
Representing Documents via Latent Keyphrase Inference

Jialu Liu† Xiang Ren† Jingbo Shang†

Taylor Cassidy‡ Clare R. Voss‡ Jiawei Han†
†Department of Computer Science, University of Illinois at Urbana-Champaign
‡Computational & Information Sciences Directorate, Army Research Laboratory

†{jliu64, xren7, shang7, hanj}@illinois.edu ‡{taylor.cassidy, clare.r.voss}.civ@mail.mil

ABSTRACT
Many text mining approaches adopt bag-of-words or n-grams
models to represent documents. Looking beyond just the
words, i.e., the explicit surface forms, in a document can
improve a computer’s understanding of text. Being aware
of this, researchers have proposed concept-based models that
rely on a human-curated knowledge base to incorporate other
related concepts in the document representation. But these
methods are not desirable when applied to vertical domains
(e.g., literature, enterprise, etc.) due to low coverage of
in-domain concepts in the general knowledge base and in-
terference from out-of-domain concepts. In this paper, we
propose a data-driven model named Latent Keyphrase In-
ference (LAKI) that represents documents with a vector of
closely related domain keyphrases instead of single words
or existing concepts in the knowledge base. We show that
given a corpus of in-domain documents, topical content units
can be learned for each domain keyphrase, which enables a
computer to do smart inference to discover latent document
keyphrases, going beyond just explicit mentions. Compared
with the state-of-art document representation approaches,
LAKI fills the gap between bag-of-words and concept-based
models by using domain keyphrases as the basic representa-
tion unit. It removes dependency on a knowledge base while
providing, with keyphrases, readily interpretable representa-
tions. When evaluated against 8 other methods on two text
mining tasks over two corpora, LAKI outperformed all.

1. INTRODUCTION
Text data (e.g., web queries, business reviews, product

manuals) are ubiquitous and tasks like document grouping
and categorization play an essential role in big data appli-
cations. At the heart of analysing text data is a unified
representation of text input.

Related Work: The most common representation for texts
is the bag-of-words [1] due to its simplicity and efficiency.
This method however typically fails to capture word-level
synonymy (missing shared concepts in distinct words, such

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
Include the http://dx.doi.org/10.1145/2872427.2883088 .

Categories Representation
Words dbscan, method, clustering, process, ...
Topics [k-means, clustering, clusters, dbscan, ...]

[clusters, density, dbscan, clustering, ...]
[machine, learning, knowledge, mining, ...]

KB Concepts data mining, clustering analysis, dbscan, ...
Keyphrases dbscan: [dbscan, density, clustering, ...]

clustering: [clustering, clusters, partition, ...]
data mining: [data mining, knowledge, ...]

Table 1: Representations for query “DBSCAN is a
method for clustering in process of knowledge discov-
ery.” returned by various categories of methods.

as “doctor” and “physician”) and polysemy (missing distinct
concepts in same word, such as “Washington” can be ei-
ther the city or the government). As a remedy, topic mod-
els [7, 3] try to overcome this limitation by positing a set
of latent topics which are distributions over words, and as-
suming that each document can be described as a mixture
of these topics. Nevertheless, the interpretability of latent
space for topic models is not straightforward and perus-
ing semantic meaning in inferred topics is difficult [4, 18].
Concept-based models [10, 23, 21, 12, 14] were proposed to
overcome these barriers. The intuition is to map a text query
into a high-dimensional vectorial representation where each
dimension corresponds to a concept in a general Knowledge
Base (KB), like Wikipedia or Freebase, making them eas-
ily interpretable. For example, the text sequence “DBSCAN
for knowledge discovery”can be mapped to KB concepts like
“KB: data mining”, “KB: density-based clustering”and“KB:
dbscan”. Such methods take advantage of a vast amount of
highly organized human knowledge. However, most of the
existing knowledge bases are manually maintained, and are
limited in coverage and freshness. Researchers have there-
fore recently developed systems such as Probase [25] and
DBpedia [2] to replace or enrich traditional KBs. Neverth-
less, the rapid emergence of large, domain-specific text cor-
pora (e.g., business reviews) poses significant challenges to
traditional concept-based techniques and calls for methods
of representing texts by interpretable units without require-
ment of a general KB.

In this paper, we study the problem of learning representa-
tions for domain-specific texts: Given massive training texts
in a specific domain or genre, we aim to learn a systematic
way to derive interpretable representations for any new in-
domain documents without relying on a KB. When existing
approaches are directly applied to this problem setting, they
encounter several limitations:

• Representation interpretability: A lot of data-driven
methods (e.g., bag-of-words and topic models) lack straight-

1057

dbscan

kernel k-means dbscan data mining

0 01 0 2 1

knowledge
discovery

data

mining dbscan
kernel

k-means

clustering kernel
k-means

…

……

dbscan

0.65
0.6

1 1
1

…

kdd

…

data

…

0.4 0.3

knowledge
discovery

data

mining dbscan
kernel

k-means

clustering kernel
k-means

…

……

dbscan

0.65
0.6

1 1
1

…

kdd

…

data

…

0.4 0.3

Document Representation

DBSCAN / is / a /

method / for / clustering /

in / process / of /
knowledge discovery.

DBSCAN / was /

proposed / by …

data mining

text mining

clustering

kernel k-means

dbscan

…

kernel kmeans 1

kernel k means 1

clustering 0.65

kernel 0.55

rbf kernel 0.5

dbscan 1

density 0.8

clustering 0.6

dense regions 0.3

shape 0.25

data mining 1

knowl. discov. 1

kdd 0.67

clustering 0.6

text mining 0.6

data

mining

0.6 0.8 0 0.8 0 0.7 0.9 ……

knowledge

discovery

density-based

clustering

Offline!

Online:

clustering

Domain Keyphrase Extraction

Segmentation

Domain Keyphrase Silhouetting

Document Keyphrase Inference

Figure 1: Overview of LAKI. White and grey nodes represent domain keyphrases and content units respectively.

forward interpretation for document representation, which
is critical for model verification and for ensuring that the
model is capturing user’s intuitions about the text input [4].

• Domain restriction: For concept-based methods relying
on a KB [10, 21, 23], the provided knowledge in KB usually
suffers from limited coverage and freshness on specific, dy-
namic or emerging domains.

• Cross-domain interference: Due to the wide range of
domains covered in a general KB, many words will have
multiple possible KB referents even if they are unambiguous
in the target domain, thus introducing noise and distortion
in the text representation even when the vocabulary overlap
between the target domain and knowledge base is small [12].

To address the above challenges, we exploit several intu-
itive ideas as follows. We first extract domain keyphrases
from an in-domain corpus, which are both meaningful and
interpretable, and instantiate them as dimensions in our
text representation. Thus, a document is represented as
a vector of keyphrases, in contrast to traditional methods
using words, topics or concepts (see Table 1). Note that
within a particular domain, a given keyphrase will likely
have one meaning [11], making the representation relatively
unambiguous. On one hand, limiting phrase extraction to
the in-domain corpus helps eliminate cross-domain interfer-
ence. However, many keyphrases relevant to a given doc-
ument are not explicit document keyphrases, i.e., they are
not mentioned in the document. This presents a unique
challenge, especially for short texts like paper abstracts and
business reviews. We therefore propose to associate each do-
main keyphrase with a silhouette—a topically-cohesive set of
words and phrases, which enables a computer to incorporate
latent document keyphrases into text representation.

