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ABSTRACT
Our proposal, N -gram over Context (NOC), is a nonpara-
metric topic model that aims to help our understanding of
a given corpus, and be applied to many text mining ap-
plications. Like other topic models, NOC represents each
document as a mixture of topics and generates each word
from one topic. Unlike these models, NOC focuses on both
a topic structure as an internal linguistic structure, and N -
gram as an external linguistic structure. To improve the
quality of topic specific N -grams, NOC reveals a tree of
topics that captures the semantic relationship between top-
ics from a given corpus as context, and forms N -gram by
offering power-law distributions for word frequencies on this
topic tree. To gain both these linguistic structures efficiently,
NOC learns them from a given corpus in a unified manner.
By accessing this entire tree at the word level in the genera-
tive process of each document, NOC enables each document
to maintain a thematic coherence and form N -grams over
context. We develop a parallelizable inference algorithm, D-
NOC, to support large data sets. Experiments on review
articles/papers/tweet show that NOC is useful as a gener-
ative model to discover both the topic structure and the
corresponding N -grams, and well complements human ex-
perts and domain specific knowledge. D-NOC can process
large data sets while preserving full generative model perfor-
mance, by the help of an open-source distributed machine
learning framework.

Keywords
Nonparametric models, Topic models, Latent variable mod-
els, Graphical models, N -gram topic model, MapReduce

1. INTRODUCTION
As the sheer volume of user generated content on the Web

now exceeds the individual human processing capabilities,
statistical topic models are an essential component of nat-
ural language processing for human-computer interaction,
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and statistical machine learning. Specifically, Latent Dirich-
let Allocation (LDA) [3] and its extensions are seen as par-
ticularly useful models for improving web services, such as
information retrieval, knowledge discovery, and social media
analysis, and then enjoy success in these domains. They de-
fine a probabilistic scheme for generating each document as
a mixture of low-dimensional thematic units (topics), where
each topic is a multinomial distribution over words, and is
interpretable by the highest probability words in it. Since
this topic presentation and its applications fit our goal more
than the other presentation, our approach is built on topic
models. The majority of the state-of-the-art topic models
rely on the bag-of-words assumption, that ignores word or-
der, and break the document’s structure.

As N -grams carry more meaning than the sum of individ-
ual words and their meaning depend on context, some topic
models focus on the order of words [12, 15, 18] as an external
linguistic structure. However, these models miss a internal
linguistic structure such as relationships between topics that
exist in both a given corpus and each document. As an in-
ternal linguistic structure, a semantic structure facilitates
the reader’s comprehension at granularities finer than top-
ics. Although introducing both these linguistic structures
simultaneously would make topic models complicated, they
are essential for applications to capture the thematic co-
herence behind documents. This is the motivation why we
propose a new topic model to maintain both these linguistic
structures, since no previous topic models perfectly fit for
these requirements.

Motivated by these requirements, our proposal new topic
model, N -gram over Context (NOC), focuses on a topic tree
as an internal structure, and forms N -gram on this tree as
an external structure. NOC aims to help our understand-
ing of a given corpus, and be applied to many text min-
ing applications. To achieve this goal, this model is based
on assumptions that 1)the quality of N -gram depends on
the discovered topics and their structure, and 2)these in-
ternal and external linguistic structure are complementary
and help each other in their learning process. Indeed, we
can see that a hierarchical topic structure represents a se-
mantic unit and forms context in each document. Based
on these assumptions, NOC learns these structures together
from a given corpus, and reveals both a topic hierarchy and
topic specific N -grams together in a unified model. As these
structures vary on a corpus, NOC employs a nonparametric
approach. Given the very large or infinite number of pre-
dictive distributions over phrases, their tree structures exist
within each topic and are shared for parameter estimation.
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Then, NOC constructs a hierarchical topic tree that captures
the semantic relationship between topics in a given corpus,
and offers power-law distributions for word frequencies on
N -gram on this tree. Consequently, NOC explains the gen-
erative process of each document by using fine-grained topic
hierarchies with N -gram words.

