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ABSTRACT
In web search, latent semantic models have been proposed to bridge
the lexical gap between queries and documents that is due to the
fact that searchers and content creators often use different vocab-
ularies and language styles to express the same concept. Modern
search engines simply use the outputs of latent semantic models as
features for a so-called global ranker. We argue that this is not opti-
mal, because a single value output by a latent semantic model may
be insufficient to describe all aspects of the model’s prediction, and
thus some information captured by the model is not used effectively
by the search engine.

To increase the effectiveness of latent semantic models in web
search, we propose to create metafeatures—feature vectors that de-
scribe the structure of the model’s prediction for a given query-
document pair—and pass them to the global ranker along with the
models’ scores. We provide simple guidelines to represent the la-
tent semantic model’s prediction with more than a single number,
and illustrate these guidelines using several latent semantic models.

We test the impact of the proposed metafeatures on a web doc-
ument ranking task using four latent semantic models. Our exper-
iments show that (1) through the use of metafeatures, the perfor-
mance of each individual latent semantic model can be improved
by 10.2% and 4.2% in NDCG scores at truncation levels 1 and 10;
and (2) through the use of metafeatures, the performance of a com-
bination of latent semantic models can be improved by 7.6% and
3.8% in NDCG scores at truncation levels 1 and 10, respectively.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—retrieval models
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Metafeatures; Latent Semantic Models; Web Search

1. INTRODUCTION
For the majority of cases in which search engine users complain

that they cannot find information, while the information does exist
in the system, the reasons are due to a mismatch between terms

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
DOI: http://dx.doi.org/10.1145/2872427.2882987.

in queries and documents [24]. Term mismatch happens because
searchers and content creators often use different vocabularies and
language styles to refer to the same concepts [14]. To bridge this
lexical gap between queries and documents, latent semantic models
have been proposed [24].

Today, the use of latent semantic models by search engines is
restricted to simply passing their outputs as features to a so-called
global ranker, along with outputs of other models used for ranking.
We argue that this is not optimal, because a single value output by a
latent semantic model may be insufficient to describe all aspects of
the latent semantic model’s prediction. Let us illustrate this using
the Latent Semantic Indexing model [9].

The score produced by the Latent Semantic Indexing model is
a sum of scores per latent space dimension. This is where poten-
tially useful information for a global ranker may go missing as the
model may assign similar scores to documents with radically dif-
ferent sets of per dimension scores. See Figure 1 for an example
of this phenomenon: the sums of the per dimension scores are the
same, but the lack of information about the distributions of their
values, illustrated by this example, may hinder the global ranker
when it attempts to reliably rank the two documents.
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Figure 1: The plot shows the per dimension scores computed
for two documents by the Latent Semantic Indexing model.
The sums of the scores are the same, but the distributions of
their values differ in interesting ways. (Best viewed in color.)

In previous work on latent semantic models in web search, com-
parisons of models are performed on a web document ranking task
using the models’ scoring functions [1, 4, 8, 15, 16, 20, 29, 33–36].
While the scores produced by latent semantic models have demon-
strated a strong correlation with document relevance, they are just
the “tip of the iceberg” in capturing the relation between a query
and document.

We argue that considering a latent semantic model’s score only
is not enough to determine its effectiveness in search, and all po-
tentially useful information captured by the model should be con-
sidered. To increase the effectiveness of latent semantic models in
search engines, we propose to expose the structure of their predic-
tions to the global ranker. This is done through the use of meta-
features—feature vectors that we construct for a latent semantic
model to describe its prediction and the way it arrived at this pre-
diction. The latent semantic models’ metafeatures are passed to the
global ranker along with the models’ scores.
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The problem of creating metafeatures requires a solid under-
standing of the model’s internal workings. However, as we will
see, for many latent semantic models, their scoring functions give
a good starting point. In particular, we provide two simple and
broadly applicable guidelines for creating metafeatures based on
the scoring functions used by latent semantic models, and demon-
strate the effectiveness of these guidelines by inferring metafea-
tures from different latent semantic models in a systematic manner.

We test our ideas for complementing a latent semantic model’s
scores with metafeatures on a web document ranking task, and
demonstrate that metafeatures provide a means to improve the per-
formance of both (1) individual latent semantic models and (2) com-
binations of multiple latent semantic models.

The proposed approach for creating and using metafeatures is
substantially more than just feature engineering (where a signif-
icant part of the efforts of search engine employees goes). The
process of feature engineering described by Domingos [12] con-
sists of three steps: (1) to choose a particular machine learning
algorithm and a target evaluation criterion (i.e., the difference in
NDCG scores between the global ranker trained with and without
candidate features); (2) to generate a large number of candidate
features; and (3) to select the best features according to the chosen
criterion. However, this approach is difficult to apply in practice,
because there are no clear guidelines for selecting the candidate
features (and, thus, the effectiveness of features often depends more
on an individual’s intuition rather than on a solid methodology). To
alleviate this problem, we propose a methodology that guides the
design choice of new features. Our proposal is both novel and en-
sures a broader impact of our technical contribution beyond the
particular task setting (web search) that we consider.

We discuss related work in §2. Our method for creating metafea-
tures for latent semantic models and passing them along to a global
ranker is detailed in §3. We detail our experimental setup in §4 and
present our results and analysis in §5. We conclude in §6.

2. RELATED WORK
We discuss three types of related work: latent semantic models,

ranking models based on latent semantic models, and combinations
of latent semantic models.

Latent semantic models. Latent Semantic Indexing (LSI) [9] uses
singular value decomposition (SVD) of a document-term matrix
to map queries and documents to low-dimensional concept vec-
tors. The relevance of a document to a query is assumed to be
proportional to the cosine similarity between their concept vec-
tors. A major limitation of LSI that prevents it from being used
in very large scale applications, is the computational cost of SVD.
To overcome this limitation, a Regularized Latent Semantic Index-
ing (RLSI) [33] with an efficient implementation in MapReduce
has been proposed.

Probabilistic Latent Semantic Indexing [18] views documents as
mixtures of topics and ranks the documents by the probability of the
query given the document distribution over topics. Latent Dirich-
let Allocation (LDA) [6, 34] extends PLSI and assumes that topic
distributions have a Dirichlet prior.

With increasingly large volumes of user logs, supervised latent
semantic models trained on (clicked/not clicked) query-document
pairs [1, 4, 8, 15, 16, 20, 29, 35, 36] have begun to outperform
many unsupervised latent semantic models trained on documents
only. Supervised Semantic Indexing (SSI) [1] and Regularized
Mapping to Latent Spaces (RMLS) [35] learn weights for each
query-document term pair using low rank matrix decomposition.
The Bilingual Topic Model (BLTM) [16] is an extension of LDA,

where queries and relevant documents are assumed to share the
same distribution over topics, while they might use different topic
word distributions for queries and documents.

Another approach to document ranking is based on statistical
machine translation [4, 15]. The Word-based Translation Model
(WTM) [4] ranks documents by the probability of the query given
the document unigram translation model. The Phrase-based Trans-
lation Model (PTM) [15] extends WTM with phrases.

