Basic(Norm1) 81.5% 63.2% 85.3% 85.6% 86.7%
Basic(Norm2) 82.5% 63.8% 85.7% 86.0% 85.8%
Basic(Norm1&2) 83.8% 63.8% 86.1% 86.3% 87.0%
Basic+Trending 83.8% 66.7% 86.8% 87.0% 90.3%
Basic+Headline 82.2% 73.0% 87.7% 88.0% 92.5%
Basic+User 84.3% 64.7% 86.5% 86.7% 89.8%
All, no User 84.0% 74.1% 88.6% 88.8% 94.1%
All, no Headline 85.1% 64.1% 86.6% 86.8% 91.3%
All, no Trending 84.7% 75.0% 89.0% 89.2% 94.3%
All(Norm1) 87.2% 76.1% 90.0% 90.1% 94.9%
All(Norm2) 88.5% 75.0% 90.1% 90.2% 94.9%
All(Norm1&2) 87.5% 76.4% 90.2% 90.3% 95.0%

tures (Trending, Headline and User), and the two normal-
ization approaches, increase the Precision/Recall by 5% and
the AUC by 9%.

4.4 Experiment 3: Size of Training Data and
Time Effect

In this experiment we analyse the influence of the number
of training examples, as well as the time effect on the clas-
sification quality. We carry out two experiments. The first,
studies the effect of recency and size of training data, on the
quality of recommendation (variable training set, fixed test).
The second, checks whether the quality of recommendation
remains stable over time (5 months) given that we do not
retrain the classifier (fixed training set, variable test).

4.4.1 Training Size versus Recency
Experiment Setup. We order the 1.2k labeled examples

by time from the oldest to the most recent. We use the most
recent 400 examples as hold-out test set, and gradually add
in examples to the training set by batches of size 50, and
train a Random Forest classifier. We compare two strate-
gies for selecting training data: backward and random. The
Backward approach selects examples starting with the most
recent 50 examples and adds 50 by going back in time to
older examples, until it reaches 800 training examples. The
Random strategy selects a random sample of given size, from
the set of 800 training examples.

Evaluation. Figure 3 shows the Precision of the clas-
sifier tested on the hold-out test set when increasing the
number of training examples, with the two sampling strate-
gies. The plots for Recall and AUC behave similarly and
are not shown here. We note that both strategies behave
similarly, with Precision increasing quickly with the num-
ber of labeled examples. The Random strategy delivers less
stable Precision at smaller sample sizes. This is due to the
variation in the positive/negative ratio of examples in those
labeled training sets. Nevertheless, both methods achieve
similar Precision at about 700 labeled examples, suggesting
that the sampling strategy is not important once enough
training data is available.

4.4.2 Recommendation Quality over Time
Experiment Setup. We use the entire 1.2k labeled ex-

amples, which are collected in December 2014, to train a
Random Forest classifier. For each month from March to
July 2015, we randomly pick one day and use articles from
that day as testing data. We ask a group of researchers to

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5

Size of the Training Set 

P
re

c
is

io
n

50 150 250 350 450 550 650 750

Backward

Random

Figure 3: Precision for different size training data
with two sampling strategies, tested on hold out set.

0
.5

0
.6

0
.7

0
.8

0
.9

March April May Jun July

0.872

0.901

0.865 0.875

0.899

72%

77.0%

67.3%

61.0%

65.0%

Precision@1

Article Coverage

Figure 4: Precision@1 and article coverage for the 5
test days from March to July 2015 (relevance score
threshold at 0.5).

evaluate the top one recommendation (ranked by the classifi-
cation score), for each article in the 5 test days. The thresh-
old of classification score is set to 0.5, which means an article
gets a hashtag recommendation only if at least one hashtag
has predicted relevance score above the 0.5 threshold.

Evaluation. We measure the average Precision@1 for
each test day, based on the evaluation results of the annota-
tors. In practice, we are also interested in the percentage of
articles that get a recommendation (article coverage), which
varies with the selected threshold, and is also influenced by
the Twitter activity and topics of the news article on that
day. Figure 4 shows the Precision@1 for all 5 days is around
0.87 and the percentage of articles covered is in the range
of 60% − 80%. The result suggests that even though the
classifier is trained on December’s data, the quality of rec-
ommendation remains stable when tested on data of half a
year later, thus collecting new labeled data to retrain the
classifier is not necessary.