Through experiments, we confirm the following contribu-
tions of NOC.
Theoretical contribution: We extendN -gram topic mod-
els to obtain an understandable structure that shows which
topics are present in the corpus using both internal/external
linguistic structures, and how these topics are semantically
connected without using domain-specific dictionaries. For
this goal, we show how to construct, utilize, and learn this
tree, by employing a nonparametric approach. Since learn-
ing these structures together helps each other, NOC can
grasp them more clearly than learning them individually.
Although this structure seems complicated, this topic tree
serves as the required minimum constitution that constructs
a thematic coherent topic tree for explaining the generative
process of documents, and forms topical N -grams that re-
flect the syntactic structure.
Practical contribution: We develop an efficient approx-
imation algorithm using distributed learning, a distributed
version of NOC (D-NOC). This algorithm is designed to em-
ploy a Gibbs sampling and follow the MapReduce program-
ming framework1 for easy implementations. It conquers the
complex dependencies included in hierarchical topic models,
and could be the approximated Gibbs sampling of NOC.
Since this learning framework is similar to that of Parame-
ter servers [9] and Petuum [10] or Spark [11], D-NOC could
be implemented on these promising platforms without ma-
jor modification. NOC represents context as the document’s
linguistic structure, well complements both human experts
and domain specific knowledge, and yields topic specific N -
grams. These results support that NOC could be applicable
to topic specific query suggestion and concept search.

2. PREVIOUS WORKS

2.1 N -gram topic models
Inspired by the assumption that the internal structure

of documents exhibits meaningful content, and can help
user’s comprehension and retrieval experience, a consider-
able amount of research has attempted to explore word co-
occurrence patterns, i.e. topics, embedded in documents,
and their order, and then provide a predictive probabil-
ity distribution for the next word following the previous
words. For example, Identifying Sentiments over N-gram
(ISN) model [14] extends Bigram topic model (BTM) [29]
to obtain N -grams reflecting dependency on nearby context.
By employing smoothing methods that exhibit the power

law characteristics, known as Zipf’s law [33] in linguistics,
topic models could gain the appropriate structure of a given
text data. Phrase Discovering LDA (PDLDA) [18] incor-
porates Pitman-Yor process (PYP) [24] hierarchy into the
process of forming phrases. Supervised N -gram topic model
(SNT) [15] extends ISN by combining both PYP and super-
vision. Unfortunately, they miss the relationship between

1ApacheTMHadoop R⃝: http://hadoop.apache.org/

topics in forming N -grams, and fail to capture thematic co-
herence structure.

Since semantic structures are of significant interest, topic
models should represent this structure in a thematically
coherent manner. Although NTSeg [12] employs the no-
tions of word-topics and segment-topics to maintain the doc-
ument’s structure, it is based on the flat topic structure
and misses the semantic relationship between topics. While
the composite model [8] captures the interaction between
short and long range dependencies between words by us-
ing a hidden Markov Model (HMM), Syntactic Topic Model
(STM) [6] uses parse trees as syntactic information, and gen-
erates each word of a sentence by a distribution that com-
bines document-specific topic weights and parse-tree-specific
syntactic transitions. These structures of both models would
be applied or extended to N -gram topic models.

In describing the generative process of each document,
NOC employs a hierarchical topic structure instead of flat
structure. In this topic tree, semantic is contained in a struc-
ture consisting of parent topics and their child topics, where
the former are more general than the latter.

2.2 Scalable topic models
A promising approach to scaling topic models over large

data sets is to distribute and parallelize both the data and
their algorithms over multiple processors [20, 22, 26, 32].
We focus on Markov chain Monte Carlo sampling [28] in-
ference than variational inference [32], since the former has
the preferable advantages such as easy implementations and
sampling speed. Mimno et al. [20] propose parallel algo-
rithms for the collapsed sampler for LDA, while Newman et
al. [22] parallelize Hierarchical Dirichlet processes (HDP) [28]
through the straightforward mapping approach. Smola et
al. [26] proposed two parallelization paradigms for LDA: a
decoupling between sampling and state updates for multi-
core architectures and a blackboard architecture to deal with
state synchronization for clusters of workstations. However,
it is not clear how these approaches can be applied to non-
parametric hierarchical topic models [4], since they contain
complex dependencies which render the inference hard to
parallelize and impose costly alignment overheads between
nodes. Although applying topic models to web scale data
sets is not as straightforward as one may think, modern ma-
chine learning technology would enable inference algorithms
to parallelize over multiple processors, and makes models
computationally feasible and discovers meaningful phrases
in their correct context.

