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ABSTRACT
We study the question of setting and testing reserve prices
in single item auctions when the bidders are not identical.
At a high level, there are two generalizations of the standard
second price auction: in the lazy version we first determine
the winner, and then apply reserve prices; in the eager ver-
sion we first discard the bidders not meeting their reserves,
and then determine the winner among the rest. We show
that the two versions have dramatically different properties:
lazy reserves are easy to optimize, and A/B test in produc-
tion, whereas eager reserves always lead to higher welfare,
but their optimization is NP-complete, and naive A/B test-
ing will lead to incorrect conclusions. Despite their differ-
ent characteristics, we show that the overall revenue for the
two scenarios is always within a factor of 2 of each other,
even in the presence of correlated bids. Moreover, we prove
that the eager auction dominates the lazy auction on rev-
enue whenever the bidders are independent or symmetric.
We complement our theoretical results with simulations on
real world data that show that even suboptimally set eager
reserve prices are preferred from a revenue standpoint.

1. INTRODUCTION
A key part of auctions is setting the minimum price at

which the seller is willing to part with the item. The so
called reservation, or, reserve, price is critical to maximiz-
ing revenue, as proven by Myerson in his Nobel prize win-
ning work [Mye81]. In the online advertising scenario, set-
ting the reserve price is a non-trivial exercise—the auctions
are repeated, hence agents may be adapting their behav-
ior to influence the learning [ARS13, MM14, CGM15], only
a glimpse into the buyers’ valuations is known [DRY15],
and there is a heterogeneity in the sophistication level of
the bidders. On the other hand, as observed by Celis et
al. [CLMN14], many of the auctions have very few bid-
ders (the median number of bidders is six in their dataset),
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thereby exacerbating the need for good reserve prices to
maximize revenue.

The fact that reserve prices are a good idea comes from
Myerson’s seminal work [Mye81] which shows that if the val-
uations are drawn independently and identically (iid) from a
distribution satisfying a certain regularity assumption, then
the optimal auction takes the form of a second price auction
with a reserve price. Myerson’s result generalizes past the
iid setting: if agents are independent but not identical, the
optimal auction involves sorting the agents by a function of
their bid (called the virtual value) and assigning the item to
the agent with largest non-negative virtual value.

In practice, the optimal auction is complicated to imple-
ment, since it involves learning the distributions of valua-
tions in a robust enough manner to allow the computation of
virtual values. And even if this computation were feasible,
in the spirit of Wilson doctrine [Wil85], simple detail-free
mechanisms are often preferred in complex environments in
order to mitigate the risks introduced by assumptions of the
model. In the spirit of designing simpler auctions for the
non-iid setting, Hartline and Roughgarden [HR09] show that
if players are independent and their distribution obey the
monotone hazard rate condition, then there exist a vector
of personalized reserve prices that generates revenue which
is at least half of the optimal revenue. Both assumptions
(independence and monotone-hazard-rate) are necessary for
their result.

In this work, we revisit the topic of setting personalized
reserve prices in second price auctions from the perspective
of a practitioner: How to compute them? How to make
sure they are computed correctly? How to apply them in
an efficient manner? While asking this question, we avoid
(in most of our results) making any assumptions about the
shape of the bid distributions.

Evaluation. In practice computing a reserve price that
behaves well in offline simulations is only the first part of
the process. A successful experimental evaluation is key in
proving that assumptions made in theory are reasonable,
and do not lead to unintended consequences.

Testing reserve prices is a separate research challenge in
and of itself. We distinguish between short term studies,
where the goal is to measure the immediate benefit of the
reserve prices, and long term studies that intend to capture
the strategic interactions between the bidders and auction-
eer. Here we focus on the short term studies, and observe
that testing personalized reserve prices, even in this, rela-
tively simple, setting, is non-trivial, and can lead to incor-
rect conclusions.
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1.1 Our Contributions
We show that the problem of computing and applying

personalized reserve prices is nuanced, and has paradoxical
behavior, particularly when testing the efficacy of reserves
in an A/B test. Our empirical evaluations show that the
paradoxical behavior is not limited to theory, but does occur
in practice as well.

We begin by describing two different approaches to ap-
plying personalized reserve prices: lazy and eager, and show
that while sometimes one approach dominates another on
revenue, they are always within a factor of two of each other
(Theorem 4.1).

We then identify two mildly restrictive settings (those of
symmetric bidders, and independent bidders) and show that
in these situations optimal eager reserve prices always yield
more revenue (Theorems 4.4 and 4.5).

Turning to computational issues in setting the optimal
lazy and eager reserve prices, we show that a simple nearly
linear time algorithm can compute the optimal lazy reserves
from previous history, while computing the optimal eager
reserves is NP-hard (Propositions 5.1 and 5.2).

We show that naive A/B testing of eager reserve prices
always leads to a drop in revenue, even when the reserve
prices are set correctly! (Theorem 6.1) We observe that lazy
reserves do not suffer from this problem, and behave in an
intuitive manner.

Finally, we present an empirical evaluation of our find-
ings on real world data, and show that the performance of
the algorithms is much better than the large approximation
factors guaranteed by the theory (Section 7).

2. PRELIMINARIES
We consider the standard setting of single item auctions.

Let A = {1, 2, . . . , n} be the set of agents interested in the
item. Each agent i has a value vi for the item, and sub-
mits a bid bi to the auctioneer. Given a vector of bids b =
(b1, b2, . . . , bn), we denote by b(1) the highest bid, and b(2)

the second highest bid. We will denote by r = (r1, r2, . . . , rn)
the vector of personalized reserve prices.