Our solution, called Latent Keyphrase Inference (LAKI),
is developed to systematically integrate the above ideas. As
shown in Fig. 1, it consists of an offline domain keyphrase
learning phase and an online document keyphrase inference
phase. In the offline phase, corpus-wide domain keyphrases
are extracted and their silhouettes are learned through a hi-
erarchical Bayesian network which optimizes the likelihood
with respect to latent document keyphrases, given observed
content units in the training corpus. The Bayesian network
is essentially a directed acyclic graph (DAG) for modeling
the dependency 1) between domain keyphrases and content
units, and 2) between domain keyphrases themselves. In the
online process, LAKI identifies the top-ranked latent docu-
ment keyphrases for the input text by statistical inference

on the Bayesian network. Consequently, LAKI is able to
transform text string into a high-dimensional vector repre-
sentation. Entries in the output vector quantify the related-
ness between the document and the respective keyphrases.
The major contributions of this paper are:

1. We propose to use latent keyphrases as document repre-
sentation for domain-specific texts, which enhances rep-
resentation interpretability, solves domain restriction and
avoids cross-domain interference.

2. We develop a Bayesian network-based approach to model
domain keyphrase silhouettes, which later helps infer la-
tent document keyphrases and solves the rarity of explicit
keyphrase mentions in the document.

3. Experiments on corpora of different domains show both
the effectiveness and efficiency of the proposed solution.

2. BACKGROUND
This paper deals with the problem of learning representa-

tion of domain-specific texts. Given a document corpus as
input, we aim to produce a set of keyphrases as the basis
for vectorial representation of any text queries posed to this
corpus. The task is formally defined as follows.

Definition 1 (Problem Definition). Given a document
corpus D with specific focus on certain genres of content, we
aim to automatically extract semantically keyphrases K =
{K1, · · · ,KM} fromD, and derive a model that can generate

high-dimensional vectorial representation [P
(q)
1 , · · · , P (q)

M] for
any text query q from the same domain, where each entry
of the vector quantifies relatedness between query and the
corresponding keyphrase. �

Ideally, these we would use domain-specific knowledge base
concepts instead of keyphrases. But identifying and con-
structing these concepts purely from text data with satis-
factory performance remains an unsolved problem. Instead,
we instantiate them as domain keyphrases since the prob-
lem of extracting high-quality keyphrases is more tractable,
and there exist many publicly available methods. A domain
keyphrase is a phrase (which may be one or more words) of
great significance in the domain extracted from a domain-
specific corpus. They are meant to be natural, meaning-
ful and likely unambiguous semantic units for representing
domain-specific texts. However, one needs to overcome their
low rate of explicit mentions in documents to which they
are relevant. Our solution is to identify latent document
keyphrases which are relevant to a given document, but are

1058

not explicitly mentioned therein. A document keyphrase
is a domain keyphrase that is relevant to a specific docu-
ment, i.e.it serves as an informative word or phrase to indi-
cate the content of that specific document. Actual mention
of a document keyphrase is not necessarily required.

Following the above discussion, a good model should gen-
erate representations in terms of document keyphrases, to-
gether with numerical values indicating strength of related-
ness. These representations could be used in various text
mining tasks to attain outstanding performance in terms of
application-specific evaluation metrics.

Our propsed text representation method is called Latent
Keyphrase Inference (LAKI). Its core technical contribution
is domain keyphrase silhouetting—an unsupervised learning
process to mine domain keyphrase silhouettes.

Definition 2 (Domain Keyphrase Silhouette). Given
a domain keyphrase Km, its keyphrase silhouette Sm com-
prises a topically-cohesive bag of content units (i.e., words
and phrases) regardingKm. Let the total set of content units
in the corpus is denoted as T = {T1, · · · , TL}. Then Sm is
a non-negative vector [Sm1, · · · , SmL] where each entry Sml

refers to a relatedness score between domain keyphrase Km

and content unit Tl. �

These silhouettes not only enable the LAKI to identify la-
tent document keyphrases through statistical inference, but
also enhance the interpretability of corresponding domain
keyphrases. LAKI can be divided into two phases: (i) the
offline domain keyphrase learning phase, which extracts do-
main keyphrases from the in-domain corpus and learns their
silhouettes respectively, and (ii) the online document/query
keyphrase inference phase, which derives vectorial represen-
tation for each query based on the domain keyphrase silhou-
ettes, as outlined below.

• Offline Domain Keyphrase Learning:

1. Extract domain keyphrases from a domain-focused doc-
ument corpus; and

2. Learn domain keyphrase silhouettes by iteratively opti-
mizing a Bayesian network with respect to the unknown
values, i.e., latent document keyphrases, given observed
content units in the training corpus.”

• Online Document/Query Keyphrase Inference:
1. Segment input query into content units; and
2. Do inference for document keyphrases given the observed

content units, generating a high-dimensional vector where
each entry quantifies relatedness between the input query
and corresponding keyphrase.

Fig. 1 illustrates the above two phases with examples for
each individual step.

3. DOMAIN KEYPHRASE EXTRACTION
AND SEGMENTATION

Domain Keyphrase Extraction refers to automatically dis-
covering salient terms from a domain-focused document cor-
pus, whereas segmentation is to partition text into continu-
ous segments and is more context dependent. Both compo-
nents serve as the building blocks for LAKI and examples of
their functionality are shown on the left side of Fig. 1.

Solving these two tasks is not the objective of this work
as there are various works proposed in the literature doing
them well. In general, they can be divided into two cat-
egories: data-driven and linguistic-based. The former [24,

K5K1

K4K2

T5 T6T1 T2 T3 T4

K3

Domain
Keyphrases

Content Units

Figure 2: An illustrative Bayesian network for domain
keyphrase silhouetting.

8, 17] explore frequent n-grams in document collections and
leverage a variety of statistical measures derived from a cor-
pus to estimate phrase quality and doing segmentation. The
latter [9, 27, 15] rely on linguistic features that include part-
of-speech (POS) tags or parse trees, and usually require large
training sets labeled by humans to identify phrase bound-
aries, which are very costly to obtain. As the rest of our
framework is fully data-driven, for the sake of consistency,
we adopt an algorithm named SegPhrase which was recently
proposed to combine domain keyphrase extraction with seg-
mentation in an iterative fashion [17]. The algorithm is mo-
tivated by the observation that domain keyphrase extraction
and segmentation are mutually dependent and thus can ben-
efit each other. More specifically, domain keyphrase extrac-
tion relies on segmentation to locate candidate mentions,
which later helps rectify their corpus-level statistics for as-
sessing quality. Simultaneously, segmentation has access to
stored extracted keyphrases to guide the partitioning of the
document text into content units.

4. DOMAIN KEYPHRASE SILHOUETTING
In this section, we present our model to domain keyphrase

silhouettes by optimizing a Bayesian network w.r.t. latent
document keyphrases, given observed content units includ-
ing both words and phrases in the training corpus. Recall
that the silhouette of a domain keyphrase Km consists of
a bag of related content units for capturing the topic of
Km. Besides modeling dependency between keyphrases and
content units, we consider interactions between keyphrases
themselves and make the network hierarchical with DAG-
like structure shown in Fig. 2. Content units are located at
the bottom layer and domain keyphrases form the rest. Both
types of nodes act as binary variables1 and directional links
between nodes depict their dependency. Specifically, the
links connecting domain keyphrases to content units form
the so-called domain keyphrase silhouettes.