Our challenge is to continue this approach for more com-
plicated hierarchical topic modeling using collapsed Gibbs
sampling, build D-NOC on top of an open-source distributed
machine learning framework, and show a pseudo code for
easy implementation. We showed that shortcomings inher-
ent in Gibbs sampling [32] could be alleviated by 1)proposed
approximated algorithm, and 2)usage of Memcached.

2.3 Chinese restaurant process and its exten-
sions

The Chinese restaurant process (CRP) [2] is a stochastic
process that defines a distribution on the space of partitions
of the positive integers and is used as a metaphor to illus-
trate the Dirichlet process (DP) [21]. This process allows the
number of clusters to grow as new data points are observed,
and yields the same clustering structures as created by a
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Table 1: Top frequent 2-gram extracted from 1564 ACM conference papers with data science published in
2014: Each group (title) is made by hand (interpreted by 2-gram), the value of () denotes the number of
observed N-gram.

group words
data science big data (211), web search (176), social media (158), recommender system (87)
data analysis machine learning (81), network analysis (75), text mining (43), user modeling (38)
data management multi core (38), distributed computing (36), memory bandwidth (25), large scale (24)
topic model topic model (19), Gibbs sampling (17), nonparametric bays (15), Dirichlet process (12),
submodular function submodular function (6), greedy algorithm (6), coverage objective (3), max-cut (2)

DP [7]. A DP can be considered as a distribution of random
probability measure G, which we write as G ∼ DP (γ,G0),
where γ is a scaling parameter, and G0 is a base measure.
Sethuraman [25] showed that measure G drawn from a DP
is discrete, and defined by the stick breaking process.
Alternatively, we can view this process in terms of CRP (γ,G0)

and compute the probability of the i-th customer sitting at
table k in the restaurant j as follows:

P (zi = k|z\i, γ) =

{ njk∑
k njk+γ

, k is an existing table,
γ∑

k njk+γ
, k is a new table.

(1)

where z\i is the seating arrangement of the current i − 1
customers, and njk is the number of customers sitting at
table k in restaurant j.
PYP is a generalization of a hierarchical DP, and yields

power-law behavior [24, 27]. For each word w ∈W , let G(w)
be the estimated probability of w, and let G = [G(w)]w∈W

be the vector of word probabilities. By placing a PYP prior
on G0, we gain G:

G ∼ PY P (γ, d,G0), w ∼ G, (2)

where G0(= [G0(w)]w∈W ) is the base probability measure
of G and can be understood as the putative mean of draws
from PY P (γ, d,G0), 0 ≤ d < 1 is a discount parameter
that controls the power-law property of the distribution, and
γ > −d is a strength parameter.
The marginal of PY P (γ, d,G0) is described using the CRP

metaphor. That is, the first customer sits at the first table,
z1=1, and the i customer chooses a table in j according to
the following distribution,

P (zi = k|z\i, γ, d) =

{
njk−d∑
k njk+γ

, if k is an existing table,
γ+dK∑
k njk+γ

, if k is a new table,
(3)

where K is the current number of occupied tables. When
the number of tables increases as many customers enter the
restaurant with d > 0, this discount parameter yields a
power-law.
The nCRP [5] extends the CRP representation to con-

struct a set of topics, G, that are arranged over a tree-like
structure whose semantic is contained in a structure consist-
ing of parent topics and their children (topics), the former
are more general than the latter, as follows:

G ∼ nCRP (α,G0), (4)

where α is a scaling parameter, and α ∼ Gamma(e1, e2).
Both HDP and nCRP lead NOC to share the same top-

ics among documents, where the probability weight on not
only each topic, but also their topic level, varies with each
document.