Recently, latent semantic models based on neural networks [8,
16, 20, 28, 29, 36] have gained popularity. The Discriminative Pro-
jection Model (DPM) [16, 36] maps queries and document to con-
cept vectors with the siamese network architecture [8]. Salakhut-
dinov and Hinton [28] propose a deep generative model that maps
documents to memory addresses in such a way that semantically
similar documents are located at nearby addresses. The Deep Struc-
tured Semantic Model (DSSM) [20] uses a deep feed-forward neu-
ral network to map queries and documents to the concept vectors.
DSSM works at the level of character-trigrams, which allows gen-
eralization to unseen word forms. The performance of DSSM de-
grades as the text length increases, as its “bag of character-trigrams”
representation leads to a combinatorial blow-up. The Convolu-
tional Latent Semantic Model (CLSM) [29] mitigates this disad-
vantage by applying a DSSM-like model to word n-grams and com-
bining their vectors at a later stage.

In our experiments we use LDA, WTM, DPM and DSSM as typ-
ical representatives of different families of models: topic models
(PLSI, LDA, BLTM), translation models (WTM, PTM), conven-
tional models based on matching in latent space (LSI, RLSI, SSI,
RMLS, DPM) and recent models working at the level of character
trigrams (DSSM, CLSM).

Ranking with latent semantic models. The training objective
for LSI and RLSI is to minimize the reconstruction error of the
document “bag of words” representation; PLSI and LDA (BLTM)
minimize the perplexity of the document corpus (clicked query-
document pairs); SSI, DPM minimize the ranking loss between
clicked and unclicked documents. Common scoring functions used
by the latent semantic models are (1) the cosine similarity between
the query and document concept vectors (LSI, RLSI, SSI, RMLS,
DPM, DSSM, CLSM) and (2) the query likelihood function (PLSI,
LDA, BLTM, WTM, PTM). These scoring functions are simple and
intuitive, but we argue that they are not expressive enough to tune
latent semantic models for relevance prediction and that they do not
use all potentially useful information from the model.

Combinations of latent semantic models. Most work on latent se-
mantic models in search does not address the problem of combining
latent semantic models and only provides a comparison of latent se-
mantic models with each other [1, 2, 4, 8, 15, 16, 20, 29, 33, 34, 36].
Some work also uses linear interpolation with traditional retrieval
models based on lexical matching (VSM, TFIDF, BM25) for com-
parison [2, 35, 36]. Wu et al. [35] test the performance of their
proposed RMLS model by comparing the performance of a global
ranker with baseline ranking models used as features against the
global ranker with the baseline ranking models and RMLS. We pro-
vide an experimental analysis of the contribution of metafeatures to
the combination of latent semantic models.

What we add on top of the work mentioned above is the follow-
ing. First, we show that the common ways of using latent semantic
models in web search (i.e., (1) to rank web documents by scores
of the cosine similarity and query likelihood functions, and (2) to
pass these scores as features to global ranker) are suboptimal. Sec-
ond, we propose an approach that extracts more information from
latent semantic models and leverages this information to improve
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Figure 2: Adding metafeatures to the output of latent semantic
models and passing their combination as features to a global
ranker.

ranking performance of both individual latent semantic models and
their combinations.

3. METHOD
To increase the effectiveness of latent semantic models in (web)

search engines, we propose to complement their outputs with meta-
features, feature vectors that describe the structure of the predic-
tions of latent semantic models for a given query-document pair,
and pass them to a global ranker together with the latent semantic
models’ scores (see Figure 2).

We start with a disclaimer. There is no general algorithm for gen-
erating metafeatures for an arbitrary latent semantic model. How-
ever, as we will see, for many latent semantic models, their scor-
ing functions provide a good starting point. In §3.1, we offer two
guidelines for creating metafeatures for a latent semantic model
based on its scoring function. We operationalize these guidelines
in §3.2 using a diverse set of latent semantic models.

3.1 Guidelines for creating metafeatures
We use Q to denote a query composed of terms q1, q2, . . . , q|Q|

and D to denote a document composed of terms w1, w2, . . . , w|D|.
We write MFn(M, P ) to denote the n-th group of metafeatures

for a latent semantic model or a class of such models,M ; P denotes
the parameters of the group of metafeatures. We use a compact
form MFn1,...,nk (M, P ) to denote the metafeatures MFn1(M, P ),
. . . , MFnk (M, P ).

Guideline 1 (“Divide and Conquer”)
The values making up the score produced by a latent semantic
model capture more potentially useful information than the latent
semantic model’s score by itself. They could, for instance, help to
distinguish the two documents shown in Figure 1.

Below, we provide guidelines (a)–(c) for different types of scor-
ing functions. We say that a scoring function F (Q,D) can be ex-
pressed as a composition of functions F = {fi(Q,D)}, if for all
query-document pairs (Q,D), it is possible to compute the value
of F (Q,D) by knowing the values of a subset of F . The values of
some fi(Q,D) might be not defined for a given query-document
pair (Q,D), but it should still be possible to compute the value
of F (Q,D) using the values of other fi(Q,D) ∈ F . The occur-
rence probability of fi(·) is the probability that fi(·) is defined for a
query-document pair (Q,D) randomly drawn from the (unknown)
distribution of query-document pairs.
(a) For a scoring function F (Q,D) that can be expressed as a
composition of a fixed number (N ) of functions fi(Q,D), de-
fine metafeatures MF1(F ) by composing them of the values of the
functions fi(Q,D) for a query-document pair (Q,D):

MF1(F ) = (f1(Q,D), . . . , fN (Q,D)).

(b) For a scoring function F (Q,D) that can be expressed as a

composition of a very large or unlimited number of functions
fi(Q,D), define metafeatures MF1(F,N) of size N by compos-
ing them of the values of N functions fi(Q,D) that have the high-
est occurrence probabilities; if the value of function fi(Q,D) is not
defined for a given query-document pair (Q,D), set the metafea-
tures’ component that corresponds to the function fi(Q,D) with a
NaN (Not a Number) value:

MF1(F,N) =
(
f̂1(Q,D), . . . , f̂N (Q,D)

)
,

where f̂i(Q,D) is fi(Q,D) if fi(Q,D) is defined, and NaN oth-
erwise.

(c) For a scoring function F (Q,D) that can be expressed as a
composition of a very large or unlimited number of functions
fi(Q,D) that have relatively high occurrence probabilities, de-
fine metafeatures MF1(F, k, p1, . . . , pN ) by composing them of
the descriptive statistics of the distribution of values of the func-
tions fi(Q,D) for a given query-document pair (Q,D), e.g., the
expected value E[fi(Q,D)], variance Var[fi(Q,D)], k min / max
values of fi(Q,D) and percentiles pi of {fi(Q,D)}. The default
value of k used in our study is 3; the default percentiles pi are 0.01,
0.03, 0.05, 0.125, 0.25, 0.5, 0.75, 0.875, 0.95, 0.97, 0.99.

Note: For a scoring function F (Q,D) that can be expressed
as a composition of functions fi(Q,D) that come from two or
more different groups G = {gk : k = 1, . . . , |G|}, define |G|
scoring functions Fk(Q,D) by setting the values of fi 6∈ gk to con-
stants, and construct metafeatures for Fk(Q,D) using the guide-
lines (a)–(c).