Before diving into the technical details, we motivate our
multi-layered Bayesian network approach to the silhouetting
problem. First, it is better to have our model infer more than
explicit document keyphrases. For example, even if the text
only contains “html” and “css”, the word “web page” comes
to mind. But more than that, a multi-layered network will
activate ancestor keyphrases like“world wide web”even they
are not directly linked to “html” or “css”, which are content
units in the bottom layer.

Meanwhile, we expect to identify document keyphrases
with different strength scores. Reflected in this Bayesian
model from a top-down view, when a parent keyphrase is
activated, it is more possible for its children with stronger
connection to get activated.

1For multiple mentions of a content unit, we choose to make
several copies of that node together with its links.

1059

Furthermore, this formulation is quite flexible. We allow
a content unit to get activated by each connected domain
keyphrase as well as by a random noise factor (not shown
in Fig. 2), which behaves like a Noisy-OR, i.e., a logical OR
gate with some probability of having “noisy” output. This
increases robustness of the model especially when training
documents are noisy.

We define the conditional distribution in our Bayesian net-
work in line with the above motivations. Mathematically,
we use K = {K1,K2, . . . ,KM} and T = {T1, T2, . . . , TL}
to denote domain keyphrases and content units respectively.
For notational convenience, we use a unified symbol Z to
denote K and T such that K = {Z1, . . . , ZM} and T =
{ZM+1, . . . , ZM+L}. A child node Zj is Noisy-OR [13] with
its parent nodes Pa(Zj) = {Pa1

j , Pa
2
j , . . .} as:

p(Zj = 1
∣∣Pa(Zj)) = 1− exp

(
−W0j −

∑
i

Wij1Pai
j

)
(1)

where W denotes link weight and 1 is an indicator function
returning 1 if its associated node state is true. In this way,
larger weight of a link will make its child node more likely
to be activated. Note that the leak term W0j allows for
the possibility of a node to be true even if all parents are
false. Intuitively, it can be explained as a prior for a domain
keyphrase node and a noise for a content unit. Meanwhile,
leak terms {W0∗} for all nodes can be naturally transformed
to link weights by positing a latent factor Z0 with p(Z0 =
1) = 1, where notationally convenient. An example of such
a notation is shown on the left side of Fig. 3 for a tiny family.

In the following subsections, we first discuss how to learn
link weights given the Bayesian network structure and then
discuss how the initialization is done to decide this structure
and to set initial link weights.

4.1 Model Learning
To effectively learn link weights during domain keyphrase

silhouetting, Maximum Likelihood Estimation is adopted.
The intuition is to estimate parameters by maximizing the
likelihood of observed content units together with partially-
observed document keyphrases2. Suppose we have N docu-
ments in the corpus where each document d uses a binary
vector t(d) to represent the states of content units (i.e., ob-
served or not), the log-likelihood of the corpus is:

L(D) =

N∑
d=1

log
∑

k∈Ω(d)

p(K = k, T = t(d)) (2)

where Ω(d) is the space of all possible combinations of doc-
ument keyphrase states. This space changes for different
documents and will be discussed later in this subsection.

It is difficult to directly optimize Eq. 2 due to the la-
tent states for the rest keyphrases. Instead we resort to the
Expectation-Maximization (EM) algorithm which guaran-
tees to give a local optimum solution. The EM algorithm
starts with some initial guess at the maximum likelihood pa-
rameters and then proceeds to iteratively generate successive
estimates by repeatedly applying the E-step (Expectation-
step) and M-step (Maximization-step). For general Bayesian
networks, normally p(Zj , Pa(Zj)|T = t) must be computed
for all state combinations between Zj and Pa(Zj) in the
E-step. In our case due to the presence of Noisy-OR as in

2Explicit document keyphrases can be identified by applying
existing keyphrase extraction methods like [24].

w03 w13 w23

w13w03 w23

Z3

Z0 Z1 Z2 Z0 Z1 Z2

Z3

X03 X13 X23

w01

w02
X02

X01

w01

w02

Figure 3: An alternative representation of Noisy-Or
Bayesian network. We assume parents Pa(Z3) of Z3 are
Pa1

3 = Z1 and Pa2
3 = Z2 respectively.

Eq. 1, we can dramatically reduce the complexity by divid-
ing the whole family into parent-child pairs and computing
each pair separately. To demonstrate this, we show an alter-
native representation of the left Noisy-OR network in Fig. 3
by adding grey nodes for each link. A grey node Xij is
true with probability 1−exp (−Wij) only if the parent node
Paij is true. The original child white node on the left now
becomes deterministic-OR of parent grey nodes. Based on
this representation, one can still derive the same probability
distribution as Eq. 1.

Expectation Step: Since the child white node always per-
forms OR operation on its parents, we only need to focus
on the grey nodes with single parent. This reduces a lot of
storage consumption and transforms our task to computing

R
(d)
ij = P (Xij = 1, Paij = 1|T = t(d),Ω(d)) together with

P
(d)
m = P (Km = 1|T = t(d),Ω(d)) where:

• R(d)
ij refers to the probability of a grey node Xij to be

activated as well as that both of its parent Paij and child
node Zj are present; and

• P (d)
m refers to the probability of a domain keyphrase node
Km to be activated, i.e., becoming a document keyphrase.

Unfortunately, to compute these two exactly, one still needs
to enumerate all state combinations of domain keyphrases.
This is NP-hard for a Bayesian network like ours [5]. We

therefore constrain the search space Ω(d) such that non-
related keyphrases are directly excluded before applying EM.
That is, we only allow keyphrase ancestors of observed con-
tent units to change states during the inference. We are
essentially forcing certain elements of K to be fixed in their
states during the enumeration of Ω(d). The corresponding
analytical expressions are derived following Bayes rules:

R
(d)
ij =

∑
c∈Ω(d) p

(
Z = {k, t(d)}

) P (Xij=1|Pai
j)

p(Zj=zj |Pa(Zj))
1zj 1Pai

j∑
z∈Ω(d) p

(
Z = {k, t(d)}

)
P

(d)
m =

∑
z∈Ω(d) p

(
Z = {k, t(d)}

)
1km∑

z∈Ω(d) p
(
Z = {k, t(d)}

)
For longer text, there will still be quite many keyphrases

left for inference following the above strategy, making in-
ference intractable at a large scale. We therefore resort
to approximate inference by applying a stochastic sampling
technique for generating samples from the joint probability
distribution over Z. This type of approximation technique is
also used for online inference, introduced in the next section.

Maximization Step: Based on the sufficient statistics col-
lected by the Expectation step, one can update each link
weight Wij between node Paij and Xij with the following
closed-form solutions:

Wij = − log
(
1−

∑
d R

(d)
ij∑

d P
(d)

Pai
j

)
, W0j = − log

(
1−

∑
d R

(d)
0j

|N |

)

1060

Expectation and maximization steps are iterated until the
model changes minimally.

4.2 Model Initialization
Like other EM frameworks, the parameter estimation will

suffer from the problem of local maximum, making the re-
sults vary with different network structures and initialized
link weights. Therefore, to obtain a good initialization be-
fore model training is important for our task.