Figure 1: An example of structure for (left) the
Global hierarchical topic tree, T , and (right) the j-th
document specific hierarchical topic tree, Tj. Each
tree is an infinite collection of DP and a transition
rule between rules. Each node of the tree is associ-
ated with a topic, ϕ. Let l be the index of a topic
level. The discrete set of atoms ϕl,p,c are drawn inde-
pendently from G0. This global topic tree is shared
among documents via the corresponding Tj.

Table 2: Extensions of CRP: As DP can be consid-
ered as a distribution of random probability measure
G, write G ∼ DP (γ,G0), where γ is a scaling param-
eter, γ ∼ Gamma(e1, e2), and G0 is a base measure.

topic relation accessible topics of each
document generation

rCRP [17] tree: G ∼ rCRP (γ) entire tree
nCRP [5] tree: G ∼ nCRP (γ) a single path of tree
CRF [28] flat: G ∼ DP (γ,G0) entire topics
nCRF [1] hierarchy: entire topics
nHDP [23] hierarchy: entire topics

3. N -GRAM OVER CONTEXT

3.1 Motivation
Hierarchical semantic topic structure and N-gram:

We explain our motivation using Table 1, whereN -grams are
extracted by NLTK 2 from ACM conference papers. This
table shows that these groups seem to correspond topics
of conventional topic models, and have a hierarchical se-
mantic relationship. For example, both data analysis and
data management groups is one of data science, and both
topic model/sub modular would be one group of data anal-
ysis rather than the data management. As the number of
tokens assigned to topic model/sub modular is fewer than
the number of tokens associated with data analysis, topic
model/sub modular specific words is fewer than those of data
analysis. That is, these small topic specific words would
be overwhelmed by other words and buried in each topic.

2Natural Language Toolkit: http://www.nltk.org/
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Figure 2: (left)Graphical Model of NOC: In this figure, shaded and unshaded variables indicate observed and
latent variables, respectively. An arrow indicates a conditional dependency between variables and stacked
panes indicate a repeated sampling with the iteration number shown. θzji is associated with one ϕk via
the topic indicator, k. (right)Topic specific N-gram tree constructed from papers in Table 1: In this tree,

G∅
k(= [G∅

k(w)]w∈W ) corresponds to ϕk of GT , where Gu
k(w) denotes the probability of w following u on k.

This problem leads N -gram topic models without the topic
structure to miss these informative words/phrases and de-
crease the quality of N -grams. As the quality of topic spe-
cific N -grams seems to depend on the topic structure, we
need a topic model to discover a fine grained topic tree from
a given corpus, that prevents corresponding topic specific
words from being buried.
Topic tree structure and thematic coherence: In

the describing of generating each document, NOC differs
from previous extensions of CRP in constructing and uti-
lizing the topic tree. Using Table 2, we show how NOC
employs a nonparametric approach to determine the appro-
priate topic structure, and discuss these differences. NOC
allows each document to access this entire tree-structured
hierarchy of topics. As nCRP permits each document to se-
lect only one path down the tree, similar topics will appear
in many nodes of the tree and then grow the size of tree.
Since a global topic tree is constructed from a given corpus,
we can image that it might not to be a good fit for each doc-
ument. NOC shares a hierarchical topic tree distribution as
a base for a second level Dirichlet process (DP) [7] for each
document, while HDP [28] shares a flat topic distribution
as a base distribution among documents. That is, NOC
constructs a document specific tree that shares the same
topics with the global topic tree, and selects word specific
paths that are thematically coherent via this document spe-
cific topic tree. Although the recursive Chinese Restaurant
Process (rCRP) [17] enables a document to have a distribu-
tion over the entire topic tree, and samples a topic at the
word level, it fails to ensure thematic coherence. While the
nested Hierarchical Dirichlet process (nHDP) [23] extends
nCRP to select a topic in a given document-specific topic
tree, and then uses it on this constructed tree, NOC con-
structs a document specific tree, at the document level, to
maintain the parent-child topic relationships more precisely
than nHDP.
Summary: Like other topic models, NOC represents

each document as a mixture of topics and generates each
word from one topic. Unlike these models, NOC employs
a hierarchical semantic topic structure that maintains the