4.5 Experiment 4: Comparison to SOTA
In this experiment, we compare our approach (named

Hashtagger) to three SOTA hashtag recommendation tech-
niques using topic modelling: Näıve Bayes, Liblinear, and
LDA. We study the precision as well as scalability of these
approaches. The main difference between our method ver-
sus existing methods is in how modelling is done, and what
training data and features are used. Regarding modelling,

1197



the SOTA approaches focus on modelling each hashtag as
a topic, as in classic topic classification, while we model
the hashtag relevance with a L2R approach. For the train-
ing data, the SOTA approaches are trained on most recent
tweets with hashtags, and need to be retrained constantly
to adapt to the new content. As our ranking classifier only
needs to be trained once, it uses the 1.2k label data for the
entire run. Regarding features, most methods rely on text
similarity (between article and hashtag representation) and
the frequency of usage of the hashtag. We compare our ap-
proach to prior techniques, using the same tweets and set
of features (local text similarity and frequency) to assess
the impact of the modelling approach. Additionally, we also
show results for our method using the full set of features
proposed, to asses the impact of modelling plus features.

1. Näıve Bayes4 [7]: A hashtag is seen as a category and
tweets mentioning that hashtag are used as labeled
data to train a Näıve Bayes classifier via multi-class
classification.

2. LibShortText [36]: A library for short-text classifica-
tion and analysis that builds upon the SOTA library
LibLinear [8], which support millions of instances and
features. LibShortText implements multi-class Gaussian-
kernel SVM. Similar to the Näıve Bayes approach, each
hashtag is considered as a category and tweets men-
tioning a hashtag are used as labeled data.

3. LDA5 [6]: Topic modelling with Latent Dirichlet Allo-
cation representing each tweet as a mixture of topics.
Trained on a collection of tweets, LDA returns a set of
scored topics that each tweet belongs to, each topic is
typically represented as a group of ranked words. We
use the highest scored topic to recommend hashtags.

4.5.1 Precision
As an evaluation metric we use Precision@1 by recom-

mending the maximum score prediction of each method.
Experiment Setup. The three SOTA approaches are

designed to work best in a static environment, where the
set of tweets and hashtags are static and are analysed in an
offline batch mode. To adapt them to a real-time environ-
ment, we retrain these methods in a sliding window style:
Given a time t0, all methods are trained on all tweets (with
hashtags) falling in a 4h window ahead of t0, then they rec-
ommend hashtags for articles that are posted up to 2h after
t0. At the next time point t1 = t0 + 2h, we discard the pre-
vious models, retrain all models with new tweets that are
4h ahead of t1, and use these models for another 2h. Be-
cause the Näıve Bayes’ running time is very short (as shown
in Section 4.5.2), we test Näıve Bayes under two settings:
retrain every 2h and every 10min.

We randomly pick a starting time point t0 (0:00, April
14th, 2015, UTC), then run the experiment for 24h, involv-
ing 270 articles and 313k tweets that have at least one hash-
tag (about 26.1k tweets per 4h time window). Then each
pseudo article (headline, sub-headline and first sentence) is
considered as a rich tweet, and each method recommends
one hashtag to each article. For LDA, the number of topics
is set to 50 per time window and the number of iterations
is 100, and we use the top ranked term in the top ranked
topic as a recommended hashtag [20, 6, 16]. In order for all

4http://scikit-learn.org/...MultinomialNB
5https://pypi.python.org/pypi/lda

methods to work from the same data, we test Hashtagger
on feature vectors computed over the tweets in tweet-bag Ta
that are published up to 4h ahead of the article publishing
time ta. Also, we test two versions of the Hashtagger: Hash-
tagger(2) uses only two local features(LFa,h,λ and LSa,h,λ),
while Hashtagger(All) uses all 14 features.

Evaluation. We asked a group of annotators to evaluate
the 6 ∗ 270 = 1620 article-hashtag pairs as relevant/ irrel-
evant and average their results. As each method gives one
recommendation per article, accompanied by a prediction
score, the Precision@1 and the number of articles that get
a recommendation (article coverage rate) are both functions
of the threshold on the prediction score. A higher thresh-
old value results in a better recommendation quality, but
will naturally reduce the article coverage rate. Since the
predicted scores of different methods are not directly com-
parable, we compare the Precision@1 for the five methods
under different article coverage rates. For each method, we
change the threshold to each unique predicted value in in-
creasing order, and record the article coverage rate and the
Precision@1 at that threshold, as shown in Figure 5.