Specifically, there are two sub-problems for the model ini-
tialization:

1. How to decide the topological order among domain
keyphrase nodes and to build links among them?

2. How to build links between domain keyphrase and con-
tent units?

For the former, a reasonable topological order of DAG
should be similar to that of a domain ontology. The links
among domain keyphrase nodes should reflect IS-A relation-
ships [26]. Ideally, documents and queries which are de-
scribing specific topics will first imply some deep keyphrase
nodes being activated. Then the ontology-like topological
order ensures these content units have the chance of being
jointly activated by general keyphrases via inter-keyphrase
links. Many techniques [26, 20, 6] have been previously de-
veloped to induce an ontological structure over keyphrases.
It is out of scope of our work to specifically address these
or evaluate their relative impact in our evaluation. We
instead use a simple data-driven approach, where domain
keyphrases are sorted based on their counts in the corpus,
assuming keyphrase generality is positively correlated withs
its number of mentions [20]. Thus, keyphrases mentioned
more often are higher up in the graph. Links are added
from keyphrase Ki to Kj if Ki has more counts and they
are closely related and frequently co-occured:

p(Ki|Kj) ≥ α, sim(Ki,Kj) ≥ β

where α is a threshold reflecting the confidence about the IS-
A relationship and β requires two domain keyphrases to be
related. And sim(Ki,Kj) is computed based on the cosine
similarity between word2vec embeddings of keyphrases Ki

and Kj . In our work, we empirically set α and β to be 0.5
and 0.3 respectively. Note that the latter score is also used
to detect equivalence between keyphrases (i.e., acronyms or
inflectional variants) and we merge them to alleviate the
duplication problem. We remark that some more sophis-
ticated work can be applied here to help detect different
lexical semantic and syntactic relations. We leave this for
future work.

Once the topological order among domain keyphrase nodes
has been decided, one can concatenate all content units right
after the sorted keyphrases and link higher-ranked keyphrase
nodes to lower-ranked content units when sim(Km, Tj) ≥ β.
We initialize link weights between nodes to be their sim(·, ·)
scores. As for the leak terms of nodes, they are simply set
to be the probability of observing them in the corpus.

5. ONLINE INFERENCE
The online inference is designed to efficiently quantify the

relatedness between the text query and its potential docu-
ment keyphrases. Inspired by the sufficient statistics col-
lected in E-step, we are particularly interested in computing

P
(q)
m = p(Km|T = t(q)), i.e., the activation probability for

a certain keyphrase Km, as the non-negative weight for the
mth entry in our output vectorial representation.

Notice that in the online inference phase, efficiency is
usually a big challenge and the inference previously men-
tioned for the E-step will be intractable if the document
becomes too long. In this regard, we resort to an approx-
imate sampling approach. This technique can be applied

to compute both P
(q)
m and P

(d)
m . At the same time, R

(d)
ij =

p(Xij , Pa
i
j |T = t(d)) needed in the E-step can also be bene-

fited.
In the last section, we discussed about exact inference

in the E-step where enumeration over potential document
keyphrase states are necessary to help compute the above
terms. In fact, they can be more efficiently approximated
by use of Monte Carlo sampling methods, which are a set
of computational techniques for generating samples from a
target distribution like the joint probability p(K,T = t) in
our setting. Among the Monte Carlo family, we apply Gibbs
sampling in this work to sample keyphrase variables during
each inference procedure. Given content unit vector t rep-
resenting a document d or query q, we proceed as follows:

1. Start with initial setting: only observed content units and
explicit document keyphrases are set to be true, denoted
by {k(0), t}

2. For each s ∈ {1, . . . , S}, sequentially sample all keyphrase
nodes following conditional distribution p(Km|K−m =

{k(s)
1 , . . . , k

(s)
m−1, k

(s−1)
m+1 , . . . , k

(s−1)
M }, T = t), denoted as

k(s).

where
p(Km = 1|K−m = k−m, T = t) =

p(Km = 1, K−m = k−m, T = t)∑1
i=0 p(Km = i,K−m = k−m, T = t)

(3)

To compute Eq. 3 efficiently, for every domain keyphrase
node, we maintain the following probability ratio:

p(Km = 1,K−m = k−m, T = t)

p(Km = 0,K−m = k−m, T = t)
(4)

where K−m refers to all the keyphrase nodes except Km.
Given the above ratio, one can easily compute Eq. 3 needed
for sampling Km.

Now the problem becomes how to maintain Eq. 4 for each
keyphrase node during the sampling process. In fact, ac-
cording to the chain rule in Bayesian network, we have

p(Km = 1,K−m = k−m, T = t)

p(Km = 0,K−m = k−m, T = t)
=
p(Km = 1|Pa(Km))

p(Km = 0|Pa(Km))

×
∏

Zj∈Ch(Km)

p(Zj |Pa−Km (Zj),Km = 1)

p(Zj |Pa−Km (Zj),Km = 0)

where Ch(Km) refers Km’s children. From the above equa-
tion, one can conclude that Eq. 4 for node Km should be up-
dated whenever nodes in its Markov blanket3 change states.

The above Gibbs sampling process ensures that samples
approximate the joint probability distribution between all
keyphrase variables and content units. Such sampling is
performed over all the original nodes in the network but
does not include the grey nodes (see Fig. 3) in the alternative
representation for the sake of sampling efficiency. One can
easily compute the probability distribution over each of the
grey nodes given a domain keyphrase state combination.

3Markov blanket for a node in a Bayesian network composed
of its parents, children and children’s other parents.

1061

Method Semantic Space Input Source Toolkit
ESA KB concepts KB ESAlib
KBLink KB concepts KB WikiBrain
BoW Words - scikit-learn
ESA-C Documents Corpus ESAlib
LSA Topics Corpus scikit-learn
LDA Topics Corpus MALLET
Word2Vec - Corpus gensim
EKM Explicit Keyphrases Corpus -
LAKI Latent Keyphrases Corpus -

Table 2: Comparisons among different methods

By marginalizing over necessary domain keyphrase vari-
ables in the Bayesian network, the following approximate
equations can be derived:

R̂ij =

∑S
s=1

p(Xij=1|Pai
j)

p(Zj=z
(s)
j
|Pa(Zj))

1
z
(s)
j

1
Pai

j

S
, P̂m =

∑S
s=1 1

k
(s)
m

S

For online inference, the ultimate representation for text

query q is a high-dimensional vector [P̂
(q)
1 , P̂

(q)
2 , · · · , P̂ (q)

M]
where non-zero entries indicate document keyphrases.

To further improve the efficiency of Gibbs sampling, one
can follow the idea of E-step to reduce the number of sam-
pled nodes. Intuitively, only a small portion of domain
keyphrases are related to the text query. There is no need
to sample all keyphrase nodes since most of them do not
have chance to get activated. That is to say, we can skip
majority of them based on a reasonable relatedness predic-
tion before conducting Gibbs sampling. Suppose content
unit vector T ′ = {T ′1, · · · , T ′l } ⊆ T contains only observed
content units. We pick the following scoring function:

p(T ′ = {1, · · · , 1}|Zj = 1)

This score can be viewed as the probability of generating
the observed content units when domain keyphrase Zj is
activated. Computing p(T ′ = {1, · · · , 1}|Zj = 1) is still
challenging because keyphrases are connected and enumer-
ation over state combinations of connected keyphrases are
unavoidable. Thus we adopt a local arborescence structure
inspired by [22] to approximate the probability by keeping
the path from Zj to each content unit T ′r for which the
activation probability product along the path is maximum
among all paths from Zj to T ′r. In this way, the activation
probability for each content unit is independent given Zj is
activated. The associate probability of the approximate link
between keyphrase node Zj and content unit Tr is denoted
as p̃(T ′r = 1|Zj = 1). We then have:

p(T
′
= {1, · · · , 1}|Zj = 1) ≈

∏
r

(
1−
(
1− p(T

′
r = 1|Z0)

)
×

(
1− p̃(T

′
r = 1|Zj = 1)

))
In addition, the score can be naturally and efficiently prop-
agated from children to parents in the network recursively:

p̃(T ′r = 1|Zj = 1) = max
i

p̃(T ′r = 1|Chij = 1) p(Chij = 1|Zj = 1)

where Chi
j refers to the ith child node of Zj . The above

equation can be computed efficiently following reverse topo-
logical order of domain keyphrase nodes.