Table 3: Notation used in this paper
SYMBOL DESCRIPTION
D(W ) ♯documents (vocabulary size)
Nj(Lj) ♯words (topic level)in j-th document
zji(lji) the i-th topic (level) variable in j-th document
wji the i-th word in j-th document
hji the previous word sequence sharing with

the same topic before wji

G0 a |W |-dimensional uniform word distribution
GT (GTj ) the topic distribution of T (Tj)
GT l(GT l

j
) the l-th level topic distribution of T (Tj)

ϕl,p,c(ϕk) topic: the c-th child in l-th level of p-th parent
topic in l-1 level (shorthand of ϕl,p,c)

u a n-1 words sequence sharing the same topic
Gu

k the topic k specific word distribution following u
d|u|(γ|u|) the |u| specific discount (concentration):

parameter d|u| ∼ Beta(e|u|, f|u|)
(γ|u| ∼ Gamma(g|u|, h|u|))

λjl the l-th topic level of Tj specific beta random:
variable λjl ∼ Beta(δ1, δ2)

βj the j specific parameters: βjl ∼ Gamma(a1, a2)

thematic coherence as context, and forms topic specific N -
grams that provide the syntactic.

3.2 Model Definition

3.2.1 T : Global hierarchical topic tree
Here, we define the global hierarchical topic tree, T , us-

ing Table 3 that shows the notation used in this paper, and
explain it with Figure 1. This figure shows an example of a
global hierarchical topic tree, T , and the topic distribution
of T , GT , where l-th level of T , and its topic distribution is
denoted by T l and GT l , respectively. The first level of the
tree consists of only the background topic, and its children
or descendant nodes on the l-th level are countably infinite,
where the probability of transitioning to child node c equals
to the probability of the c-th break of a stick-breaking con-
struction [25].
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3.2.2 Tj: Document-specific hierarchical topic tree
NOC allows each document to have a document-specific

tree, Tj , the topic distribution of Tj , GTj , and share the set
of topics and the parent-children topic relationships across
over all documents via T . NOC uses each DP of T l as a base
for a second level DP drawn independently for construct-
ing T l

j and sampling a topic when generating each docu-
ment. Then, this tree contains all thematic content of a
document, and allows NOC to select a thematically consis-
tent topic path at the word level rather than the document
level. For selecting this word-specific path, NOC introduces
a document-specific beta random variable, λjl, that acts as
stochastic switch. The probability that document j uses the
topic level l is

λ̃jl ∼ Beta(δ1, δ2), λjl = λ̃jl

∏l−1
r=0(1− λ̃jr), (5)

where δ1, δ2 are parameters, and l denotes topic level. Given
a word in each token, this probability determines whether
this word uses the current topic level l in a given topic tree,
or continues to go down this tree. Tj has the same topic
as T on the same topic level, but with different probability
weights and topic level. This relationship constrains the in-
crement of the number of topics and so prevents the global
topic tree from generating many similar topics that will be
observed in the nCRP. Therefore, the probability of the topic
level will vary with the document, even if different docu-
ments share the same topics.
The difference between NOC and STM lies in how the per-

word topic assignment is drawn, and in forming N -grams.
STM represents a document-specific thematic component,
and a syntactic component as the vector of topic weights,
and the vector of transitions probability, respectively. STM
merges these two vectors, and then generates words on this
merged topic assignment. In NOC, the weight of syntac-
tic components is conditioned on each thematic component,
and syntactic components are common over a given corpus
and only the thematic component weights are document de-
pendent. NOC places syntactic components on document-
specific thematic component Tj . This structures allows NOC
to draw topics from Tj that share the semantic components
with other documents via T , and from N -gram on the topic
as a syntactic component.