When the article coverage rate is 100% (e.g. we record 1
recommendation for each article regardless how low the pre-
diction score), the Precision@1 for Hashtagger(All), Hash-
tagger(2), Näıve Bayes(2h), Näıve Bayes(10min), LibShort-
Text, and LDA is 0.618, 0.533, 0.374, 0.396, 0.447 and 0.385.
The results for the SOTA methods are in agreement with
published studies [20, 15, 12, 6, 16]. Näıve Bayes(10min)
has higher Precision@1 than Näıve Bayes(2h) showing that
frequent retraining could reduce the content gap between
training and test sets. Regardless of the article coverage
rate, Hashtagger(2), which uses only basic similarity and
frequency features, constantly out-performs the other three
methods, showing the positive impact of our modelling. Hash-
tagger(All) has the highest Precision@1 score, suggesting
that both modelling and feature engineering are important.
For a fixed threshold of 0.5, Hashtagger(All) has Precision@1
of 0.89.

Table 7 shows recommended hashtags and prediction scores
of the five approaches. Hashtags in bold are labelled as
relevant by all our annotators. We note that Hashtagger
gives more reliable recommendations, including recommend-
ing specific hashtags (e.g. #wiveng for West India vs Eng-
land), while the other three approaches provide more gen-
eral, even irrelevant hashtags. One advantage of Hashtagger
is that, unlike other SOTA approaches, it can predict the
relevance of unseen articles and hashtags that have not ap-
peared in the training set. Due to our choice of modelling, it
is also possible for us to gather a small amount of high qual-
ity manual labels for the classifier, which is much cleaner
than the tweets with hashtags used by SOTA approaches.
Gathering manual labels for other SOTA approaches is not
feasible because they need to be retrained with new labels
very often. Hence, Hashtagger achieves higher Precision@1
than SOTA approaches.

4.5.2 Scalability
Experiment Setup. To further examine the scalability

of the four approaches, we compare their execution time by
increasing the number of tweets for training/testing. For
Näıve Bayes, LibShortText and LDA, we take different size
samples of tweets from 10k to 150k, as training data, and
record their model fitting time. We repeatedly run Hash-

1198



Table 7: Examples of recommended hashtags by the four compared methods.
Article Headline Hashtagger(All) Score Hashtagger(2) Score Näıve Bayes Score LibShortText Score LDA Score
Nokia in deal talks with Alcatel-Lucent #nokia 0.83 #news 0.93 #news 0.90 #follow 0.09 #home 0.1
Ian Bell ton gives England the upper hand in Antigua #wiveng 0.52 #wiveng 0.65 #lfc 0.72 #iran 0.13 #news 0.11
Syria-bound son of British councillor deported from Turkey #syria 0.97 #syria 0.88 #yemen 0.68 #news 0.77 #wallstreet 0.04
Seventeen killed in attack on Somalia education ministry #somalia 0.99 #somalia 0.94 #somalia 0.97 #somalia 0.23 #somalia 0.1

Article Coverage

P
re

c
is

io
n
@

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

Hashtagger(All)
Hashtagger(2)
NB(2h)
NB(10min)
LibShorttext
LDA

0.89(th=0.5)

Figure 5: Precision@1 and article coverage of the
six methods compared.

0
1

0
0

2
0

0
3

0
0

4
0

0

Number of tweets in training/testing set

C
la

s
s
if
ie

r 
e
xe

c
u

ti
o

n
 t

im
e

(s
)

0 20k 40k 60k 80k 100k 120k 140k 160k

Hashtagger(All)

Naive Bayes

LibShortText

LDA

Figure 6: Running time of the four methods using
different size of tweet set for training/testing.

tagger over randomly selected article collections with total
tweet-bags size ranging from 10k to 150k.

Evaluation. The execution time shown in Figure 6 for
each classifier matches known results: Näıve Bayes, known
to be very efficient with linear training/testing complexity
[21], takes around 100s to train on 150k tweets. The RBF
SVM (LibShortText), with complexity O(n3) [5], takes 120s
to train on only 10k tweets. The training speed of LDA is
between Näıve Bayes and SVM taking 100s to train on 30k
tweets (with 50 topics). Hashtagger has similar linear time
complexity for testing as Näıve Bayes for training, process-
ing 150k tweets in 100s. Nevertheless, Hashtagger delivers
much higher recommendation precision.