6. EXPERIMENTAL STUDY
In this section, experiments were conducted to demon-

strate the effectiveness of the proposed LAKI in generating
high quality vectorial representations of text queries. We
begin with the description of datasets.

Dataset #Docs #Words Content type
Academia 0.43M 28M title & abstract
Yelp 0.47M 98M review

Table 3: Dataset statistics

6.1 Datasets
Two real-world data sets were used in the experiments

and detailed statistics are summarized in Table 3.

• The Academia dataset4 is a collection of major computer
science publications. We use both paper titles and ab-
stracts in venues of database, data mining, machine learn-
ing, natural language processing and computer vision.

• The Yelp dataset5 provides reviews of 250 businesses. We
extract all the reviews belong to the “restaurant” category
and each individual review is considered as a document.

6.2 Compared Methods
The proposed method is compared with an extensive set

of methods. They are briefly described as follows.

• Explicit Semantic Analysis (ESA) [10] views each text
query as a weighted vector of KB entries, where the values
on each dimension denote the similarity scores computed
between the query and the associated KB entries

• KBLink [23] first detects related KB entries in the query
and then represents it using the hyperlink structures of
the KB centered at the identified entries

• BoW stands for bag-of-words method where each dimen-
sion reflects word frequency in the query

• ESA-C extends ESA by replacing the general KB with a
domain-specific corpus where each document is considered
to be a KB entry in the original ESA framework

• Latent Semantic Analysis (LSA) [7] is a topic modeling
technique learning word and document representations by
applying Singular Value Decomposition to the words-by-
documents co-occurrence matrix

• Latent Dirichlet Allocation (LDA) [3] is a probabilistic
topic model assuming words in each document were gen-
erated by a mixture of topics, where a topic is represented
as a multinomial probability distribution over words

• Word2Vec [19] computes continuous distributed repre-
sentations of words by training a neural network, with the
desideratum that words with similar meanings will map
to similar vectors

• Explicit Keyphrase Mentiosn (EKM) uses bag of explicit
domain keyphrase mentions

• Latent Keyphrase Inference (LAKI) is proposed in this
work to derive document representation via inferring la-
tent keyphrases in the text.

Table 2 provides more details about the differences among
the above methods. The first two methods utilize knowledge
base as the input source to train models in order to represent
any new text query. In contrast, the rest methods except
BoW require a domain-specific corpus as the training source.

6.3 Experimental Setting
For domain keyphrase extraction, we set the minimum

keyphrase support as 10 and the maximum keyphrase length
as 6, which are two parameters required by SegPhrase. The

4http://aminer.org/billboard/AMinerNetwork
5https://www.yelp.com/academic_dataset

1062

process generates 33 and 25 thousand domain keyphrases on
Academia and Yelp respectively. Among them, only 6367
and 4996 exist in Wikipedia, which implies its knowledge
incompleteness.

LAKI was initialized and trained following Sec. 4.2 on
both datasets, whose model information is listed in Table 4.
EKM uses the same set of domain keyphrases. The Yelp
model contains more content units but has fewer domain
keyphrases and links, indicating the knowledge underlying
Yelp reviews is less structured. Regarding the inference pro-
cess of LAKI, we run the Gibbs sampler for 5000 iterations
per query. The pruning strategy introduced in Sec. 5 is ap-
plied to select at most 200 keyphrase nodes as candidates for
sampling. Settings of these two parameters will be discussed
later in this section. EM steps are repeated until the change
on training perplexity is small enough.

Regarding other methods, ESA and KBLink need a gen-
eral KB as the input source. Wikipedia is chosen since it
is rich in both text content and structural links. For LSA
and LDA, both require users to specify number of topics
before training. During our experiments, various numbers
of topics ranging from 10 to 1000 have been tested and the
best got reported. Word2Vec has two main learning algo-
rithms: continuous bag-of-words and continuous skip-gram.
We compared both of them in our tasks and discovered the
former generally worked better. For the sake of convenience,
results of the continuous bag-of-words algorithm with con-
text window size of 5 are reported. As suggested in the
paper, negative sampling was activated and vector dimen-
sionality was set to be 300.

In addition, TF-IDF is applied to re-weight terms for
BoW, LSA and EKM. Stop words are removed for all the
methods. Other parameters required by contrasting meth-
ods were set as the default values according to the toolkits.

6.4 Evaluation
The goal of our experiments is to quantitatively evaluate

how well our method performs in generating vectorial rep-
resentations of online queries. We introduce our empirical
evaluation in two problem domains: phrase relatedness and
document classification.

Phrase Relatedness: For a set of phrase pairs, method
performance is evaluated by how well the generated relat-
edness scores correlate with the gold scores. The gold score
for each phrase pair is based on human judgements of the
pair’s semantic relatedness.

To create these phrase pairs, we first generate 100 pairs of
frequently co-occurred and potentially realated phrases from
concept mentions in Wiki articles. Then we expanded the
set by randomly combining phrases from different pairs and
the size of final evaluation set is 300. Each pair was carefully
assigned a relatedness score from 0 to 3 where higher score
indicates stronger similarity. We used Pearson’s linear cor-
relation coefficient to compare computed relatedness scores
with human judgements.

Document Classification: In this classification task, we
wish to classify a document into several mutually exclusive
classes. A challenging aspect of the document classifica-
tion problem is the choice of features. Considering different
vectorial representations as document features, we expect
the classification accuracy can well reflect the discrimina-
tive power of each method.

Dataset #Nodes #Links #Domain Keyphr. (in Wiki)
Academia 237K 1.40M 33K (6,367)
Yelp 292K 1.14M 25K (4,996)

Table 4: Model information of LAKI

For each compared method, we first derived vectorial rep-
resentations for all the training and testing documents with-
out reference to their true class label. Then a support vector
machine with both linear and radial basis function kernels
was trained on the training set (only the best was reported).
Classification accuracy on the testing set is reported to mea-
sure the performance of the method.

For the methods trained on the Academia dataset, we
created a held-out set of 500 publications authored by five
researchers in different research areas. We sampled each au-
thor’s publications to avoid the problem of class imbalance.
Regarding the Yelp dataset, we followed the above proce-
dure and extracted 1000 reviews for 10 chain restaurants.
As for the classification details, we used LibSVM software
package and created the training set with 70% of all docu-
ments. Five-fold cross validation was conducted to decide
the proper parameter of the kernel. Five test runs were con-
ducted on different randomly partitioned training and test
sets. The average performance is reported.

6.5 Results
The correlations between computed relatedness scores and

human judgements are shown in Table 5. Let’s first ignore
the numbers in parenthesis and we can discover that the
trends on two datasets are similar.