3.2.3 Topic-specific N-gram
NOC yields a tree hierarchy of PYP priors by placing

priors over the predictive probabilities recursively, as in pre-
vious works [27]. For notation simplification in the rest of
paper, we represent ϕl,p,c by ϕk. As shown in Figure 2, NOC
provides Gu

k that is N -gram word distribution following the
previous word sequence, u, on the same topic indicator, k,
that is shared among u. By placing PYP as a prior over Gu

k

using Eq (2) recursively, we get to G∅
k that corresponds to

the topic, ϕk, of GT . As there is no restriction on the num-
ber of consecutive same topics, |u| can be arbitrarily long
but always shares the same topic.

As G
u\
k can be also understood as the mean vector, and

recursively placing a prior over G
u\
k leads to k-specific un-

igram word distribution G∅
k(= Gk) that corresponds to ϕk

in GT ; this is the vector of probabilities over the current
word without prior information. This process differentiates
NOC from SNT in constructing a topic specific N -gram, ex-
cept using supervisions. SNT places a background topic that

corresponds to ϕ1,0,1 in NOC, as a base distribution, G∅
k, be-

cause SNT cascades all topics to the background topic and
thereby neglects the relationships between topics except the
background topic.

3.3 Generative process
With reference to the graphical model shown in Figure 2,

the generative procedure of NOC is described as follows:

3.3.1 Global hierarchical topic tree structure gener-
ation

Each node in the tree defines a CRP over children and cor-
responds to an atom (topic) independent of G0 using Eq (4):

• GT ∼ nCRP (α,G0).

For each topic ϕk: ϕk ∼ GT :

• For each word sequence u∈{W}, . . . , {W}n−1, define

Gu
k using Eq (2): Gu

k∼PY P (γ|u|, d|u|, G
u\
k ), where u\

is the suffix of u consisting of all but the earliest word.

Since N is learnt from a given corpus and could be increased
later, N ≤ 3 might be sufficient enough setting at first.

3.3.2 Document-specific topic tree structure genera-
tion

For each document j (j = 1 to D), construct the j specific
tree Tj and the l-th topic level specific parameters λjl:

• For each level of DP in T , define a second level DP
with the corresponding GT l : GT l

j
∼ DP (βj , GT l).

• For each level in Tj , define a beta random variable:
λjl ∼ Beta(δ1, δ2), where δ1, δ2 are parameters, and
can be updated with both the number of tokens as-
signed l in j and the method-of-moments estimates of
the parameters.

3.3.3 Document generation
For the i-th (i = 1 to Nj) token in the j-th document,

• Draw topic level lji: lji ∼ λjl

∏l−1
h=0(1− λjh)

• Draw topic indicator zji: ϕzji ∼ GT l
j
if lji = l.

• Draw word wji: wji ∼ Discrete(Gu
k ) if hji = u and u

shares the topic with zji = k, else wji ∼ Discrete(G∅
zji).

3.4 Conditional distribution of NOC

3.4.1 Conditional distribution of the global topic tree
We can illustrate the generative process of NOC using the

CRP metaphor, as shown in Figure 1. We use ml,p,c to
count the number of customers sitting at table serving dish
ϕl,p,c, see Fig 2. Likewise, Ml,p is the number of customers

that are descendants of ϕĺ,p,c (l < ĺ) including ϕl+1,c,∗ itself.
After observing draws, the customer downs T , selects the
table serving ϕ according to the following distributions using
Eq (1):

Pg(ϕ|S) =


m1,0,1

M+α
, ϕ is a background topic ϕ1,0,1,

ml,p,c

ml,p,·+α
, ϕ is an existing topic ϕl,p,c,

α
ml,p,·+α

, ϕ is a new topic ϕl,p,c,
Ml,p

ml,p,·+α
, ϕ is an existing topic ϕĺ,c,∗,

(6)

where S is the previous assignments in T ,ml,p,· =
∑Cp

c=1 ml,p,c,

M =
∑L

l=1

∑Pl
p=1 ml,p,·.
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3.4.2 Conditional distribution of document specific
topic tree