We assume that the valuation of each agent is drawn inde-
pendently from an unknown distribution with CDF F and
PDF f . To ease the exposition we assume that the dis-
tributions F are regular, in that the virtual value function

φ(v) = v − 1−F (v)
f(v)

is monotone non-decreasing.

In the case when all of the distributions are identical and
known to the seller, F1 = F2 = . . . = Fn, Myerson proved
the following characterization of the optimal auction:

1. Collect bids b1, b2, . . . , bn.

2. Discard all bids that are below φ−1(0).

3. Allocate the item to the agent with the highest bid,
and charge her the maximum of φ−1(0) and b(2).

Note that φ−1(0) acts as a reserve price for the auction:
this is the minimum bid any agent must submit to win, and
also acts as a lower bound on the revenue to the seller.

In this work our focus is on the non-identical setting. In
this case Myerson proved that the optimal auction is:

1. Collect bids b1, b2, . . . , bn.

2. For each agent, discard bid bi if it is lower than φ−1
i (0).

3. Allocate the item to the agent with the highest virtual
value, φi(bi), and charge her the maximum of φ−1

i (0)
and φ−1

i (φj(bj)), where j is the agent with the second
highest virtual value.

There are two major differences from the identical setting.
First, instead of having a universal reserve price φ−1(0), each
agent now has a personalized reserve price φ−1

i (0). Second,
the winner is determined as the agent whose bid has the
highest virtual value, not the one who has the highest bid.

While the first auction is easily implemented in practice,
the latter is much more problematic. First, the virtual value
functions depend critically on the value distributions, which
themselves are not always known and must be estimated.
Second, the auction is counterintuitive to outsiders, as the
agent with the highest bid does not always win the item.

2.1 Personalized Reserve Prices
To combat the potential bid inversion that comes with or-

dering by virtual values, Hartline and Roughgarden [HR09]
proposed keeping the personalized reserve prices aspect of
the optimal auction, but ordering items by bid instead. They
show that with monopoly reserves φ−1

i (0), this auction yields
a 2-approximation to the revenue of the optimal auction
when agents are independent and follow the monotone haz-
ard rate condition.

This natural approach leads to two possible flavors of sec-
ond price auctions, which were first introduced by Dhang-
watnotai et al. [DRY15]. Informally, in the eager regime, we
first discard all of the bids that do not meet their person-
alized reserve prices and then run the second price auction
on the remaining bids. In the lazy regime, we always try to
allocate the item to the agent with highest bid. If her bid is
below the reserve price the good goes unallocated, otherwise
the agent is charged the maximum between her reserve price
and the second highest bid. We describe these two auctions
more formally in Section 3.

2.2 Estimating Value Distributions
Myerson’s theoretical analysis requires us to know the cu-

mulative density function F , as well as the PDF, f , to com-
pute the virtual value function φ(·). In practice this is a tall
order. In the online advertising context, the auctions are
repeated, and thus we can observe a number of draws from
the distribution. For example, we observe the sequence of
bids for agent i: b1i , b

2
i , b

3
i , . . ., from which we can compute

empirical estimates F̂ and f̂ for F and f .
In this work we focus on the computational complexity

of computing optimal personalized reserve prices from the
previous bids. In particular we show that the optimization
question for eager and lazy auctions has very different pro-
files, one being solvable in polynomial time, and the other
being NP-complete.

3. LAZY AND EAGER AUCTIONS
Insisting that advertisers are ranked by bid leads to two

flavors of second price auctions. As before, let
b = (b1, b2, . . . , bn) be the bids submitted to the auction-
eer, and assume without loss of generality that b1 ≥ b2 ≥
b3 . . . bn. Let r = (r1, r2, . . . , rn) be the vector of reserve
prices, with reserve price ri applying to bidder i.

Following the work of Dhangwatnotai, Roughgarden and
Yan [DRY15], we define second price auctions with lazy and
eager reserves.
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Lazy Reserves:

• If b1 < r1 then there is no winner and the item goes
unsold.

• if b1 ≥ r1, allocate the item to bidder 1 and charge her
max(r1, b2).

Eager Reserves:

• Let S = {i : bi ≥ ri} be the set of bidders who bid
above reserve.

• Let j be bidder with the highest bid in S (ties broken
by the original ordering).

• Allocate the item to bidder j and charge her the max-
imum of her reserve and second highest bid in S:
max(rj ,maxi∈S−{j} bi).

Observe that when the reserve prices are identical, r1 =
r2 = . . . = rn, then both of these approaches implement the
standard second price auction. We denote by RevL(b; r)
and RevE(b; r) the revenue obtained by running the lazy
and eager auctions on the same set of bids and reserve prices.

Both versions of the auction are incentive compatible and
individually rational, since, whenever player i wins with bid
bi, she still wins with all bids b′i ≥ bi. Moreover, in either
case, the payment of i correspond to her critical bid, i.e.,
the infimum of the bids for which he wins.

3.1 Example
To demonstrate the difference between the two approaches

and show why in general the revenues are incomparable,
consider the following two examples.

Example 3.1 (Eager Dominates Lazy). Consider
an auction with three bidders A, B, and C, who bid 7, 5,
and 3 respectively. Suppose the vector of reserve prices is
8, 1 and 2. The auction with lazy reserves tries to allocate
the item to A since she has the highest bid. However, since
her bid is lower than her reserve price, the item goes unal-
located, and the seller collects no revenue. The auction with
eager reserves first filters out A, allocates the item to B and
collects revenue of 3.

Example 3.2 (Lazy Dominates Eager). Let A, B,
and C be the three bidders bidding 7, 5, and 3. Suppose the
vector of reserve prices is 2, 6 and 1. The auction with lazy
reserves allocates the item to A since her bid is above her
reserve and charges her 5 (the second highest bid). On the
other hand, the auction with eager reserves first removes B
from consideration (since his bid is below reserve). A still
wins the item, but is charged only 3.