Both BoW and EKM are not reported because queries
(i.e., phrases) are too short and they tend to return 0 most
of the time, making it inappropriate for this task. Among
other existing work, Word2Vec has the best performance
due to its effective modeling of word representations in low
dimensional space. Meanwhile, Word2Vec is good at rep-
resenting very short text by simply computing arithmetic
mean of word embeddings. LDA performs the worst in this
task, suffering from the severe data sparsity in short text
inference scenario. This phenomenon is consistent with re-
cent studies on short text topic modeling. As for the two
KB-based methods, both behave relatively poor in spite of
their extraordinary performance reported on open domain in
[10, 23]. KBLink is noticeably lower on Academia dataset
due to the sparsity of hyperlinks between academic concepts.
This is probably due to the reasons about domain restric-
tion and out-of-domain noise. We can verify this assump-
tion to some extent by comparing it with ESA-C. The latter
method replaces KB with a domain corpus, which can be
considered as a weak domain adaptation by viewing each
document as a KB entry. ESA-C thus outperforms ESA
slightly but its performance is still not satisfactory compared
to LSA and Word2Vec. This implies enormous potential if a
method is able to handle domain adaptation well, and mean-
while to bring KB-like semantics into each dimension. Our
proposed method, LAKI, first extracts domain keyphrases
from a corpus and then represents queries in the space of
these keyphrases, fulfilling the above two targets simultane-
ously. Consequently, it outperforms the second best method
(i.e., Word2Vec) by 0.083 on Academia and 0.0466 on Yelp
dataset, which is even more statistically significant than the
gap between the second and the third best methods.

Table 6 shows evaluation results for the document classi-
fication task. LAKI still achieves much improvement com-

1063

#Iterations
1 3 5 7 9 11 13 15

P
e

rp
le

x
it
y
 (

lo
g

-s
c
a

le
)

10
1

10
2

10
3

Academia
Yelp

#Iterations
1 3 5 7 9 11 13 15

P
h

ra
s
e

 R
e

le
te

d
n

e
s
s
 C

o
rr

e
la

ti
o

n

0.5

0.6

0.7

0.8

Academia
Yelp

#Iterations
1 3 5 7 9 11 13 15

D
o

c
u

m
e

n
t
C

la
s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

55

65

75

85

95

Academia
Yelp

Figure 4: Training perplexity and performance of LAKI versus in-
creasing iterations of EM

#Domain Keyphrases After Pruning
0 100 200 300 400 500

P
h

ra
s
e

 R
e

le
te

d
n

e
s
s
 C

o
rr

e
la

ti
o

n

0.6

0.65

0.7

0.75

Academia
Yelp

#Domain Keyphrases After Pruning
0 100 200 300 400 500D

o
c
u

m
e

n
t
C

la
s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

70

75

80

85

90

95

Academia
Yelp

Figure 5: Performance variations of LAKI
with increasing number of keyphrases

Method Academia (w/ phrase) Yelp (w/ phrase)
ESA 0.4320 (-) 0.4567 (-)
KBLink 0.1878 (-) 0.4179 (-)
ESA-C 0.4905 (0.5243) 0.4655 (0.5029)
LSA 0.5877 (0.6383) 0.6700 (0.7229)
LDA 0.3610 (0.5391) 0.3928 (0.5405)
Word2Vec 0.6674 (0.7281) 0.7143 (0.7419)
LAKI 0.7504 0.7609

Table 5: Phrase relatedness correlation

pared with the competitors. The difference is especially no-
ticeable on Yelp, where LAKI achieves 90.58% accuracy and
the second best is 75.55%. It supports our claim that the
proposed LAKI method is quite useful in representing both
short-text and long-text documents. Among the other meth-
ods, LDA generates the best results since each document
now contains more words than the previous short text sce-
nario, making it easier to do inference by utilizing the word
co-occurrence patterns. BoW is not performing well mainly
due to the over-sparsity problem. Though documents are
relatively long (100 words for Academia and 200 words for
Yelp on average), some documents from the same category
still share only a few words, which makes the classifier easy
to misclassify. Similar to BoW, EMK performs much worse
than LAKI due to the sparsity of keyphrase mentions, in-
dicating the superiority of using latent keyphrases over ex-
plicit mentions. ESA-C beats ESA once again, reflecting
the shortcoming of using general KB on a topic-focused do-
main. Word2Vec is omitted from the table due to its poor
performance when applied to long text. Simply computing
arithmetic or geometric mean of word embeddings results in
very poor performance (close to random guess). We have
also tried applying gradient descent to learn the document
representations as introduced in [16]. But the performance
is still far below our expectation.

Another significant difference between LAKI and the ex-
isting work is its support for multi-word phrases. By seg-
menting queries into content units, LAKI views each input
query as a bag of phrases instead of words. Some other
methods including BoW, ESA-C, LSA, LDA and Word2Vec
can be modified to support such phrase-based input just like
LAKI. Therefore, we have conducted experiments to show
whether using the same input as LAKI can help boost their
performance. Numbers within parenthesis in Tables 5 and
6 indicate the corresponding performance after switching to
the phrase-based input. The highest correlation scores ob-
tained by Word2Vec increase to 0.7218 and 0.7419 on the
two datasets, which are still beated by LAKI. For the doc-
ument classification task, LDA achieves the best accuracy
among all contrasting methods, which are still 3.9% and
7.93% lower than LAKI for the two datasets respectively.
It is interesting to see that BoW fails to utilize the phrase-
based input. Our explanation is that BoW is lack of a train-
ing process and it relies fully on the content units in the

Method Academia (w/ phrase) Yelp (w/ phrase)
ESA 37.61 (-) 46.56 (-)
KBLink 36.37 (-) 35.94 (-)
BoW 48.05 (45.60) 51.26 (45.97)
ESA-C 39.75 (42.20) 49.13 (54.51)
LSA 72.50 (79.22) 66.55 (78.57)
LDA 77.27 (80.52) 75.55 (82.65)
EKM 45.46 40.57
LAKI 84.42 90.58

Table 6: Document classification accuracy (%)

input. It usually becomes more difficult for queries to share
phrases than words due to the decrease in number of content
units after segmentation.

6.6 Model Selection
In this subsection, we study the model behavior under

different experimental settings. We begin with an empiri-
cal convergence study of the EM algorithm. Fig. 4 presents
the training perplexity of LAKI with its performance ver-
sus iteration. Due to the good initialization discussed in
Sec. 4.2, the perplexity becomes quite stable after the fifth
iteration. This help save a lot of training time in practice.
The perplexity is not monotonically decreasing because of
the approximations resulted from pruning and sampling.

There are two parameters in our LAKI method: num-
ber of domain keyphrases after pruning and sample size for
Gibbs sampler. The former parameter decides the num-
ber of keyphrase nodes involved in the later sampling pro-
cess. A smaller value will make the final output sparser
while a larger one has risk in incorporating more unrelated
keyphrases to undermine the performance. Fig. 5 shows how
the performance varies with changes in this parameter. We
can observe a peak around 150 keyphrases for the phrase
relatedness task. In contrast, the curve is generally going
up for the document classification task and becomes sta-
ble around 400. Our explanation is that the queries for
the latter task contain more observed content units and
there should exist more document keyphrases for longer text
queries. This suggests a way to dynamically decide the num-
ber of pruned keyphrases. But in this work we simply fix its
value to 200 and plan to explore this idea in the future.