5. APPLICATIONS
In this section we study two applications of real-time hash-

tag recommendation for news. The first uses Twitter as
a publishing platform of online news and measures the ef-
fect of attaching hashtags to headlines as a way of reaching
wider Twitter communities, which in turn is hypothesised to
lead to more engagement with those news (e.g., more URL

clicks). The second application looks at the benefits of in-
dexing news using recommended crowdsourced tags (which
we call social indexing), for better news retrieval and story
tracking.

5.1 Online News Publishing
We study the impact of our hashtag recommendations by

automatically tweeting news headlines as follows. As soon
as a headline is retrieved from an RSS feed and it receives
a hashtag recommendation from our system, it falls into
one of three groups, decided by a random variable. The
first group is tweeted as is (headline + URL), the second
is tweeted by appending #news to each headline (headline
+ #news + URL) and the remaining group is tweeted with
the top hashtag recommended by Hashtagger. We then use
impact metrics provided by Twitter Analytics6 to compare
the 3 groups of headlines. The goal is to assess whether
tweeting the news headlines with our recommended hashtags
leads to higher engagement with those news, as compared to
not using any hashtags, or using a generic hashtag such as
#news. The hypothesis is that by attaching good hashtags
to the news headlines, those news reach wider and possibly
more engaged audiences.

We automatically tweet from a Twitter account named
@insight4news3 which we use for researching the effect of
publishing hashtagged news on Twitter. This account was
created in April 2015 and at the time of writing has is-
sued 99k tweets and has 438 followers. We run the pro-
cess described above over 3 months, and draw a sample of
15k tweeted news headlines, split into the 3 groups (5k per
group). We collect the total impressions, engagement and
URL clicks as provided by Twitter Analytics. The original
data is available here7. Figure 7 shows these metrics for the
3 groups. In order to avoid spurious results, we remove the
outliers for each group and metric (the top 5% quantile).

We observe that tweets with no hashtag and with #news
attract similar total amount of impressions (85k), engage-
ments (400/600) and URL clicks (300), with the #news
group only slightly better than the no-hashtag group, show-
ing that a generic hashtag does not draw more audience to
tweets. Tweets with our recommended hashtags generate
more traffic, with 150k impressions, 1.3k engagements and
750 url clicks. In addition, the engagement rate (the number
of engagements over impressions) is also increased compared
to the no-hashtag group: 0.86% versus 0.47%, suggesting
that our approach helps tweets reach a wider audience, and
leads to increased user engagement with the news articles.

5.2 Social Indexing of News
The classic approach to indexing documents is to use key-

words extracted from those documents. For example, for a
news headline ”Greek crisis: Euro zone rules out talks until
after referendum”, the corresponding article would hypothet-

6https://gnip.com/docs/Simply-Measured-Complete-
Guide-to-Twitter-Analytics.pdf
7https://drive.google.com/file/d/
0B3N3pPOTCaegdFRtbzBGbkVXMnc

1199



No Hashtag #News Hashtagger

0
5
0

0
0
0

1
0
0

0
0

0
1
5
0

0
0

0 Sum of Impressions

No Hashtag #News Hashtagger

0
2

0
0

6
0

0
1

0
0

0

Sum of Engagements

No Hashtag #News Hashtagger

0
2

0
0

4
0

0
6
0
0

Sum of Url Clicks

Figure 7: Twitter Analytics metrics to measure impact of hashtagging on news engagement.

ically be indexed by the keywords ”greek, crisis, euro, refer-
endum”. When issuing a query such as ”greece crisis euro”
articles indexed by these keywords are retrieved from the
article collection. Although the accuracy of keyword search
has continuously improved, the main weaknesses remain: (1)
Missing articles that don’t have these exact keywords; (2)
Returning too many irrelevant results.

An accurate method for associating articles and Twit-
ter hashtags, allows us to index articles using keywords and
hashtags. For example, the above article could be indexed
by ”greek, crisis, euro, referendum, #greece, #grexit, #gref-
erendum, #tsipras, #eurogroup”. This also means that now
we can formulate queries that mix keywords and hashtags,
such as greece #grexit. We coin this social indexing, the
benefits of which are three-fold:

1. Takes advantage of crowdsourced content as a form of
real-time, continuous tagging of news.

2. Hashtags are not necessarily topical, and they have
the advantage of grouping together articles belonging
to the same story (e.g., racial conflicts in US, #eric-
garner, #blacklivesmatter, #icantbreathe).

3. Hashtags allow the query to focus on diverse aspects
of a story (e.g., Greek economic crisis, #grexit, #gref-
erendum, #tsipras, #merkel, #ecb, #imf, #finland).