Intuitively, eager reserve prices lead to higher revenue
when the highest bid is priced out; whereas lazy reserve
prices lead to higher revenue when the second highest bid-
der is priced out.

4. COMPARING LAZY AND EAGER
RESERVE PRICES

The second price auctions with eager and lazy reserves
are identical when all agents are subject to the same reserve
price. If the reserve prices are personalized, however, the
outcomes of the auctions can be very different. In terms of

welfare, it is easy to see that the auction with eager reserves
always dominates the auction with lazy reserves. The auc-
tion with lazy reserves allocates the item only if the highest
bidder is above her reserve price. In such cases, the auc-
tion with eager reserves also allocates the item. This fact
alone makes a second price auction with eager reserves more
attractive to sellers that care about match rate.

As we saw in examples in Section 3, in general the revenue
gains due to lazy and eager reserve prices are incomparable.
In this section we provide a tighter characterization, and
identify broad classes where one mechanism dominates an-
other.

We begin with Theorem 4.1 and prove that for any (pos-
sibly correlated) bid distribution no auction generates more
than twice the revenue of the other, and give two examples
to show this bound is asymptotically tight.

Then, in Section 4.2 we show that the revenue of the op-
timal eager mechanism dominates that of the optimal lazy
mechanism whenever either (i) the bidders are symmetric
(the joint bid distribution doesn’t change when bidders are
permuted), or, (ii) the bidders’ bids are drawn from inde-
pendent (not necessarily identical) distributions.

Theorem 4.1. Let D be any distribution over bid vectors
b. Also, let RevL(b; r) and RevE(b; r) denote the revenue
of the lazy and eager auctions under bid vectors b and per-
sonalized reserves r. Let:

r∗L = arg max
r

Eb∼D[RevL(b, r)],

r∗E = arg max
r

Eb∼D[RevL(b, r)].

Then

Eb∼D[RevL(b, r∗L)] ≤ 2 · Eb∼D[RevE(b, r∗E)],

Eb∼D[RevE(b, r∗E)] ≤ 2 · Eb∼D[RevL(b, r∗L)].

Proof. For the first inequality, consider running the ea-
ger second price auction with r∗L. For any bid vector b, if the
highest player is below the reserve then: RevL(b, r) = 0 ≤
RevE(b, r). If the highest player is above the reserve and
her payment in the lazy auction is her reserve, then both
auctions generate the same revenue. The final case is the
case where the highest bidder is above the reserve and the
payment in the lazy auction is the second highest bid. In
this case, the revenue of the eager auction might be lower if
the second highest bidder is below her reserve. For that bid
vector, however, the revenue of the lazy auction is the sec-
ond highest bid, which is equal to the revenue of the auction
with no reserve prices. Therefore:

RevL(b, r∗L) ≤ max[RevE(b, r∗L),RevE(b,0)]

≤ RevE(b, r∗L) + RevE(b,0)

Taking expectations over b we obtain the first inequality:

E[RevL(b, r∗L)] ≤ E[RevE(b, r∗L) + RevE(b,0)]

≤ 2 · E[RevE(b, r∗E)]

For the second inequality, consider running a lazy second
price auction with r∗E . If for any bid vector b, the highest
player is above her reserve, the lazy auction is guaranteed to
generate more revenue than the eager auction. If not, then
the eager auction generates at most revenue equal to the bid
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of the second highest bidder (since revenue is dominated by
welfare), which is the revenue of the second price auction
with no reserves. Therefore:

RevE(b, r∗E) ≤ max[RevL(b, r∗E),RevL(b,0)]

≤ RevL(b, r∗E) + RevL(b,0)

We obtain the second inequality by again taking expecta-
tions over b:

E[RevE(b, r∗E)] ≤ E[RevL(b, r∗E) + RevL(b,0)]

≤ 2 · E[RevL(b, r∗L)]

4.1 Lower Bound Examples
The following examples complement the bounds in Theo-

rem 4.1. First, we show an example where revenue from the
eager mechanism is almost twice the revenue from the best
lazy mechanism.

Example 4.2. There is an instance with n bidders with
valuations drawn independently from the same distribution,
where the best eager mechanism generates 2 − o(1) times
more revenue than the best lazy mechanism.

Proof. Consider n identical bidders, with each bidder
choosing to bid bi = n with probability 1/n2 and with prob-
ability 1 − 1/n2 bidding bi = 1. (Each bid is drawn inde-
pendently. To break ties, each bid is perturbed by adding a
noise term drawn independently from [0, ε] for infinitesimally
small ε)).

With probability 1− 1/n+O(n−2), all bidder valuations
will be 1, and with probability 1/n − O(n−2), some bidder
will have a valuation of n. Thus, the optimal welfare given
these valuations is 2−O(n−2).

We claim that a lazy pricing mechanism extracts at most
1 revenue. By symmetry each buyer is equally likely to be
the winner. Now consider the reserve price for an individual
bidder i.

• If ri < 1 + ε, revenue will be bounded by 1 + ε unless
both bidder i and another bid bid high (probability of
O(n−2)), in which case revenue is bounded by n. The
expected revenue is then 1 + o(1).

• If ri > 1 + ε, revenue is only earned if bi = n, and is
bounded by n. Since the probability of a high bid is
less than n−1, the expected revenue is bounded by 1.

On the other hand, we claim that an eager mechanism
can earn 2− o(1) revenue. This can be done by imposing a
high reserve price ri = n for i = 2, . . . , n (all buyers except
one) and a low reserve price r1 = 1 on the remaining bidder.
With this setup:

• With probability 1/n− o(n−2), one of bidders 2, . . . , n
will submit a high bid, generating revenue n−O(1).