Guideline 2 (“Find the Strongest and Weakest Links”)
For some latent semantic models, there is only a limited num-
ber of ways to express a scoring function F (Q,D) as a composi-
tion of functions fi(Q,D). E.g., the scoring functions of WTM
and DSSM cannot be expressed as a composition of per docu-
ment term functions f1(Q,D), . . . , f|D|(Q,D), where the func-
tions fi(Q,D) describe all relevant information about the i-th terms
in the document D for computing the scoring function F (Q,D).
But if such functions f1(Q,D), . . . , f|D|(Q,D) existed, their val-
ues could be regarded as contributions of the document terms to the
scoring function F (Q,D), and in this way, might help the global
ranker to distinguish the documents that “answer” all query terms
from those that match only some of them.

We suggest to create “surrogate functions” that perform the role
of fi(Q,D). In particular, we propose to compute gradients of the
scoring function F (Q,D) with respect to the occurrences of doc-
ument terms. This is a reasonable choice, because the components
of these gradients measure how the score would change if we re-
moved a small fraction of a term. Below, we capture this intuition
more formally.

For a symmetric scoring function F (Q,D) of query terms Q
and document terms D (i.e., a function that takes the same
value for any permutation of query terms and document terms),
first define a function F (q,d) of vectors q and d of vocabulary
size |V |, whose i-th components are the number of occurrences of
the i-th term in query Q and document D, respectively. Then de-
fine a matrix MQ of size |Q| × |V |, whose i-th row is a one-hot
vector with the component corresponding to the i-th query term qi
set to 1; and a matrix MD of size |D| × |V |, whose j-th row is a
one-hot vector with the component corresponding to the j-th docu-
ment term dj set to 1. Finally, define the metafeatures MF1(F,N1)
and MF2(F,N2) as gradients of F (q,d) with respect to q and d,
∇QF (q,d) and∇DF (q,d), multiplied by the matrices MQ(N1)
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andMQ(N2) composed of the firstN1 andN2 rows of the matrices
MQ and MD:

MF1(F,N1) = MQ(N1)∇QF (q,d),

MF2(F,N2) = MQ(N2)∇DF (q,d).

Sometimes, it is more convenient to apply a monotonic function
g(x) to the scoring function F (·), and use the resulting complex
function g(F (·)) instead of F (·).

As we show in the next section, the presented guidelines help to
extract a lot of potentially useful metafeatures from existing state-
of-the-art latent semantic models.

3.2 Application of our guidelines
In this section we demonstrate how to apply the guidelines pre-

sented in Section 3.1 to different families of latent semantic mod-
els. Note that we do not aim to extract all possible metafeatures that
could be extracted according to Guidelines 1 and 2, as the main pur-
pose of our study is not an exhaustive search for all of them (which
could potentially be a very large number), but a demonstration of
the benefits of the methodology of metafeature extraction in gen-
eral. Thus, we focus on the extraction of the most promising and
interpretable metafeatures in this section.

3.2.1 Latent semantic models based on the
language modeling approach

We describe the metafeatures that we infer for topic models [6,
16, 18] and the Word-based Translation Model [4] that employ the
language modeling approach. We start with the common metafea-
tures and then take a closer look at each model’s scoring function.

Latent semantic models based on the language modeling ap-
proach score a query-document pair (Q,D) by the probability of
the query Q given the document model MD . Many latent seman-
tic models make the “bag of words” assumption, which allows one
to decompose the probability of the query into the product of the
query term probabilities. Thus, the scoring function used by these
models is the product of the query term probabilities given the doc-
ument model, P (qi |MD):

P (Q |MD) =

|Q|∏
i=1

P (qi |MD). (1)

Following Guideline 1 (b), we use the factors under the product
sign of (1) to define metafeatures MF1(QL, N) that capture prob-
abilities of the first N query terms given the document model:

MF1(QL, N) = (P (q1 |MD), . . . , P (qN |MD)) . (2)

These metafeatures may help the global ranker to distinguish be-
tween two documents that get very similar scores by the query like-
lihood scoring function, but for very different reasons. For exam-
ple, consider two documents D1 and D2, such that:

• given the document model for D1, all query terms q1, . . . ,
q|Q| have roughly the same probabilities; and
• given the document model forD2, the first query term q1 has

a very low probability, and the other query terms q2, . . . , q|Q|
have higher probabilities than given the document model forD1.

Intuitively, these are two different cases. We want the global ranker
to know about this through the use of metafeatures. The compo-
nents of MF1(QL,N) can be seen as query term contributions,
and are in fact obtained using Guideline 2 for g(x) = log x.

Some work [4, 15, 16] reports that P (qi | MD) may be too
coarse to be used for retrieval and suggests to use linear interpola-
tion with the document unigram language model PLM(qi|D) [4],

the collection unigram language model PLM(qi | C) [15] or both
[16]:

P̃ (Q |MD) =

|Q|∏
i=1

(α1PLM(qi | C) + α2PLM(qi | D) + α3P (qi |MD)) ,

where α1 +α2 +α3 = 1. Similarly, following Guideline 1 (b), we
define metafeatures MF2,3(QL, N) that capture the probabilities
of the first N query terms given the document language model and
the collection language model:

MF2(QL, N) = (PLM(q1 | C), . . . , PLM(qN | C)) ,

MF3(QL, N) = (PLM(q1 | D), . . . , PLM(qN | D)) .

These metafeatures provide extra information about the individual
query terms that might help the global ranker to make better use of
MF3(QL, N). E.g., low query term probabilities given the latent
semantic model P (qi | MD) are less severe for query terms qi
for which PLM(qi | C) is high than for query terms qi for which
P (qi | MD) is low. A high query term probability given by the
document model, PLM(qi | D), indicates that a high probability
of a query term given the latent semantic model, P (qi | MD), is
due to a lexical match. In this case, term-based models’ predictions
might be more reliable for the global ranker.

Topic models. Topic models (e.g., PLSI, LDA, BLTM) view doc-
uments as mixtures of topics, i.e., MD = {P (tj | D) : 1 ≤ j ≤
|T |}, where P (tj | D) denotes the probability of topic tj given the
document D, and |T | denotes the number of topics. The probabil-
ity of a query term qi given document model MD , P (qi | MD), is
defined as the sum of the query term probabilities given the topic,
P (qi | tj), weighted by topic probabilities, P (tj | D):

P (qi |MD) =

|T |∑
j=1

P (qi | tj)P (tj | D).

The document score is a function of (1) topic probabilities given
the document, P (tj | D) and (2) query term probabilities given the
topic, P (qi | ti). Guideline 1 suggests that we define metafeatures
MF1,2(TM) that describe these values:

MF1(TM) =
(
P (t1 | D), . . . , P (t|T | | D)

)
,

MF2(TM, N) =

P (q1 | t1), . . . , P (q1 | t|T |),
. . . . . . , . . .

P (qN | t1), . . . , P (qN | t|T |)

 .