For the Gibbs sampling size, a larger value usually leads
to more accurate and stable estimation of the probability
distribution. We show the experiment in Fig. 8 where both
mean and standard deviation are reported. The curves are
consistent with our expectation and they become relatively
flat after 5000. Based on this observation we set the sam-
pling size to 5000 for the sake of saving time consumption.
Another experiment has been conducted to show the bene-
fit by considering more domain keyphrases into the Bayesian
network. As reported in Table 4, there is a large portion of
keyphrases not existing in Wikipedia. To justify the do-
main restriction of Wiki, it is interesting to compare the

1064

#Samples
1000 3000 5000 7000 9000

R
u

n
in

g
 T

im
e

 (
m

s
)

100

200

300

400

500

Academia
Yelp

#Domain Keyphrases After Pruning
10 100 200 300 400 500

R
u

n
in

g
 T

im
e

 (
m

s
)

100

200

300

400

500

Academia
Yelp

#Words
0 100 200 400 800

R
u

n
in

g
 T

im
e

 (
m

s
)

0

500

1000

1500

Academia
Yelp

Figure 6: Impact of sample size, number of keyphrases, and word
counts on query processing time

Sampling
70.6% Pruning

29.2 %

Segmentation

0.2%

Sampling
87.1%

Pruning
12.7 %

Segmentation

0.2%

50-word Query 400-word Query

Figure 7: Breakdown of query processing
time

#Samples
1000 3000 5000 7000 9000

P
h
ra

s
e
 R

e
le

te
d
n
e
s
s
 C

o
rr

e
la

ti
o
n

0.7

0.72

0.74

0.76

0.78

Academia
Yelp

#Samples
1000 3000 5000 7000 9000D

o
c
u
m

e
n
t
C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

82

84

86

88

90

92

Academia
Yelp

Figure 8: Performance with increasing sample size

standard LAKI model with the simplified version trained
only on Wiki-covered keyphrases (see its definition in [17]).
The bar plots in Fig. 9 demonstrate that with more domain
keyphrases involved, LAKI is able to achieve outstanding
improvement.

Academia Yelp

P
h
ra

s
e
 R

e
le

te
d
n
e
s
s
 C

o
rr

e
la

ti
o
n

0.65

0.7

0.75

0.8
Wiki-covered Keyphrases
All Keyphrases

Academia YelpD
o
c
u
m

e
n
t
C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

70

80

90

Wiki-covered Keyphrases
All Keyphrases

Figure 9: Performance with different keyphrase sets

6.7 Scalability Study
To understand the run-time complexity of our framework,

we first analyse the execution time of online query inference
phase. The experiments were conducted on a machine with
Intel Core i7-2600K and 16GB memory. The code is imple-
mented in C++. As shown in Fig. 6, LAKI grows linearly
proportional to the sampling size, the number of domain
keyphrases after pruning and the length of the query. Be-
sides this, the pies in Fig. 7 show ratios of different com-
ponents of our framework. One can observe that the prun-
ing and sampling steps occupy most of the runtime. More-
over, as query size increases, the sampling part consumes
relatively more. Fortunately, almost all components of our
frameworks can be easily parallelized, because of the na-
ture of independence between documents and queries. For
the offline keyphrase learning phase, as the very first step,
keyphrase extraction shares similar time complexity as re-
ported in [17]. The most time consuming part is domain
keyphrase silhouetting, which is an EM algorithm and each
individual inference in E-step has similar performance com-
pared to Figs. 6 and 7. The only difference is the fewer
pruning time for silhouetting because the search space is
constrained as discussed in Sec. 4.1.

6.8 Case Study
Previous experiments are focused on evaluating represen-

tation quality and time complexity quantitatively. In this
subsection, we first present several queries with their top-

ranked document keyphrases in Table 7 generated from the
online phase of LAKI. Overall we see that LAKI can han-
dle both short and long queries quite well. Most document
keyphrases are successfully identified in the list. Related-
ness between keyphrase and queries generally drops with
ranking lowers down. Meanwhile, both general and specific
document keyphrases exist in the ranked list. This provides
results from LAKI with more discriminative power when
someone is applying it to text mining applications like doc-
ument clustering and classification. Moreover, LAKI has the
ability to process ambiguous queries like “lda” based on con-
textual words“topic”. We attribute this to the well-modelled
domain keyphrase silhouettes and we show some examples
of them in Table 8. As a domain keyphrase silhouette might
contain many content units, we only demonstrate ones with
the most significant link weights. For ease of presentation,
link weights are omitted in the table.

7. CONCLUSIONS
In this paper, we have introduced a new research prob-

lem of learning representation for domain-specific texts. We
propose a novel method called Latent Keyphrase Inference
which integrates domain keyphrase extraction and silhouet-
ting to help infer latent document keyphrases and solves the
rarity of explicit keyphrase mentions in the query. The gen-
erated high-dimensional representations of documents are
shown to significantly boost performance in potential text
mining tasks compared to state-of-art methods. Meanwhile,
entries in the document vector are highly self-explanatory
through automatically learned domain keyphrase silhouettes.

A number of open problems need to be solved to allow
further development of LAKI. One direction is to simulta-
neously model structured data such as meta information as-
sociated with the documents, including named entity, au-
thorship, publishers, etc.. An alternative is to improve the
model initialization by modeling more sophisticated rela-
tionship between domain keyphrases and considering more
robust structured learning method. Regarding the scalabil-
ity, it would be preferable if one can work out a more efficient
inference algorithm. For example, we can use a determinis-
tic module like neural network and train it using inference
results from our current framework.

Acknowledgements
Research was sponsored in part by the U.S. Army Research
Lab. under Cooperative Agreement No. W911NF-09-2-0053
(NSCTA), National Science Foundation IIS-1017362, IIS-
1320617, and IIS-1354329, HDTRA1-10-1-0120, and grant
1U54GM114838 awarded by NIGMS through funds provided
by the trans-NIH Big Data to Knowledge (BD2K) initia-
tive (www.bd2k.nih.gov), and MIAS, a DHS-IDS Center for
Multimodal Information Access and Synthesis at UIUC.

1065

Query LDA BOA

Document
Keyphrases

linear discriminant analysis, latent dirichlet
allocation, topic models, topic modeling, face
recognition, latent dirichlet, generative model,
topic, subspace models, . . .

boa steakhouse, bank of america, stripsteak,
agnolotti, credit card, santa monica, restaurants,
wells fargo, steakhouse, prime rib, bank, vegas,
las vegas, cash, cut, dinner, bank, money, . . .

Query LDA topic BOA steak

Document
Keyphrases

latent dirichlet allocation, topic, topic models,
topic modeling, probabilistic topic models, latent
topics, topic discovery, generative model,
mixture, text mining, topic distribution, . . .

steak, stripsteak, boa steakhouse, steakhouse,
ribeye, craftsteak, santa monica, medium rare,
prime, vegas, entrees, potatoes, french fries, filet
mignon, mashed potatoes, texas roadhouse, . . .

Query SVM deep dish pizza

Document
Keyphrases

support vector machines, svm classifier, multi
class, training set, margin, knn, classification
problems, kernel function, multi class svm, multi
class support vector machine, support vector, . . .

deep dish pizza, chicago, deep dish, amore taste
of chicago, amore, pizza, oregano, chicago style,
chicago style deep dish pizza, thin crust, windy
city, slice, pan, oven, pepperoni, hot dog, . . .

Query
Mining Frequent Patterns without Candidate
Generation

I am a huge fan of the All You Can Eat Chinese
food buffet.

Document
Keyphrases

mining frequent patterns, candidate generation,
frequent pattern mining, candidate, prune, fp
growth, frequent pattern tree, apriori, subtrees,
frequent patterns, candidate sets, . . .

all you can eat, chinese food, buffet, chinese
buffet, dim sum, orange chicken, chinese
restaurant, asian food, asian buffet, crab legs,
lunch buffet, fan, salad bar, all you can drink, . . .

Query

Text mining, also referred to as text data mining,
roughly equivalent to text analytics, refers to the
process of deriving high-quality information from
text. High-quality information is typically derived
through means such as statistical pattern
learning.