• With the remaining probability, the auction is guaran-
teed to clear because b1 ≥ r1 = 1 and will generate at
least 1 in revenue.

The overall expected revenue is thus 1
n
· (n − o(1)) + (1 −

1
n

) · 1 = 2− o(1).

Next, we show an example where the lazy mechanism gen-
erates twice the revenue of the best eager mechanism. This
example requires both that bidders are not symmetric, and
that their bids are correlated.

Example 4.3. There is an instance with two correlated
heterogenous bidders where a lazy mechanism generates 2−
o(1) times higher revenue than the best eager mechanism.

Proof. Let M be a sufficiently large constant, and con-
sider the following joint distribution of bids of two bidders.

• With probability logM
M

, bidder 1 bids 0 while bidder 2
bids b2 = M .

• With probability 1− logM
M

, first bidder’s bid b1 is drawn
from a truncated equal revenue distribution F (b) =
1 − 1

b
for b ∈ [1,M) and F (M) = 1 and the second

bidder’s bid is set to b2 = (1−ε)b1 for some arbitrarily
small ε.

Lazy reserve prices r1 = 0, r2 = M extract the full surplus
as ε→ 0, achieving expected revenue of

logM

M
·M +

(
1− logM

M

)
(1− ε)

(∫ M

1

bf(b)db+
M

M

)
= logM +

(
1− logM

M

)
(1− ε) · (logM + 1)

= (2− o(1)) logM.

Suppose the eager mechanism imposes reserves of r1 and
r2. With probability logM/M the revenue is r2. For the
remaining case, we condition on whether the second bidder
bid above reserve. In the case b2 < r2, bidder 1 is competing
against his reserve price, r1, generating revenue of at most:

r1(1− F (r1)) ≥ r1
[
1−

(
1− 1

r1

)]
= 1.

If, on the other hand, when b2 ≥ r2, the total revenue is
bounded by:∫ M

r2

bf(b)db = logM − log r2 = log(M/r2)

Putting these together the overall revenue is at most :

r2
logM

M
+

(
1− logM

M

)
·
(

1 + log
M

r2

)
≤ 1 + r2

logM

M
+ logM − log r2

This function is convex in r2, thus achieving its maximum at
the endpoints of the interval. It obtains its maximum value
of (1 + o(1)) logM at r2 = 1.

4.2 Restricted Settings
Above we proved that while the revenue from lazy and

eager auctions is always within a factor of two of each other,
an unconditional bound is impossible in general. Here we
consider two restricted settings, first of symmetric bidders,
and then of independent bidders. In both cases we show
that eager auctions dominate lazy auctions.

Symmetric Bidders. We say that bidders are symmet-
ric (sometimes also called exchangeable) if the bid distribu-
tion is invariant under permutations. Formally, for every
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permutation π : [n]→ [n] let bπ be the vector
(bπ(1), bπ(2), . . . , bπ(n)). A distribution is symmetric if the
distribution of bπ is the same as the distribution of b. Notice
that iid implies symmetry, but symmetry is more general—
for example, consider the bid distribution obtained by choos-
ing in each time one buyer at random and letting her bid
H and letting every other buyer bid L. The distribution is
clearly symmetric, but it is not independent (since there is
always exactly one buyer bidding H).

Theorem 4.4. If bidders are symmetric the optimal ea-
ger mechanism yields at least as much revenue as the optimal
lazy mechanism.

Proof. Proposition 5.1 tells us that the optimal lazy re-
serve price for bidder i is a function of the joint distribution
of winning bids and prices conditioned on bidder i winning.
If bidders are symmetric, the optimal lazy reserve prices are
the same for all bidders; r1 = r2 = · · · = rn. If all reserve
prices are the same, lazy and eager mechanisms behave iden-
tically. (It is however possible that a different reserve price
vector yields higher revenue for the eager mechanism, as in
Example 4.2.)

Independent Bidders. We show that if each bidder
draws her value independently, auctions with eager reserves
are always at least as good auctions with lazy reserves.

Theorem 4.5. If bidder valuations are drawn indepen-
dently (not necessarily from identical distributions), the op-
timal eager mechanism yields at least as much revenue as
the optimal lazy mechanism.

To prove the theorem we will exhibit a method that, given
any vector r of lazy reserve prices, produces a vector rE such
that E[RevE(b; rE)] ≥ E[RevL(b; r)]. The construction will
rely heavily on the independence of the bids. A key concept
in the proof is that of trimmed distributions:

Definition 4.6 (trim). Let X be a non-negative ran-
dom variable distributed according to some distribution D,
and a real number r ≥ 0. We use trim(D) to denote the
distribution of the random variable X ′ = X ·1{X ≥ r}, i.e..
random variable that is equal to X if X ≥ R and is zero if
X < r.

This definition allows us to define the main lemma. In
the following proofs, we will abbreviate Eb∼D[Rev(b, r)] by
Rev(D, r).

Lemma 4.7. Given independent bid distributions Di, D =
D1×. . .Dn and a reserve price vector r, there exists a vector
of reserve prices r′ such that:

RevL(D, r) ≤ RevL(D′, r′)

where D′ = D′1 × . . .×D′n and D′i = trim(Di; r′i).

First we show how to use Lemma 4.7 to prove Theorem
4.5:

Proof of Theorem 4.5. Let r′ and D′ be as in Lem-
ma 4.7. Notice that for b ∼ D′, Pr[0 < bi < ri] = 0.
Since a bidder is never blocked by the reserve, the revenue
in both the eager and lazy auctions is the maximum of the
second highest bid and the reserve of the highest bidder.
This implies that RevE(D′, r′) = RevL(D′, r′). Since D

stochastically dominates D′, there is a distribution on pairs
of vectors (b′,b) such that the marginals are D′ and D and
b′i ≤ bi for all i for every realization of the random variables.
Hence, RevE(b′; r′)] ≤ RevE(b; r′). Taking expectations
we conclude that

RevE(D′, r′) ≤ RevE(D, r′).