However, the size of MF2(TM, N) might be too large to train the
global ranker without causing overfitting. In essence, MF1(TM)
and MF2(TM, N) are meant to inform the global ranker about how
well the document topic distribution helps to maximize the query
probability. This can be achieved by comparing the document topic
distribution with the query topic distribution—the query topic dis-
tribution is, by definition, the topic distribution that maximizes the
query probability. This idea was originally proposed in [23], where
the authors used Kullback-Leibler divergence between the query
and document topic distributions as a scoring function.

KL(Q,D) =

|T |∑
i=1

P (ti | Q) log
P (ti | Q)

P (ti | D)
(3)

Based on preliminary experiments, the Kullback-Leibler divergence
scoring function (3) performed much poorer than the Query Likeli-
hood scoring function (1), but it happened to be useful for creating
metafeatures. Following Guideline 1 (a), we define metafeatures
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MF1(TM) (defined earlier) and MF3(TM) that capture the query
and document topic distributions:

MF3(TM) =
(
P (t1 | Q), . . . , P (t|T | | Q)

)
.

The Word-based Translation Model. The Word-based Transla-
tion Model casts document ranking as a statistical machine trans-
lation problem, in which query Q is assumed to be a translation of
document D. The document model MD is defined as a probabil-
ity distribution of terms given a document. The probability of term
w given document model MD is defined as the average translation
probability of document terms w1, . . . , w|D| into term w. So the
probability of query term qi given document model MD is:

P (qi |MD) =
1

|D|

|D|∑
j=1

P (qi | wj).

The document score is a function of the translation probabilities of
a document term into a query term. Following Guideline 1 (b) we
define metafeatures MF1(WTM, N1, N2) that capture probabili-
ties of the query terms given the document terms:

MF1(WTM, N1, N2) =

 P (q1 | w1), . . . , P (q1 | wN2),
. . . . . . , . . .

P (qN1 | w1), . . . , P (qNq | wN2)

.
As the number of P (qi, wj) that occur with a not low frequency
is large, we also define metafeatures MF2(WTM) from the set of
translation probabilities of document terms into query terms {P (qi,
wj)}1≤i≤|Q|,1≤j≤|D|, following Guideline 1 (c).

Guideline 2 suggests that passing on information about the query
and document term contributions to the document score might be
useful for the global ranker. The metafeatures MF1(QL, N) that
we have defined earlier (see (2)) describe the query term contri-
butions. To define metafeatures that describe the document term
contributions, we first apply a monotonic function g(x) = log x to
the scoring function P (Q |MD) that gives a new scoring function

F (Q,D) = g(P (Q |MD)) =

|Q|∑
i=1

log
1

|D|

|D|∑
j=1

P (qi | wj).

Then we define a function F (q,d) of q and d:

F (q,d) = qT (logAd− logBd),

whereA andB are matrices of size |V |×|V |withAi,j = P (ti, tj),
and Bi,j = 1; log(x) denotes the element-wise logarithm of vec-
tor x. Finally, we define the metafeatures that capture quantitative
contributions of document terms as follows:

MF3(F,N2) = MQ(N2)∇DF (q,d)

= MQ(N2)(A
T ◦ inv(Ad)−BT ◦ inv(Bd))q,

where Z = X ◦ y denotes the element-wise multiplication of ma-
trix X by vector y: Z[i, j] = X[i, j]y[i]; and z = inv(x) de-
notes the element-wise multiplicative inverse of vector x: z[i] =
1/x[i], if x[i] 6= 0 and 0 otherwise. Briefly, MF3(WTM, N2) are: |Q|∑

i=1

P (qi | w1)∑|D|
j=1 P (qi | wj)

− |Q||D| , . . . ,
|Q|∑
i=1

P (qi | wN2)∑|D|
j=1 P (qi | wj)

− |Q||D|

.
The components of MF3(WTM, N2) characterize the contribu-
tions of document terms wi with respect to the other terms in the
document D: αk =

∑|Q|
i=1

P (qi|wk)∑|D|
j=1 P (qi|wj)

is the actual quantitative

contribution of the document term wi; β = |Q|
|D| =

1
|D|
∑|D|

k=1 αk

is the average contribution of the document terms w1, . . . , w|D|.

3.2.2 Latent semantic models based on the
latent space matching approach

Next, we describe metafeatures that we infer for latent semantic
model that employ the latent space matching approach. We start
with the metafeatures shared by all models of this class and then
take a closer look at the Deep Structured Semantic Model [20].

Latent semantic models based on the latent space matching ap-
proach learn vector representations for queries and documents, such
that the distance between a query vector vQ and a document vector
vD reflects the degree of relevance of the document D to the query
Q. The standard choice for a distance function between the query
and document vectors is the cosine similarity measure [25]:

cos (vQ, vD) =
vQ · vD
‖vQ‖‖vD‖

=

N∑
i=1

v
(i)
Q v

(i)
D

‖vQ‖‖vD‖
, (4)

where N denotes the dimensionality of the vector space and v(i)

denotes the i-th component of vector v.
Following Guideline 1 (a), we use the terms under the summa-

tion sign in (4) to define metafeatures MF1(COS) that capture the
per dimension matching scores:

MF1(COS) =

(
v
(1)
Q v

(1)
D

‖vQ‖‖vD‖
, . . . ,

v
(N)
Q v

(N)
D

‖vQ‖‖vD‖

)
.

The rationale is analogous to the one underlying MF1(QL, N): we
want to be able to distinguish the two cases shown in Figure 1. One
document has roughly the same scores in all dimensions, the other
one has much higher scores in two dimensions and lower scores in
other dimensions.

Viewed differently, the document score is a function of both the
query vector vQ and the document vector vD . Hence, following
Guideline 1 (a), we define metafeatures MF2,3(COS) that capture
the components of the query vector vQ and document vector vD:

MF2(COS) =
(
v
(1)
Q , . . . , v

(N)
Q

)
,

MF3(COS) =
(
v
(1)
D , . . . , v

(N)
D

)
.

The Deep Structured Semantic Model. The Deep Structured
Semantic Model (DSSM) uses a technique called word hashing,
which represents queries and documents with letter-trigram vec-
tors. For example, San Francisco is encoded with the following
letter-trigrams #sa, san, an#, #fr, fra, ran, anc, nci, cis, isc, sco, co#,
where # is a boundary symbol. These letter-trigram vectors are
passed through the three fully connected layers of a feed-forward
neural network to obtain vector representations vQ and vD , as il-
lustrated in Figure 3.

Guideline 2 suggests that we construct metafeatures that capture
the quantitative contributions of query and document terms to the
document score. But since DSSM works at the letter-trigram level,
we consider letter-trigram contributions.1

We use the following notation: |T |c is the length of text T in
characters; |L| is the total number of letter-ngrams; qc and dc are
vectors of size |L|, whose elements on the i-th position are the num-
bers of occurrences of the i-th letter-ngram in query Q and docu-
ment D, respectively; vQ(qc) and vD(dc) are functions of qc and
dc that return the semantic representations of query Q and docu-

1In the case of the DSSM model, term contributions are the sums
of the contributions of the letter-trigrams that constitute the term.
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Figure 3: The Deep Structured Semantic Model (DSSM) [20].

ment D (these functions are learned by DSSM); MQ is a matrix of
size |Q|c×|V |, whose i-th row is a one-hot vector with the compo-
nent corresponding to the i-th query letter-trigram set to 1; MD is
a matrix of size |D|c×|V |, whose i-th row is a one-hot vector with
the component corresponding to the i-th document letter-trigram
set to 1. We write MQ(N1) and MD(N2) for the matrices com-
posed of the first N1 and N2 rows of the matrices MQ and MD .