It’s the perfect steakhouse for both meat and fish
lovers. My table guest was completely delirious
about his Kobe Beef and my lobster was perfectly
cooked. Good wine list, they have a lovely
Sancerre! Professional staff, quick and smooth.

Document
Keyphrases

text analytics, text mining, patterns, text,
textual data, topic, information, text documents,
information extraction, machine learning, data
mining, knowledge discovery, . . .

kobe beef, fish lovers, steakhouse, sancerre, wine
list, guests, perfectly cooked, lobster, staff, meat,
fillet, fish, lover, seafood, ribeye, filet, sea bass,
risotto, starter, scallops, steak, beef, . . .︸ ︷︷ ︸︸ ︷︷ ︸

Academia Yelp
Table 7: Examples of document representation by LAKI with top-ranked document keyphrases in the vector (related-
ness scores are ommited due to the space limit).

Domain Keyphr. linear discriminant analysis boa steakhouse

Silhouette
linear discriminant analysis, lda, face recognition,
feature extraction, principle component analysis,
uncorrelated, between class scatter, . . .

boa steakhouse, boa, steakhouse, restaurant,
dinner, strip steak, craftsteak, santa monica,
vegas, filet, ribeye, new york strip, sushi roku, . . .

Domain Keyphr. latent dirichlet allocation ribeye

Silhouette
latent dirichlet allocation, lda, topics, perplexity,
variants, subspace, mixture, baselines, topic
models, text mining, bag of words, . . .

ribeye, steak, medium rare, medium, oz,
marbled, new york strip, well done, prime rib,
fatty, juicy, top sirloin, filet mignon, fillet, . . .

Domain Keyphr. support vector machines deep dish

Silhouette
support vector machines, svm, classification,
training, classifier, machine learning, prediction,
hybrid, kernel, feature selection, . . .

deep dish, pizza, crust, thin crust pizza, chicago,
slice, pepperoni, deep dish pizza, pan style, pizza
joints, oregano, stuffed crust, chicago style, . . .

Domain Keyphr. fp growth chinese food

Silhouette
fp growth, algorithm, apriori like, mining,
apriori, frequent patterns, mining association
rules, frequent pattern mining, fp tree, . . .

chinese food, food, chinese, restaurants,
americanized, asian, orange chicken, chow mein,
wok, dim sum, panda express, chinese cuisine, . . .

Domain Keyphr. text mining mcdonalds

Silhouette
text mining, text, information retrieval, machine
learning, topics, knowledge discovery, text data
mining, text clustering, nlp, . . .

mcdonalds, drive through, fast food, mcnugget,
mcflurry, fast food chain, sausage mcmuffin, big
bag, mcmuffin, burger king, . . .

Domain Keyphr. database sushi

Silhouette
database, information, set, objects, storing,
retrieval, queries, accessing, relational, indexing,
record, tables, query processing, transactions, . . .

sushi, rolls, japanese, sushi joint, seafood, ayce,
sushi rolls, salmon sushi, tuna sushi, california
roll, sashimi, sushi lovers, sushi fish, . . .︸ ︷︷ ︸︸ ︷︷ ︸

Academia Yelp
Table 8: Examples of domain keyphrase silhouettes (from offline domain keyphrase learning). Link weights are
ommited.

1066

8. REFERENCES
[1] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern

information retrieval, volume 463. 1999.

[2] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellmann. Dbpedia-a
crystallization point for the web of data. Web
Semantics: science, services and agents on the world
Wide Web, 7(3):154–165, 2009.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[4] J. Chang, J. Boyd-Graber, C. Wang, S. Gerrish, and
D. M. Blei. Reading tea leaves: How humans interpret
topic models. In Advances in Neural Information
Processing Systems 22, 2009.

[5] G. F. Cooper. The computational complexity of
probabilistic inference using bayesian belief networks.
Artificial Intelligence, 42(2):393–405, 1990.

[6] M. Y. Dahab, H. A. Hassan, and A. Rafea.
Textontoex: Automatic ontology construction from
natural english text. Expert Systems with Applications,
34(2):1474–1480, 2008.

[7] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407, 1990.

[8] A. El-Kishky, Y. Song, C. Wang, C. R. Voss, and
J. Han. Scalable topical phrase mining from text
corpora. Proceedings of the VLDB Endowment,
8(3):305–316, 2014.

[9] K. Frantzi, S. Ananiadou, and H. Mima. Automatic
recognition of multi-word terms:. the c-value/nc-value
method. International Journal on Digital Libraries,
3(2):115–130, 2000.

[10] E. Gabrilovich and S. Markovitch. Computing
semantic relatedness using wikipedia-based explicit
semantic analysis. In Proceedings of the 20th
International Joint Conference on Artifical
Intelligence, pages 1606–1611, 2007.

[11] W. A. Gale, K. W. Church, and D. Yarowsky. One
sense per discourse. In Proceedings of the Workshop on
Speech and Natural Language, pages 233–237.
Association for Computational Linguistics, 1992.

[12] T. Gottron, M. Anderka, and B. Stein. Insights into
explicit semantic analysis. In Proceedings of the 20th
ACM International Conference on Information and
Knowledge Management, pages 1961–1964, 2011.

[13] Y. Halpern and D. Sontag. Unsupervised learning of
noisy-or bayesian networks. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial
Intelligence, pages 272–281, 2013.

[14] S. Hassan and R. Mihalcea. Semantic relatedness
using salient semantic analysis. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011.

[15] A. Hulth. Improved automatic keyword extraction
given more linguistic knowledge. In Proceedings of the

2003 Conference on Empirical Methods in Natural
Language Processing, pages 216–223, 2003.

[16] Q. Le and T. Mikolov. Distributed representations of
sentences and documents. In Proceedings of the 31th
International Conference on Machine Learning, pages
1188–1196, 2014.

[17] J. Liu, J. Shang, C. Wang, X. Ren, and J. Han.
Mining quality phrases from massive text corpora. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1729–1744,
2015.

[18] Q. Mei, X. Shen, and C. Zhai. Automatic labeling of
multinomial topic models. In Proceedings of the 13th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
490–499. ACM, 2007.

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. In Proceedings of Workshop at ICLR, 2013.

[20] M. Sanderson and B. Croft. Deriving concept
hierarchies from text. In Proceedings of the 22nd
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 206–213, 1999.

[21] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen.
Short text conceptualization using a probabilistic
knowledgebase. In Proceedings of the Twenty-Second
International Joint Conference on Artificial
Intelligence, pages 2330–2336, 2011.

[22] C. Wang, W. Chen, and Y. Wang. Scalable influence
maximization for independent cascade model in
large-scale social networks. Data Mining and
Knowledge Discovery, 25(3):545–576, 2012.

[23] I. Witten and D. Milne. An effective, low-cost measure
of semantic relatedness obtained from wikipedia links.
In Proceedings of AAAI Workshop on Wikipedia and
Artificial Intelligence: an Evolving Synergy, 2008.

[24] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin,
and C. G. Nevill-Manning. Kea: Practical automatic
keyphrase extraction. In Proceedings of the Fourth
ACM Conference on Digital Libraries, pages 254–255.
ACM, 1999.

[25] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 481–492,
2012.

[26] X. Yin and S. Shah. Building taxonomy of web search
intents for name entity queries. In Proceedings of the
19th International Conference on World Wide Web,
pages 1001–1010, 2010.

[27] Z. Zhang, J. Iria, C. A. Brewster, and F. Ciravegna. A
comparative evaluation of term recognition algorithms.
Proceedings of the Sixth International Conference on
Language Resources and Evaluation, 2008.

1067