Putting this together with the inequality from Lemma 4.7:

RevL(D, r) ≤ RevL(D′, r′) = RevE(D′, r′) ≤ RevE(D, r′)

Now, all is left to do is to prove Lemma 4.7:

Proof of Lemma 4.7. Assume that the bidders are sorted
such that r1 ≥ r2 ≥ . . . ≥ rn. We will define an algorith-
mic procedure that iterates through bidders 1 to n and at
each iteration i, trims the distribution of the i-th bidder and
possibly increases the reserves of agents j > i. It is useful
to think of r and D = D1 × . . . × Dn as variables that are
updated in the course of the procedure.

The procedure will keep the following invariants: (i) RevL(D, r)
cannot decrease; (ii) for all bidders already processed, their
distribution is trimmed at their reserve, i.e., Pr[0 < bi <
ri] = 0. (iii) the reserve prices will continue to be sorted.

Now, we are ready to describe each iteration. When we
process bidder i, we perform the following procedure:

Choose x < ri such that:

ED[RevL(b; r)|bi = x] ≥ ED[RevL(b; r)|bi < ri]

Set Di = trim(Di, ri) and rj = max(rj , x) for j > i.

Clearly we maintain invariants (ii) and (iii). Now, we
only need to argue that invariant (i) is also maintained. It
is convenient to write RevL(b, r) =

∑
j RevjL(b, r) where

RevjL(b, r) is the revenue obtained from bidder j.
First notice that ED[ReviL(b; r)] = ED′ [ReviL(b; r′)] since

the lazy auction just extracts revenue from i when she is
the highest bidder and above her reserve (and those events
are unaffected by trimming). Also, in the lazy auction, the
reserves on bidders other than the highest bidder do not
affect the outcome.

For all other j 6= i, notice that ED[RevjL(b; r)|bi ≥ ri] =

ED′ [RevjL(b; r′)|bi ≥ ri]. Conditioned on bi > ri the only
thing changing in the two scenarios is that the reserve price
of j is now r′j = max(rj , x); since x < ri, it cannot be
binding as bidder i is bidding bi > ri. (Notice that for
bidders j < i, their reserve price was already at least ri, so
r′j = rj = max(rj , x) since x < ri < rj .)

Finally, ED′ [RevjL(b; r′)|bi < ri] = ED[RevjL(b; r)|bi =
x], since in the first case i must be bidding zero and j is
subject to reserve rj = max(rj , x), but this reserve can be
implemented by having i bid x.
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Combining all of the expressions, we get:

ED′ [RevL(b, r′)]

= ED′ [ReviL(b, r′)]

+
∑
j 6=i

ED′ [RevjL(b, r′)|bi ≥ ri] Pr(bi ≥ ri)

+
∑
j 6=i

ED′ [RevjL(b, r′)|bi < ri] Pr(bi < ri)

= ED[ReviL(b, r)]

+
∑
j 6=i

ED[RevjL(b, r)|bi ≥ ri] Pr(bi ≥ ri)

+
∑
j 6=i

ED[RevjL(b, r)|bi = x] Pr(bi < ri)

Since ED[ReviL(b; r)|bi < ri] = 0, x was picked such that∑
j 6=i

ED[RevjL(b; r)|bi = x] ≥
∑
j 6=i

ED[RevjL(b; r)|bi < ri]

Plugging this into the last expression, we get that:

ED′ [RevL(b, r′)] ≥ ED[RevL(b, r)]

5. COMPUTING OPTIMAL RESERVES
In this section we investigate the computational complex-

ity of computing the optimum reserve prices in the eager
and lazy settings. We assume that the input to the prob-
lem is given as a set of bids submitted to previous auctions.
Since the number of auctions run daily is extremely large, it
is important for this procedure to be linear, or nearly linear
in the size of the input.

We prove that from a computational perspective, lazy and
eager auctions are vastly different. Computing the optimal
vector of lazy reserves r∗L can be done in linear time. On the
other hand, computing the optimal vector of eager reserves
r∗E is NP-hard.

Proposition 5.1. The optimal vector of lazy reserves r∗L
can be computed in nearly linear time in the size of input
logs.

Proof. Given bids {bi,t}, for each query t, let wt corre-
spond to the agent that would win if no reserve prices were
set. For any given vector of reserves r, either wt wins query
t or no agent wins. Let Qi be the queries for which wt = i.
Then we can write the revenue for the vector r of reserves
as:

RevL(b; r) =
∑
i

∑
t∈Qi

1{b(1)t ≥ ri} ·max(ri, b
(2)
t )

where b
(1)
t b

(2)
t are respectively the highest and second high-

est bid for query t. The previous expression shows that for
lazy reserves, the problem of computing reserve prices can
be decoupled for every i. Also, the optimal reserve price

should be of the form b
(2)
t or b

(1)
t for some t. If not, we

can increase it to the next point and the revenue can only
increase.