We define metafeatures that account for the contributions of the
query and document letter-trigrams as follows:

MF1(DSSM, N1) = MQ(N1)∇qc cos (vQ(qc), vD(dc)) ,

MF2(DSSM, N2) = MQ(N2)∇dc cos (vQ(qc), vD(dc)) .

Using the chain rule ∇xF (y(x)) = JT
x (y(x))∇yF (y), where

Jx (y(x)) denotes the Jacobian matrix of a vector function y(x)
of a vector x w.r.t. the vector x, and the equality ∇x cos(x,y) =

∇x
xT y
‖x‖ ‖y‖ = y

‖x‖ ‖y‖ −
xT y
‖x‖3‖y‖ , we rewrite MF1,2(DSSM, N1)

as follows:

MF1(DSSM, N1) = MQ(N1)J
T
qc
(vQ(qc))∇vQ cos (vQ, vD)

= MQ(N1)J
T
qc
(vQ(qc))

(
vQ

‖vQ‖‖vD‖
− vTDvQ
‖vQ‖3 ‖vD‖

)
,

MF2(DSSM, N2) = MQ(N2)J
T
dc
(vD(dc))∇vD cos (vQ, vD)

= MQ(N2)J
T
qc
(vD(dc))

(
vD

‖vQ‖‖vD‖
− vTDvQ
‖vQ‖ ‖vD‖3

)
.

The elements of Jqc(vQ(qc)) and Jdc(vD(dc)) are the first deriva-
tives of the functions in the output layer of the neural network w.r.t.
the input vectors qc and dc (see e.g., [3] for the exact formulas).2

The metafeatures MF1(DSSM, N1) and MF2(DSSM, N2) do
not capture information about word boundaries. This might be a
disadvantage because the importance of a letter-trigram, which we
define as its expected contribution, varies with its position. E.g.,
letter-trigrams at the end of a term are typically less informative
than those in the middle (for many European languages) [19].

To capture the boundaries between terms in the query and terms
in the documents we define metafeatures MF3,4,5,6(DSSM, N):

MF3(DSSM, N1) = (start(Q, 1), . . . , start(Q,N1)) ,

MF4(DSSM, N1) = (end(Q, 1), . . . , end(Q,N1)) ,

MF5(DSSM, N2) = (start(D, 1), . . . , start(D,N2)) ,

MF6(DSSM, N2) = (end(D, 1), . . . , end(D,N2)) ,

2Since DSSM uses weight sharing, Jqc(vQ(qc)) = Jdc(vD(dc)).
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Figure 4: Metafeatures MF1,2,3,4,5,6(DSSM, 30) for query “ni-
agara power station tesla” and document “niagara falls hydro-
electric plant”.

where start(T, p) and end(T, p) denote the offsets of the p-th
letter-trigram in the text T from the first and the last trigrams of
the term it falls. An illustration is given in Figure 4.

Note that for more sophisticated latent semantic models, the meta-
features can be more sophisticated. E.g., following Guideline 2 for
DSSM and WTM we arrive at the most non-trivial metafeatures
among the ones that we have proposed, such as MF1(DSSM,N1),
MF2(DSSM,N2) and MF3(WTM,N2). However, as we demon-
strate in our experiments below, all metafeatures, regardless of their
complexity, are useful for improving retrieval quality.

4. EXPERIMENTAL SETUP

4.1 Research questions
We seek to answer the following research questions.

RQ1 Do metafeatures associated with latent semantic models help
improve the performance of individual latent semantic mod-
els on a web document ranking task? In particular:

(a) Which of the metafeatures defined in Section 3.2 help to im-
prove performance of the underlying latent semantic models?

(b) Does employing a combination of different metafeatures in-
ferred from a single latent semantic model yield better per-
formance than individual metafeatures?

(c) How does the performance of the global ranker, trained with
metafeatures, vary with the size the training data set?

RQ2 Do metafeatures associated with latent semantic models pro-
vide a means to improve the performance of a combination
of latent semantic models on the web document ranking task.

4.2 Data sets and evaluation methodology
In modern search engines, a document is described by multiple

fields, including body text, title, URL and anchor texts [30]. In our
experiments, we focus on the title field. We do this for the following
reasons. First, recent work on supervised latent semantic models in
web search focuses on the title field [15, 16, 20, 29, 35].3 Second,
the title field gives better [29] or, at least, as effective [30] retrieval
results as the body text field (using BM25). Third, some models
achieve state-of-the-art performance using the title field, but do not
3Although our work targets supervised latent semantic models, we
include a comparison with LDA, as a well-known baseline.
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apply to other fields (e.g., it is not feasible to train DSSM [20] on
the body text field, because of the extremely large number of non-
zero elements in the word hashing layer).

To train latent semantic models, we collected a training data set
that comprises 130,024,971 search sessions sampled from a com-
mercial web search engine over a six months period.4 It contains a
total of 51,117,758 unique user queries and 178,289,551 retrieved
documents. Figures 5 and 6 show the query and document distri-
butions of the number of words and characters in the training data
set. We use these statistics to set the parameters of metafeatures in
our experiments (Section 4.4).

0	

0.1	

0.2	

0.3	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Query	
Title	

Figure 5: The query and title distributions of the number
of words in the training data set. (Best viewed in color.)

0	
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0.02	
0.03	
0.04	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	 61	 66	 71	 76	

Query	
Title	

Figure 6: The query and title distributions of the number
of characters in the training data set. (Best viewed in color.)

To evaluate the performance of the models, we collected an eval-
uation data set that contains 111,203 queries sampled from the
query-log files of a commercial web search engine.5 On average,
each query is associated with 27 documents (URLs). Each query-
document pair has a human-generated relevance label on a scale
from 0 to 4, with 0 = bad, 1 = fair, 2 = good, 3 = excellent,
4 = perfect. Performance is measured using mean Normalized
Discounted Cumulative Gain (NDCG) [21] at truncation levels 1,
3, 5 and 10, using k-fold cross-validation. We use (k − 1) folds to
train the global ranker and 1 fold to evaluate the performance; the
results over k folds are averaged. We perform significance testing
using a paired t-test; differences are considered statistically signif-
icant for p-values lower than 0.001.

4.3 Model settings and baseline performance
We use four latent semantic models for which we infer metafea-

tures. The baseline performance achieved by the models after op-
timization is listed in Table 1. Below we describe how the models
are trained. For comparison, we also list a state-of-the art ranking
model based on lexical matching, BM25.

BM25 (row 1 in Table 1) is a state-of-the-art document ranking
model based on lexical matching. The parameters k1 and b are
optimized using Powell’s method [27].