As illustrated in Figure 2, the i-th customer chooses an
existing table with a probability proportional to the number
of customers sitting at the table and shares the same topic in
each restaurant j, or selects a new table with probability βj

and orders a dish (topic) from a global distribution GT . This
process continues until a full path is defined by descending
tree T , which yields the construction of Tj .
Combining Eq (6) and λjl, we denote ml,p,c, (ml,p,·) in Tj

by mj
l,p,c (mj

l,p,·) as document j-specific quantities, and gain
the conditional distribution of ϕ in Tj assigned to zji, ϕzji :

Pj(zji = k|previous assignments in Tj)

=



λj1, ϕk is background topic ϕ1,0,1,

λjl

∑l−1
h=1(1− λjh)(

m
j
l,p,c

m
j
l,p,·+βj

+
βj

m
j
l,p,·+βj

ml,p,c

ml,p,·+α
),

ϕk is existing topic ϕl,p,c on the l-th level (l > 1),

λjl

∑l−1
h=1(1− λjh)(

m
j
l,p,c

m
j
l,p,·+βj

+
βj

m
j
l,p,·+βj

α
ml,p,·+α

),

ϕk is new topic ϕl,p,c on the l-th level (l > 1).

(7)

Document level GT l
j
inherits the topics from GT l on each

topic level, but assigns to them document-specific weight
λjl

∑l−1
h=1(1 − λjh) and allows various number of customers

sitting at each table on each topic level.

3.4.3 N-gram words over topics
Since Gk can be adapted by the conjugate prior and in-

tegrated out analytically, the next word w drawn from Gu
k

after hji = u with zji = k is obtained using Eq (3) as,
Pu
k (w):

Pu
k (w|S) =

Ck
uw· − d|u|t

k
uw

Ck
u·· + γ|u|

+
γ|u| + d|u|t

k
u·

Ck
u·· + γ|u|

P
u\
k (w|S), (8)

where Ck
uwl denotes the number of customers sitting at table

l and eating dish (word) w after u in k, Ck
uw· =

∑
l C

k
uwl,

Ck
u·· =

∑
w Ck

uw·, t
k
uw is the number of tables serving w after

u in k, and tku· =
∑

w tkuw, S represents the current seating
arrangement. Note that multiple tables may offer the same
dish, ϕk. In Eq (8), Hyperparameters γ|u| (γ0) and d|u| (d0)
can be estimated by auxiliary variable sampling [21]. This
distribution allows NOC to support 1-gram,2-gram,· · ·,N -
gram simultaneously, and initiate N -gram by the change of
topic instead of the a Boolean variable [12, 18].

4. INFERENCE IN NOC

4.1 Inference algorithm
Since multinomials and distributions can be marginalized

out, we obtain the conditional distributions so that a Gibbs
sampler can train NOC, as shown in 3.4. Details of the
inference for NOC are shown in Algorithm (1), where we
represent Ck

∅wl, γ0, d0, tk∅w, and tk∅· with Ck
uwl, γ|u|, d|u|,

tkuw, and tku· for simplification.
As in the previous work [27], the sampler iterates over

all customers in each restaurant, and resamples the table
where each customer sits using two routines: RemoveCus-
tomer(line 16, Algorithm 2) and AddCustomer(line22, Al-
gorithm 3). RemoveCustomer excludes a customer (topic)
from the current seating and decrements the number of cus-
tomers sitting there, and AddCustomer chooses a table for

Figure 3: System architecture of NOC with data
and logical flow

the customer and increments the number of customers sit-
ting there. This inference stores only the counts of how
many tables there are in a restaurant and how many cus-
tomers are sitting at each table in that restaurant, where
the actual identity of the table at which a customer sits has
no effect on the likelihood of the data. Since the topic as-
signment is described by using the metaphor of CRP, the
token-based sampler used in this paper is almost identical
to the collapsed sampler of the LDA.