This observation gives an algorithm for computing the
optimal vector of reserves with running time O(

∑
i |Qi|

2).
In order to turn it into a nearly linear time algorithm, notice

that if we sort the bids appropriately, we can compute the

revenue for setting each ri = b
(1)
t and ri = b

(2)
t in constant

time.
In order to do so, construct an array with all the bids

b
(1)
t and b

(2)
t for t ∈ Qi and annotate each entry of weather

it is a highest bid or a second highest bid. If ni = |Qi|,
this is an array of 2ni numbers. Sort the array by bids
in increasing order, which takes O(ni logni), and call its
elements r1 ≤ r2 ≤ . . . r2ni . Assume for simplicity that
all elements are distinct. Given a certain rj , we can write

the revenue associated with it R(rj) =
∑
t∈Qi

1{b(1)t ≥ rj} ·
max(rj , b

(2)
t ) as rj · kj + sj where sj =

∑
t∈Qi

b
(2)
t · 1{rj ≤

b
(2)
t }.
If we show how to compute (sj+1, kj+1) from (sj , kj) in

constant time, we have a nearly-linear time algorithm. Do-
ing it is easy. This can be done in two cases:

• rj = b
(1)
t for some t. Therefore increasing the reserve

past b
(1)
t will make query t to be unallocated. All other

queries are unaffected. Set kj+1 = kj − 1 and sj+1 =
sj .

• rj = b
(2)
t for some t. Therefore increasing the reserve

past b
(2)
t will cause the reserve price to bind for query

t, instead of the second highest bid. Update: kj+1 =
kj + 1, sj+1 = sj − rj .

Since we can reconstruct the revenue for each value in the
array, we can choose the optimal vector of reserves in time
O(
∑
i |Qi| · log |Qi|). It is not hard to see that this algorithm

still works if values of the array are repeated.

Proposition 5.2. Computing the optimal vector of eager
reserves r given the bids from a set of previous auctions is
NP-hard.

Proof. We give a reduction to the independent set prob-
lem. Let L and H be constants that we will chose later.
Given a graph G = (V,E), we map the independent set
problem on this graph to the following instance of the re-
serve price problem with eager reserves: consider |V | agents
and |E| + |V | queries. For each edge e = (u, v) consider
queries where bu = L, bv = L and all other agents bid zero.
And for each node u, consider queries with bu = H and
all other agents bid zero. We select L and H such that
L < H < 2L.

Clearly, for the optimal vector of reserves, ri ∈ {L,H}.
Also, notice that in the optimal solution, the set of nodes
I = {u ∈ V ; ru = H}must form an independent set. Indeed,
if there is an edge e = (u, v) with ru = rv = H, then there
is zero revenue from the queries corresponding to edges e.
If we switch either u or v to have reserve L, then we gain
L revenue from edge e and lose H − L from node u. Since
L > H − L, this is a profitable deviation.

The revenue associated with setting u ∈ I to H and other
nodes to L is given by

L · (|E|+ |V |) + (H − L) · |I|

So the optimal vector of reserve prices would give a solution
to the maximum independent set problem.

Combining the proof of Theorem 4.1 and Proposition 5.1
we get a 2-approximation to the optimal revenue obtained
by running an eager second price auction.
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We remark that the algorithm proposed in Proposition
5.1 is different from the heuristic proposed by Hartline and
Roughgarden in [HR09]: their heuristic consists in choos-
ing the vector of monopoly reserve prices rM such that
rMi = arg maxr≥0

∑T
t=1 r · 1{bi,t ≥ r}. They observe that

while this is a very good choice when the valuations are in-
dependent and follow the monotone hazard rate condition,
this can be arbitrarily far from the revenue of the optimal
auction if either condition is violated. We complement the
observation showing that this vector can also be arbitrar-
ily far from the optimal revenue of the second price auction
with personalized reserves (which is a weaker benchmark
than the optimal auction).

Claim 5.3. For every constant C, there is a distribution
of bids such that Rev(b; rM ) ≤ 1

C
Rev(b; r∗) for both the

eager and lazy auctions.

Proof. Consider 2 bidders and consider a distribution on
bids that sets b1 = b2 = 2k−1 with probability 1

2k
probabil-

ity, for k = 1, . . . ,K − 1, and b1 = b2 = 2K−1 + ε with prob-
ability 2

2K
. The monopoly reserve prices are rMu = 2K−1 + ε

generating revenue 1 + ε · 21−K . The optimal vector of re-
serves is zero for both eager and lazy reserves: Rev(b;0) =
K + ε · 21−K .

6. A/B TESTING
In the previous sections we described auctions with ea-

ger and lazy reserve prices, and compared the differences in
welfare, revenue, and computational complexity of the two
approaches. The theoretical models are clean and elegant,
and allow us to abstractly reason about the benefits of one
approach over another; however they do not capture the
messy realities of setting reserve prices in practice.

Before releasing a new model into the wild, a key step
is measuring the impact of its change on a small sample of
traffic. This too is a non-trivial step, and requires a lot of
care both in setting up the experiments [KHS07] and ef-
fectively measuring long term, as well as, short term im-
pacts [HOT15],

One way to test reserve prices is to partition all of the
auctions into treatment and control, and then only apply
reserves in treatment scenarios. However, such a test gives
a biased estimate of the revenue lift—since the effect on
an individual buyer is small (as the test applies only to a
small fraction of the auctions), the buyer is unlikely to react
strategically, for example changing her bidding behavior, or
looking for alternative places to buy the impressions.

A different approach is to partition the bidders into treat-
ment and control groups, and only apply reserve prices to
the bidders in treatment. It is easy to see that applying re-
serve prices to only a fraction of the bidders will reduce the
overall revenue gains, however since a single buyer is now
subject to reserve prices on all of her auctions, she is more
likely to update her behavior in response.

It is natural to expect that applying a vector of optimal
reserves to a subset of the buyers would yield an improve-
ment in revenue that would allow us to evaluate the impact
of applying reserves to all of the buyers. Counterintuitively,
we show that even in the simplest possible setting (iid buy-
ers with regular distributions), applying the Myerson reserve

price to a subset of the bidders is worse than not applying
any reserve prices at all! In other words, as we add bidders
to the treatment group, the total revenue decreases, and it is
only when all of the bidders are treated that we realize the
revenue gains. As we show in Section 7, this phenomenon is
not a purely theoretical construct, but is also not uncommon
in practice.