LDA (rows 2–3 in Table 1) is our MapReduce implementation of
the topic model proposed in [6]. It is trained with 200 iterations
of Gibbs sampling using α = 50/|T | and β = 0.01 (the default
values used, e.g., in [34]). The number of topics |T | is set to 100

4There is no publicly available data set for training supervised la-
tent semantic models [1, 4, 15, 16, 20, 29, 35, 36].
5There is no sufficiently large publicly available dataset with rele-
vance labels and disclosed query and document terms (the TREC
data set is too small to train the global ranker; the well-known Ya-
hoo L2R and MSLR data sets do not contain query terms and doc-
ument terms).

(used, e.g., in [16]).6 We consider ranking models based on the
unsmoothed LDA model and the LDA model smoothed using a ti-
tle unigram language model and a background unigram language
model. The ranking model based on the smoothed version of LDA
model (row 3) outperforms the ranking model based on the un-
smoothed version of LDA model (row 2) by a large margin. In the
rest of our experiments we use the smoothed version.
WTM (rows 4–5 in Table 1) is our implementation of the Word-
based Translation Model [4]. It is trained on the query-title pairs.
We consider ranking models based on the unsmoothed WTM and
the WTM smoothed using a title unigram language model and a
background unigram language model. We find that the ranking
model based on the smoothed version of WTM (row 5) outper-
forms the ranking model based on the unsmoothed version of WTM
(row 4) by a large margin. In the rest of our experiments we use the
smoothed version of WTM.
DPM (row 6 in Table 1) is our implementation of the Discrimina-
tive Projection Model proposed in [16, 36]. It is trained on clicked
query-title pairs. The number of dimensions is set to 300 (the per-
formance does not improve much for larger numbers [36], while
the training time is linear in the number of dimensions).
DSSM (row 7 in Table 1) is our implementation of the Deep Struc-
tured Semantic Model proposed in [20]. It is trained by maximizing
the conditional likelihood of the clicked query-title pairs. We use
the configuration proposed in [20] (the numbers of neurons in the
hidden layers are {300, 300, 128}).
ALL (row 8–9 in Table 1) is a combination of LDA (w/ smoothing),
WTM (w/ smoothing), DPM and DSSM by a linear model (row 8)
and Gradient Boosted Regression Trees (GBRT [13], row 9).
All ranking models based on latent semantic models outperform
the BM25 ranking model by a large margin, on all metrics. DSSM
is the best performing individual latent semantic model, again on
all metrics. The two combination models outperform all individual
models and GBRT outperforms the linear model. In the rest of the
experiments, we use GBRT as our global ranker.

Table 1: Performance of the baseline ranking models.

NDCG

# Ranking model @1 @3 @5 @10

1 BM25 0.520 0.583 0.631 0.709
2 LDA (w/o smoothing) 0.538 0.608 0.657 0.734
3 LDA (w/ smoothing) 0.552 0.619 0.667 0.741
4 WTM (w/o smoothing) 0.545 0.611 0.659 0.736
5 WTM (w/ smoothing) 0.560 0.626 0.673 0.746
6 DPM 0.537 0.602 0.648 0.724
7 DSSM 0.568 0.640 0.687 0.759

8 ALL (linear model) 0.580 0.649 0.694 0.764
9 ALL (GBRT) 0.604 0.664 0.706 0.772

4.4 Experiments
We design two experiments to answer our research questions.

Experiment 1. To answer RQ1, we compare the performance of
each individual latent semantic model’s score against the output of
the global ranker trained with the latent semantic model’s score as
well as the metafeatures inferred from the latent semantic model
used as features.
6 Shen et al. [29] used LDA with 100 and 500 topics, but the ob-
served changes were not marked as statistically significant.
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In Section 3.2 we have introduced some metafeatures together
(e.g., MF2(COS) and MF3(COS)) and provided the intuitions
why those metafeatures might be helpful for the global ranker. We
evaluate the impact of the metafeatures within the groups where
they were introduced (Table 2).

For the metafeatures MF1,2,3(QL, N), MF1(WTM, N1, N2)
and MF2(WTM, N) we set N = N1 = N2 = 15, because
less than 0.3% of the queries and 0.2% of the titles in the training
set contain more than 15 words (Figure 5). For the metafeatures
MF1,2,3,4,5,6(DSSM, N) we set N = 80 because less than 0.4%
of the queries and 0.2% of the titles in the training set contain more
than 80 characters (Figure 6).

Table 2: Experiment 1 (runs).

Metafeatures Latent semantic models

MF1,2,3(QL, 15) LDA, WTM
MF1,3(TM) LDA
MF1(WTM, 15, 15) WTM
MF2(WTM) WTM
MF1(QL, 15),MF3(WTM, 15) WTM
MF1(COS) DPM, DSSM
MF2,3(COS) DPM, DSSM
MF1,2,3,4,5,6(DSSM, 80) DSSM

Experiment 2. To answer RQ2, we compare the performance of
the global ranker trained with the individual latent semantic mod-
els’ scores only (for LDA, WTM, DPM, DSSM) against the global
ranker trained with those individual latent semantic models’ scores
plus the metafeatures inferred from those models.

5. RESULTS
We present the outcomes of the two experiments described in

Section 4.4, and provide answers to our research questions.

5.1 Experiment 1
The results of Experiment 1 are given in Table 3 and Figure 7.

Table 3 compares the performance of each individual latent seman-
tic model and the global ranker trained using the latent semantic
model’s score together with the metafeatures listed in Table 2 as
features. Figure 7 plots the performance (in terms of NDCG@10)
for the latent semantic models with the metafeatures listed in Ta-
ble 2 vs. the number of queries used for training.

A first general observation from Table 3 is that for every latent
semantic model, the addition of all metafeatures defined for that
model yields the highest performance. We also see that combina-
tions of metafeatures nearly always lead to performance increases.
Let us now turn to each research question individually.
RQ1 (a). We find that all metafeatures defined in Section 3.2 yield
statistically significant improvements in NDCG scores at truncation
levels 1, 3, 5 and 10 over the underlying rankings produced by
the latent semantic models’ scores, for all latent semantic models.
The relative improvements in NDCG scores at truncation levels 1,
3, 5 and 10 are above 10.2%, 7.8%, 6.4% and 4.2%, respectively
(Table 4). Hence, our metafeatures have a clear early precision
enhancing effect.
RQ1 (b). We find that the best results for each latent semantic
model are obtained by the combination of all latent semantic model
metafeatures (“ALL MF”). However, combinations of metafeatures
do not always lead to performance improvements. In particular, for
DPM, the addition of MF1(COS) does not lead to a statistically
significant improvement over the metafeatures MF2,3(COS). And

Table 3: Performance of the ranking models based on the latent
semantic models with different metafeatures (10-fold cross-
validation). Highest scores per latent semantic model are indi-
cated in boldface. The improvements of models with metafea-
tures over their respective baseline models (i.e., LDA, WTM,
DPM and DSSM) are statistically significant (p < 0.001).