We discuss the above points in the context of story track-
ing. Many news organisations offer story-pages on their
website, i.e., curated collections of news articles that allow
the reader to get an overview and updates on particular
problems, e.g., referendums, elections, budgets. The Irish
Times has dedicated story-pages for issues of relevance to
the Irish society, e.g., the introduction of a tax on water8

(Twitter hashtag #irishwater), the inquiry into the bank-
ing collapse9 of 2008 (Twitter hashtag #bankinginquiry),
the recent marriage equality referendum10 (Twitter hashtag
#marref). Similarly, the BBC and The Guardian also pub-
lish story-pages, e.g., the BBC story-page on the ”Greek debt
crisis”11 and Guardian page on Liberia12. Preparing these
story-pages currently relies on prior agreement among jour-
nalists, to manually tag all articles relevant to a pre-agreed
set of stories, with the same set of tags. Once a decision is

8http://www.irishtimes.com/news/water-charges
9http://www.irishtimes.com/news/banking-inquiry

10http://www.irishtimes.com/news/politics/
marriage-referendum

11http://www.bbc.com/news/world-europe-33225461
12http://www.theguardian.com/world/ebola

taken to create a story-page, those articles are continuously
retrieved from the news archive via the manual tag set. The
problem with this approach is that it relies on foresight over
which stories are worth covering and what is the right tag
to use for those story-articles. By building on our hash-
tag recommendation approach, we let the Twitter crowd do
the tagging in real-time (via Hashtagger), potentially cap-
turing novel emerging concepts. The assumption is that
most stories that are worth story-pages have a lot of qual-
ity discussions and focused hashtags on Twitter, hypothesis
currently supported by our experiments. For example #mi-
grant covers the unfolding migrant/refugee crisis, retrieving
90 articles13 with this recommended hashtag in the time
period August 27 to October 15, 2015. The #refugee tag
retrieves 149 articles over the same time period, indicating
a potential change of discourse around this issue. We intend
to further study the use of social indexing for story tracking
and retrieval.

6. CONCLUSION
We present Hashtagger, an approach for real-time high-

precision hashtag recommendation for streaming news. Our
method relies on a learning-to-rank model tailored to a dy-
namic setting where news and tags are streaming and have
variable life-cycles. We systematically study our approach in
comparison to the state-of-the-art and show that our method
delivers much higher Precision compared to existing meth-
ods. This is due to our choice of modelling approach (rele-
vance ranking versus topic modelling) and the set of time-
aware features we investigate. Hashtagger is designed to
work in real-time, real-world application settings. We em-
ploy our recommendations in a real-life study using Twitter
as an online news publishing platform, and show that accu-
rate hashtagging drives higher news engagement. We also
discuss the implications of building on hashtag recommen-
dation for social indexing of news. For the future we intend
to analyse the impact of hashtag recommendation on auto-
matic story detection and tracking.

7. ACKNOWLEDGMENTS
This work was funded by Science Foundation Ireland (SFI)

under grant number 12/RC/2289.

13http://insight4news.ucd.ie/insight4news/hashtag/
\%23migrant

1200



8. REFERENCES
[1] C. Burges, T. Shaked, E. Renshaw, A. Lazier,

M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the
22nd international conference on Machine learning,
pages 89–96. ACM, 2005.

[2] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In Proceedings of the 24th international
conference on Machine learning, pages 129–136. ACM,
2007.

[3] C. Castillo, M. El-Haddad, J. Pfeffer, and
M. Stempeck. Characterizing the life cycle of online
news stories using social media reactions. In
Proceedings of the 17th ACM conference on Computer
supported cooperative work &amp; social computing,
pages 211–223. ACM, 2014.

[4] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and
J. Leskovec. Can cascades be predicted? In
Proceedings of the 23rd international conference on
World wide web, pages 925–936. ACM, 2014.

[5] K. Crammer and Y. Singer. On the algorithmic
implementation of multiclass kernel-based vector
machines. The Journal of Machine Learning Research,
2:265–292, 2002.

[6] Z. Ding, X. Qiu, Q. Zhang, and X. Huang. Learning
topical translation model for microblog hashtag
suggestion. In Proceedings of the Twenty-Third
international joint conference on Artificial
Intelligence, pages 2078–2084. AAAI Press, 2013.

[7] R. Dovgopol and M. Nohelty. Twitter hash tag
recommendation. arXiv preprint arXiv:1502.00094,
2015.