We state the results formally.

Theorem 6.1. Assume agents are iid with regular distri-
bution F and let RevE(k) be the revenue obtained from ap-
plying the Myerson reserve price eagerly to k out of n agents
and applying no reserve to the remaining agents. Then:

RevE(0) ≥ RevE(1) ≥ RevE(2) ≥ . . . ≥ RevE(n− 1)

Proof. Since agents are iid we can sample agents accord-
ing to the following procedure: draw n iid samples from F
and take a random assignment from them to agents. This
is equivalent to drawing the valuation vi for each agent and
then choosing k out of n at random players to apply reserve
prices. We will denote by v(t) the t-th largest bid.

We consider two scenarios: (i) the highest bidder is above
the reserve. In this case, she will be allocated the good. (ii)
the highest bidder is below the reserve. In this case, the
agent to whom we allocate the good is the highest agent for
whom no reserve price is applied.

Let MaxRt(z1, z2, . . . , zn) be the expected maximum of a
uniformly random subset of t elements drawn from
{z1, z2, . . . , zn}. Notice that for any vector z, the function
MaxRt(z1, z2, . . . , zn) is monotone non-decreasing in t. Sec-
ond, observe that if zi are drawn iid, then:

E[max{z1, . . . , zt}] = MaxRt(z1, z2, . . . , zn).

For k < n, by the Myerson Lemma:

RevE(k) = E[φ(v(1)) · 1{v(1) ≥ r}]+

E[MaxRn−k(φ(v1), . . . , φ(vn))|v(1) < r] · Pr(v(1) < r)
(?)

We finish by noticing that when vi < r then φ(vi) <
0. Therefore the second term above is negative and non-
increasing in k by the monotonicity of the MaxR operator.
For k = n, however, the second term disappears and we
recover the optimal auction.

We now show that the auction with lazy reserve prices
does not suffer from this kind of paradoxical behavior.

Theorem 6.2. Assume agents are iid with regular distri-
bution F and let RevL(k) be the revenue obtained from lazily
applying the Myerson reserve price to k out of n agents and
applying no reserve to the remaining agents. Then

RevL(k) = k
n
RevL(n) +

(
1− k

n

)
RevL(0)

Proof. As in the previous theorem, we sample the agents
by drawing n iid samples from F and taking a random as-
signment from them to agents.

In the second price auction with lazy reserves, we will
choose the agent with bid v(1) and declare her as the winner
if v(1) is at least the reserve price, which is r with probability
k/n and 0 with the remaining probability. By Myerson’s
lemma:

RevL(k) = E[φ(v(1)) · 1{v(1) ≥ r(1)}]
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Figure 1: RevE(k) in red and RevL(k) in blue for n = 5 agents with iid uniform distributions

where r(t) denotes the personalized reserve of agent with the
t-th highest bid. Therefore:

RevL(k)

=
(
1− k

n

)
E[φ(v(1))] +

(
1− k

n

)
E[φ(v(1)) · 1{v(1) ≥ r}]

=
(
1− k

n

)
RevL(0) +

(
1− k

n

)
RevL(n)

To better understand the detrimental effect of eager re-
serve prices, it’s useful to write equation (?) in explicit form
so that we can evaluate the impact of applying reserves to
a subset of buyers for particular distributions:

Lemma 6.3. In the setting of Theorem 6.1:

RevE(k) =

∫ 1

r

φ(x) · nF (x)n−1f(x)dx

− 1{k < n}Fn(r)

∫ r

0

(
F (x)

F (r)

)n−k
φ′(x)dx

Proof. For the first term, notice that the distribution
of v(1) is given by nF (x)n−1f(x) since Pr(v(1) ≤ x) =∏

Pr(vi ≤ x) = F (x)n. For the second term, since the
agents are iid, the maximum of n−k randomly chosen agents
from among n buyers is identical to the maximum of n− k
buyers. By the principle of deferred decisions, we can first
sample n− k buyers and then draw their values.

Since in the second expression we condition their value to
be at most r, we can simply compute the maximum over
n − k buyers with density f(x)/F (r) for 0 ≤ x ≤ r. By
the same argument as before the density of the maximum is

(n− k) · f(x)
F (r)
·
(
F (x)
F (r)

)n−k−1

. Using this fact, We can write

the second term as:

F (r)n ·
∫ r

0

[
(n− k) · f(x)

F (r)
·
(
F (x)

F (r)

)n−k−1
]
φ(x)dx

= 1{k < n} · Fn(r)

{
φ(x) ·

(
F (x)

F (r)

)n−k ∣∣∣∣r
0

−
∫ r

0

(
F (x)

F (r)

)n−k
φ′(x)dx

}

= −1{k < n} · Fn(r)

∫ r

0

(
F (x)

F (r)

)n−k
φ′(x)dx

6.1 Case study: Uniform distribution
To get some intuition about Theorem 6.1 we look at the

setting with n iid bidders distributed according to the [0, 1]-
uniform distribution, for which φ(x) = 2x− 1 and r = 1/2:

RevE(k) =

∫ 1

1/2

(2x− 1)nxn−1dx

− 1{k < n} ·
(

1

2

)n
·
∫ 1/2

0

(2x)n−k · 2dx

=
n+ 2−n − 1

n+ 1
− 1{k < n} · 2−n

n− k + 1

In Figure 5 we plot the revenue values for RevE(k) and
RevL(k) with n = 5.