NDCG

Global ranker features @1 @3 @5 @10

LDA 0.552 0.619 0.667 0.741
+ MF1,2,3(QL, 15) 0.564 0.631 0.680 0.754
+ MF1,3(TM) 0.619 0.679 0.720 0.784
+ ALL MF 0.625 0.684 0.725 0.787

WTM 0.560 0.626 0.673 0.746
+ MF1,2,3(QL, 15) 0.576 0.645 0.691 0.762
+ MF1(WTM, 15, 15) 0.599 0.660 0.704 0.772
+ MF2(WTM) 0.593 0.655 0.699 0.765

+ MF1(WTM, 15, 15) 0.605 0.667 0.710 0.775
+ MF1(QL, 15)

+ MF3(WTM, 15) 0.597 0.658 0.701 0.770
+ ALL MF 0.617 0.675 0.717 0.781

DPM 0.537 0.602 0.648 0.724
+ MF1(COS) 0.605 0.664 0.706 0.772
+ MF2,3(COS) 0.614 0.675 0.717 0.782
+ MF1,2,3(COS)
(= ALL MF) 0.615 0.676 0.718 0.782

DSSM 0.568 0.640 0.687 0.759
+ MF1(COS) 0.609 0.668 0.710 0.774
+ MF2,3(COS) 0.627 0.685 0.725 0.787
+ MF1,2,3(COS) 0.624 0.683 0.723 0.786
+ MF1,2,3,4,5,6(DSSM, 80) 0.617 0.673 0.715 0.780
+ ALL MF 0.634 0.691 0.731 0.791

for DSSM MF1,2,3(COS) does not outperform MF2,3(COS). This
can be explained by the fact that the components of MF1(COS) are
the products of the components of MF2(COS) and MF3(COS):
MF1(COS) does not bring any new information to the global ranker
trained with MF2,3(COS), but increases the number of features
used by the global ranker, which results in a stronger overfitting of
the global ranker.

RQ1 (c). We find that the gains obtained from metafeatures in
terms of NDCG@10 are proportional to the logarithm of the size
of the training data set: the average Pearson correlation coefficient,
r = 0.860 (with all values in the interval [0.825; 0.921]). For some
models, viz. LDA, WTM, DSSM, the performance achieved with a

Table 4: Relative improvements of the rankings given by the
global ranker trained with the individual the latent seman-
tic models’ scores and all metafeatures defined for the model
over the rankings given by the individual latent sematic mod-
els’ scores (10-fold cross-validation).

NDCG

Latent semantic model @1 @3 @5 @10

LDA +13.2% +10.5% +8.7% +6.2%
WTM +10.2% +7.8% +6.5% +4.7%
DPM +14.5% +12.3% +10.8% +8.0%
DSSM +11.6% +8.0% +6.4% +4.2%
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Figure 7: Performance of the latent semantic models with different metafeatures for different sizes of training data. (Best viewed in
color.)

relatively small number of queries in the training set (i.e.,< 12500)
is below the performance of the baseline (not using metafeatures).
This is apparently a result of overfitting, as we observed similar re-
sults for the global ranker trained with only one feature—the latent
semantic model’s score. With more queries added for training, all
metafeatures end up beating the baseline, and significantly so.
Together, the above results lead to the conclusion that the proposed
metafeatures improve the performance of the latent semantic mod-
els on the web document ranking task that we consider. Interest-
ingly, through the addition of metafeatures the ranking of latent
semantic models has changed: from DSSM > WTM > LDA >
DPM (on all metrics) we went to DSSM > LDA > DPM ≈WTM
(again, on all metrics) (Table 3). This reveals an important ex-
perimental issue: fair comparison of latent semantic models w.r.t.
a document ranking task assumes utilizing all potentially useful
knowledge mined during the building of these models.

5.2 Experiment 2
The outcomes of Experiment 2 are listed in Table 5. We find

that the metafeatures yield a statistically significant improvement
over the output of the global ranker trained with the latent semantic
models’ scores only. The relative improvements in NDCG scores at
truncation levels 1, 3, 5 and 10 are 7.6%, 6.17%, 5.38% and 3.75%,
respectively.

Table 5: Performance of the model combinations with the la-
tent semantic models’ scores only and the latent semantic mod-
els’ scores and metafeatures (10-fold cross validation). The im-
provements are statistically significant (p < 0.001).

NDCG

Global ranker features @1 @3 @5 @10

models’ outputs 0.604 0.664 0.706 0.772
+ models’ metafeatures 0.650 0.705 0.744 0.801

Next, we take a closer look at the changes brought about by

the inclusion of metafeatures in the combination of latent semantic
models. Table 6 provides a matrix of the changes in relevance la-
bels for the documents returned in the top position for each query
in the evaluation data set by the combination of the latent seman-
tic models’ scores only (w/o MF) and by the combination extended
with the metafeatures (w/ MF). We counted the number of times
that the retrieved document is in each of the five relevance cate-
gories, from bad to perfect, for both combinations.

We observe that for 70% of the queries, the relevance labels of
the documents returned in the top position did not change. For the
remaining queries, the number of cases in which the highest ranked
document returned by the combination w/ MF is more relevant than
one returned by the combination w/o MF exceeds the number of
cases in which the combination w/o MF returns a more relevant
document than the combination w/ MF for all relevance label pairs.
Furthermore, the relative number of cases in which the combination
w/ MF returns a more relevant document than the combination w/o
MF is smaller for low-performing queries (for which the retrieved
documents’ labels fall into bad, fair or good categories) than for
high-performing queries (for which the retrieved documents’ labels
fall are excellent or perfect).

In sum, metafeatures help to bring high-quality documents to
the top position rather than that they help to replace non-relevant
documents with partially relevant ones.

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced an approach to increase the

effectiveness of latent semantic models on a web document rank-
ing task. The approach is based on so-called metafeatures—feature
vectors that provide a fine-grained description of a latent semantic
model’s prediction or some aspects of the prediction. We demon-
strated our approach using four latent semantic models, two of
which are traditional latent semantic models (Latent Dirichlet Al-
location [6, 34] and Word-based Translation Model [4]) used in
many IR applications, while the other two are recently proposed
latent semantic models (Discriminative Projection Model [16, 36]
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Table 6: Change matrix of the relevance labels of the highest
ranked documents returned by the combination of the latent
semantic models’ scores only (w/o MF) and the combination of
latent semantic models’ scores and metafeatures (w/ MF). The
cell in row X and column Y contains the number of queries
for which the documents ranked on the top positions by the
combinations w/o MF and w/ MF belong to categories X and Y,
respectively.

w/ MF

bad fair good excellent perfect

bad 12694 3139 4111 486 534

fair 3096 14446 6294 1152 931

good 2943 4816 38396 2656 830

excellent 206 301 1141 4607 215w
/o

M
F

perfect 118 196 239 63 7593

and Deep Structured Semantic Model [20]) that specialize on the
web document ranking task.

Our experimental results show that through the use of metafea-
tures the performance of a combination of latent semantic models
on the document ranking task can be improved by 7.6% and 3.8%
in NDCG scores at truncation levels 1 and 10. Moreover, through
the use of metafeatures we manage to achieve better performance
for each individual latent semantic model by itself than the tradi-
tional way of combining all four latent semantic models’ scores.