[8] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin.
LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874,
2008.

[9] M. Fernández-Delgado, E. Cernadas, S. Barro, and
D. Amorim. Do we need hundreds of classifiers to
solve real world classification problems? J. Mach.
Learn. Res., 15(1):3133–3181, Jan. 2014.

[10] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
The Journal of machine learning research, 4:933–969,
2003.

[11] J. Fürnkranz and E. Hüllermeier. Pairwise preference
learning and ranking. In Machine Learning: ECML
2003, pages 145–156. Springer, 2003.

[12] F. Godin, V. Slavkovikj, W. De Neve, B. Schrauwen,
and R. Van de Walle. Using topic models for twitter
hashtag recommendation. In Proceedings of the 22nd
international conference on World Wide Web
companion, pages 593–596. International World Wide
Web Conferences Steering Committee, 2013.

[13] L. Hang. A short introduction to learning to rank.
IEICE TRANSACTIONS on Information and
Systems, 94(10):1854–1862, 2011.

[14] J. Harding. Future of news. BBC, 2015.

[15] T.-A. Hoang-Vu, A. Bessa, L. Barbosa, and J. Freire.
Bridging vocabularies to link tweets and news.

[16] Z. D. Q. Z. X. Huang. Automatic hashtag
recommendation for microblogs using topic-specific

translation model. In 24th International Conference on
Computational Linguistics, page 265. Citeseer, 2012.

[17] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142. ACM,
2002.

[18] P. Li, Q. Wu, and C. J. Burges. Mcrank: Learning to
rank using multiple classification and gradient
boosting. In Advances in neural information
processing systems, pages 897–904, 2007.

[19] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[20] Z. Ma, A. Sun, Q. Yuan, and G. Cong. Tagging your
tweets: A probabilistic modeling of hashtag
annotation in twitter. In Proceedings of the 23rd ACM
International Conference on Conference on
Information and Knowledge Management, pages
999–1008. ACM, 2014.

[21] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to information retrieval, volume 1.
Cambridge University Press Cambridge, 2008.

[22] A. Mazzia and J. Juett. Suggesting hashtags on
twitter. EECS 545m, Machine Learning, Computer
Science and Engineering, University of Michigan,
2009.

[23] R. Nallapati. Discriminative models for information
retrieval. In Proceedings of the 27th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 64–71.
ACM, 2004.

[24] N. Naveed, T. Gottron, J. Kunegis, and A. C. Alhadi.
Bad news travel fast: A content-based analysis of
interestingness on twitter. In Proceedings of the 3rd
International Web Science Conference, page 8. ACM,
2011.

[25] C. Quoc and V. Le. Learning to rank with nonsmooth
cost functions. Proceedings of the Advances in Neural
Information Processing Systems, 19:193–200, 2007.

[26] D. Sculley. Combined regression and ranking. In
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 979–988. ACM, 2010.

[27] B. Shi, G. Ifrim, and N. Hurley. Be in the know:
Connecting news articles to relevant twitter
conversations. arXiv preprint arXiv:1405.3117, 2014.

[28] X. Si and M. Sun. Tag-lda for scalable real-time tag
recommendation. Journal of Computational
Information Systems, 6(1):23–31, 2009.

[29] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee,
and C. L. Giles. Real-time automatic tag
recommendation. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 515–522.
ACM, 2008.

[30] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. Frank: a ranking method with fidelity loss. In
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 383–390. ACM, 2007.

[31] Twitter. Twitter.

1201



[32] I. H. Witten, E. Frank, and M. A. Hall. Data Mining:
Practical Machine Learning Tools and Techniques:
Practical Machine Learning Tools and Techniques.
Elsevier, 2011.

[33] F. Xiao, T. Noro, and T. Tokuda. News-topic oriented
hashtag recommendation in twitter based on
characteristic co-occurrence word detection. In Web
Engineering, pages 16–30. Springer, 2012.

[34] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 391–398. ACM, 2007.

[35] S.-H. Yang, A. Kolcz, A. Schlaikjer, and P. Gupta.
Large-scale high-precision topic modeling on twitter.
In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1907–1916. ACM, 2014.

[36] H. Yu, C. Ho, Y. Juan, and C. Lin. Libshorttext: A
library for short-text classification and analysis.
Technical report, Technical Report. http://www. csie.
ntu. edu. tw/˜ cjlin/ papers/libshorttext. pdf, 2013.

1202