7. EXPERIMENTAL RESULTS
In the previous sections we discussed versions of the sec-

ond price auction with personalized reserve prices: the ea-
ger (E) and lazy (L) auction, and proved that while the two
notions of reserve prices are incomparable, eager reserves
dominate lazy reserve, except for non-identical and non-
independent settings, and in all of the settings total revenue
of one is always within a factor of two of another. Further,
we showed that applying the eager reserve prices to a sub-
set of the bidders is non monotonic, and applying reserves to
more bidders may (in theory) lead to lower revenues. In this
section we validate these findings by simulating the effect of
reserve prices on real world data.

Data. We collect bids sent to a large advertising ex-
change over the course of part of a day, and then restrict
our attention to five ad slots with the highest traffic volume.
Each of the ad slots has the bids submitted for hundreds of
thousands of auctions. We report the results for each of the
ad slots individually.

7.1 Non-monotonicity
Recall that in Section 6 we considered the standard set-

ting where each bidder i draws an independent bid from bid
distribution Fi. In the case of eager reserve prices, applying
reserves to only a subset of the bidders leads to a decrease
in the overall revenue to the auctioneer.

In this section we show that this scenario is not restricted
to theory. We consider a set of auctions and compute the
optimal lazy reserve price for each bidder. We then apply
this reserve price in both lazy and eager fashions to a subset
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Figure 2: Revenue gain obtained by applying the optimal lazy reserve prices to a percentage of the buyers in
the auction. Note that the revenue of the lazy auction is monotone non-decreasing, while the eager auction
doesn’t have this property.

of the bidders and plot the overall revenue. The results are
shown in Figure 6.1.

We confirm our theoretical findings: while the revenue in
the auction with the lazy reserve pricing strategy is mono-
tonically increasing in the number of bidders subject to the
reserve, the same cannot be said for the greedy reserve pric-
ing strategy. The overall trend is positive, but it is non
monotonic, and at times increasing the number of bidders
subject to the optimal reserve price decreases the overall
revenue.

7.2 Revenue Gains
Our second set of experiments addresses the question whether

eager or lazy reserve prices lead to higher revenues in prac-
tice. For the best comparison, we simulate the auctions
under both lazy and eager strategies while applying the op-
timal lazy reserve prices r∗L (see Proposition 5.1) and the
monopoly reserve prices rM (see the discussion following the
proof of Proposition 5.2).

We compute the revenue lifts due to personalized reserves
under four strategies:

∆L(r∗L) = E[RevL(b; r∗L)]− E[Rev(b;0)]

∆E(r∗L) = E[RevE(b; r∗L)]− E[Rev(b;0)]

∆L(rM ) = E[RevL(b; rM )]− E[Rev(b;0)]

∆E(rM ) = E[RevE(b; rM )]− E[Rev(b;0)]

where the expectation E[·] denotes the average over all his-
torical queries.

We normalize the lifts by setting the revenue of the lazy re-
serve auction with optimally set reserve prices to 1 (∆L(r∗L) =
1 ), and report multiplicative improvement over this setting.

Table 1 shows that the eager auction outperforms the lazy
auction in practice both when the optimal lazy reserves are
used and when monopoly reserves are used. We also observe
that there is no clear winner between using optimal lazy

Table 1: Revenue Lift Comparison. The units are
normalized so that ∆L(r∗L) = 1

∆E(r∗L) ∆L(rM ) ∆E(rM )
1.13204 0.892116 1.18965
1.24867 0.958164 1.28977
1.16233 0.942408 1.09623
1.19286 0.886347 1.11872
1.14805 0.942208 1.08097

reserves or monopoly reserves in the eager auction. For 3
out of 5 slots, the vector of optimal lazy reserves outperforms
the monopoly reserves. In practice one may want to start
with any of those two vectors and perform local updates to
improve the performance of the eager auction.

Another axis along which it makes sense to compare the
eager and lazy auctions is the welfare loss of the allocation,
i.e., how much welfare is lost due to the application of re-
serve prices. If WL(b; r) and WE(b; r) are respectively the
welfare of the lazy and eager auctions when reserve price r
are applied, we define the quantities:

∆̃L(r∗L) = E[W(b;0)]− E[WL(b; r∗L)]

∆̃E(r∗L) = E[W(b;0)]− E[WE(b; r∗L)]

∆̃L(rM ) = E[W(b;0)]− E[WL(b; rM )]

∆̃E(rM ) = E[W(b;0)]− E[WE(b; rM )]

which are the analogues for social welfare of the quantities
described in Table 1.

As expected, Table 2 shows that the welfare loss in the
eager auction is larger than the welfare loss in the lazy auc-
tion. Similarly to what occurs for revenue, there is no clear
winner between the optimal lazy reserves and the monopoly
reserves for the eager auction.
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Table 2: Welfare Loss Comparison. The units are
normalized so that ∆̃L(r∗L) = 1

∆̃E(r∗L) ∆̃L(rM ) ∆̃E(rM )
0.689856 1.34808 0.896388
0.70264 1.16671 0.814005
0.602512 1.046 0.695923
0.616777 1.0458 0.647172
0.636252 0.995548 0.671452

8. CONCLUSION
The results in this work follow two major themes. The

first lies in devising methods for testing new strategies, be
they reserve prices, bidding agents, or mechanisms, in com-
petitive environments [CHN14]. As we saw in Section 6
these can have counterintuitive effects, and robust experi-
mental design and analysis is required for making correct
decisions.

The second is in foregoing the assumption that bidders’
value distributions are known and investigating the compu-
tational complexity of optimizing from previously observed
data. Whether designing new mechanisms in these envi-
ronments [CR14], understanding the amount of past data
needed [MR15], or, providing approximation algorithms, as
we do in this work, this is a rich and exciting open area.
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