We believe that a latent semantic model’s metafeatures along
with its score provide a richer representation of the model’s pre-
diction than the model’s score by itself. We expect metafeatures
to be useful in other applications that use the scores of latent se-
mantic models, e.g., online advertising [7], question answering [5],
paraphrase detection [11], and textual entailment [31].

As to the limitations of our study, the large size of some metafea-
tures might increase the chances of overfitting for many machine
learning algorithms. To mitigate the issue, dimensionality reduc-
tion techniques, such as Principal Component Analysis (PCA) [22],
Autoencoder Neural Networks (AENNs) [10], Restricted Boltz-
mann Machines (RBM) [17] and t-SNE [32], can be considered.

Our approach can be extended to other models whose scores are
used as features for a machine learning algorithm. For instance,
in web search, a similar approach can be applied to the PageRank
model [26]. The score assigned to a document D by the PageRank
model is a sum of features over documents that contain a reference
to D. Providing information about components of the sum (e.g.,
mean, variance) might help the global ranker when it attempts to
rank documents that have received very similar PageRank scores.

Acknowledgments
We would like to thank Tom Kenter and Ilya Markov for reading
the paper and making useful comments and suggestions.

This research was supported by Amsterdam Data Science, the
Dutch national program COMMIT, the Netherlands eScience Cen-
ter under project number 027.012.105, the Netherlands Institute
for Sound and Vision, and the Netherlands Organisation for Scien-
tific Research (NWO) under project nrs 727.011.005, 612.001.116,
HOR-11-10, 640.006.013, 612.066.930, CI-14-25, SH-322-15, 652.-
002.001, 612.001.551. All content represents the opinion of the
authors, which is not necessarily shared or endorsed by their re-
spective employers and/or sponsors.

7. REFERENCES
[1] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi,

O. Chapelle, and K. Weinberger. Supervised semantic indexing. In
CIKM 2009, pages 187–196. ACM, 2009.

[2] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi,
O. Chapelle, and K. Weinberger. Learning to rank with (a lot of)
word features. Information Retrieval, 13(3):291–314, 2010.

[3] Y. Bengio. Learning deep architectures for AI. Foundations and
trends in Machine Learning, 2(1):1–127, 2009.

[4] A. Berger and J. Lafferty. Information retrieval as statistical
translation. In SIGIR 1999, pages 222–229. ACM, 1999.

[5] A. Berger, R. Caruana, D. Cohn, D. Freitag, and V. Mittal. Bridging
the lexical chasm: statistical approaches to answer-finding. In SIGIR
2000, pages 192–199. ACM, 2000.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J.
Machine Learning Research, 3:993–1022, 2003.

[7] A. Broder, M. Fontoura, V. Josifovski, and L. Riedel. A semantic
approach to contextual advertising. In SIGIR 2007, pages 559–566.
ACM, 2007.

[8] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Säckinger, and R. Shah. Signature verification using a “Siamese”
time delay neural network. Int. J. Pattern Recognition and Artificial
Intelligence, 7(4):669–688, 1993.

[9] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman. Indexing by latent semantic analysis. JASIS, 41(6):
391–407, 1990.

[10] D. DeMers, G. Cottrell, et al. Non-linear dimensionality reduction.
In NIPS 1993, pages 580–580, 1993.

[11] B. Dolan, C. Quirk, and C. Brockett. Unsupervised construction of
large paraphrase corpora: Exploiting massively parallel news
sources. In COLING 2004, pages 350–356, 2004.

[12] P. Domingos. A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87, 2012.

[13] J. H. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, pages 1189–1232, 2001.

[14] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The
vocabulary problem in human-system communication. Commun.
ACM, 30(11):964–971, 1987.

[15] J. Gao, X. He, and J.-Y. Nie. Clickthrough-based translation models
for web search: from word models to phrase models. In SIGIR 2010,
pages 1139–1148. ACM, 2010.

[16] J. Gao, K. Toutanova, and W.-t. Yih. Clickthrough-based latent
semantic models for web search. In SIGIR 2011, pages 675–684.
ACM, 2011.

[17] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, 2006.

[18] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR 1999,
pages 50–57. ACM, 1999.

[19] V. Hollink, J. Kamps, C. Monz, and M. de Rijke. Monolingual
document retrieval for European languages. Information Retrieval, 7:
33–52, 2004.

[20] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck.
Learning deep structured semantic models for web search using
clickthrough data. In CIKM 2013, pages 2333–2338. ACM, 2013.

[21] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving
highly relevant documents. In SIGIR 2000, pages 41–48. ACM,
2000.

[22] I. Jolliffe. Principal Component Analysis. Wiley Online Library,
2005.

[23] J. Lafferty and C. Zhai. Document language models, query models,
and risk minimization for information retrieval. In SIGIR 2001,
pages 111–119. ACM, 2001.

[24] H. Li and J. Xu. Semantic matching in search. Foundations and
Trends in Information Retrieval, 7(5):343–469, 2014.

[25] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report
1999-66, Stanford InfoLab, 1999.

[27] M. J. Powell. An efficient method for finding the minimum of a
function of several variables without calculating derivatives. The
Computer Journal, 7(2):155–162, 1964.

[28] R. Salakhutdinov and G. Hinton. Semantic hashing. International

1090



Journal of Approximate Reasoning, 50(7):969–978, 2009.
[29] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. A latent semantic

model with convolutional-pooling structure for information retrieval.
In CIKM 2014, pages 101–110. ACM, 2014.

[30] K. M. Svore and C. J. Burges. A machine learning approach for
improved BM25 retrieval. In CIKM 2009, pages 1811–1814. ACM,
2009.

[31] P. D. Turney. Measuring semantic similarity by latent relational
analysis. In IJCAI’05, pages 1136–1141, 2005.

[32] L. Van der Maaten and G. Hinton. Visualizing high-dimensional data
using t-SNE. J. Machine Learning Research, 9:2579–2605, 2008.

[33] Q. Wang, J. Xu, H. Li, and N. Craswell. Regularized latent semantic
indexing. In SIGIR 2011, pages 685–694. ACM, 2011.

[34] X. Wei and W. B. Croft. LDA-based document models for ad-hoc
retrieval. In SIGIR 2006, pages 178–185. ACM, 2006.

[35] W. Wu, Z. Lu, and H. Li. Learning bilinear model for matching
queries and documents. The Journal of Machine Learning Research,
14(1):2519–2548, 2013.

[36] W.-t. Yih, K. Toutanova, J. C. Platt, and C. Meek. Learning
discriminative projections for text similarity measures. In CoNLL,
pages 247–256. ACL, 2011.

1091


	1 Introduction
	2 Related Work
	3 Method
	3.1 Guidelines for creating metafeatures
	3.2 Application of our guidelines
	3.2.1 Latent semantic models based on the language modeling approach
	3.2.2 Latent semantic models based on the latent space matching approach


	4 Experimental setup
	4.1 Research questions
	4.2 Data sets and evaluation methodology
	4.3 Model settings and baseline performance
	4.4 Experiments

	5 Results
	5.1 Experiment 1
	5.2 Experiment 2

	6 Conclusion and future work
	7 REFERENCES