At each iteration, the sampler decreases the topic assign-
ment of the topic tree(line 14), and excludes the current
customer eating wji to a table serving wji in the restau-
rant specified by the topic indicator k and previous word
sequence u by using AddCustomer. Our sampling strategy
for a given token i in document j is to propose the topic as-
signment zji, and the seating arrangement, S\ji. Then, we
need the conditional distribution of zji given all other topic
assignments z\ji, which is the set of seating arrangements
with a customer corresponding to wji removed by using Re-
moveCustomer, as

P (zji = k|z\ji,S\ji) ∝ Pj(zji = k|z\ji,S\ji)P
u
k (w|S\ji), (9)

where Pj(zji = k|z\ji,S\ji) is given by Eq (7), and Pu
k (w|S\ji)

is given by Eq (8). After drawing a proposal for zji, the
sampler adds a customer eating wji to a table serving wji

in the restaurant specified by zji and u by using AddCus-
tomer(line22), and updates the topic assignment of the topic
tree(line27).

4.2 D-NOC: Distributed Algorithm of NOC
To scale NOC to web scale data sets, we employ a parallel

algorithm that allows task distribution over P distinct pro-
cessors like other approaches [22, 26], see Algorithm 4 and 5.
This algorithm is composed of two steps: a Gibbs sampling
step (Map) and a synchronization step (Reduce). This is
based on the observation that the collapsed sampler for NOC
can be decomposed into sparse terms (doc-proposal) and a
dense term (topic/word-proposal). It allows our algorithm
to distribute dense terms over nodes, and calculate sparse
terms precisely in each node. Therefore, the key idea of D-
NOC is that dense terms change their distributions slowly,
and can be approximated efficiently by relaxing the require-
ment of sequential sampling when learning a model. This
implies that dense terms can be distributed over nodes. Pro-
vided that the number of word tokens is larger than that of
processors, our model can be built on the hypothesis that
we can relax the requirement of sequential sampling when
learning a model; this makes concurrent sampling closely
approach sequential sampling [22, 26].
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Algorithm 1 Inference for NOC

1: // initialization
2: zero all count variables, ml,p,c,ml,p,·,m

j
l,p,c,m

j
l,p,·, C

∗
∗ , t

∗
∗

and set K, and U∗ = ∅;
3: for j = 1 to D do
4: for i = 1 to Nj do
5: sample topic index zji = k ∼Multinomial(1/K)
6: ml,p,c += 1; ml,p,· += 1; mj

l,p,c += 1; mj
l,p,· += 1

7: end for
8: end for
9: // Gibbs sampling over burn-in and sampling period
10: for iteration=1 to Niteration do
11: for j = 1 to D do
12: for i = 1 to Nj do
13: // for the current assignment of zji
14: ml,p,c -= 1; ml,p,· -= 1; mj

l,p,c -= 1; mj
j,p,· -= 1

15: //for PYP of phrases
16: Call RemoveCustomer (wji,u,k):
17: // topic assignment
18: draw zji using equations (9).
19: if k is a new child of T (Tj) then
20: add a new child to T (Tj)
21: end if
22: Call AddCustomer (wji,u,k); u = u+ wji

23: if |u| > 2 then
24: Uk = Uk ∪ u
25: end if
26: // for the new assignment of k in document j
27: ml,p,c += 1; ml,p,· += 1; mj

l,p,c += 1; mj
l,p,· +=

1
28: end for
29: update βj , δ1,2
30: end for
31: update α, γ|u| and d|u|
32: for l = L− 1 to 1 do
33: for p = 1 to P do
34: // Merge topic phase
35: Call MergeTopic (l, p,ml,p,·)
36: end for
37: end for
38: end for

In the sampling step, each processor samples its local topic
assignments, zx, the topic assignments of documents stored
in each processor x, by using both previous topic assign-
ments zx, and the global counts and parameters. This step
updates topic specific count using RemoveCustomer (Algo-
rithm 2), and AddCustomer (Algorithm 3), again; note that
these updates are performed in the synchronization step.
While the topic merge phase that limits unnecessary growth
in the number of topics [22] in Algorithm 1, D-NOC imple-
ments newly this phase consisting of Map and Reduce phase
and then performs this pair after 10 iterations of Algorithm 4
and 5. This is why we call this algorithm an approximated
Gibbs Sampling.
Figure 3 shows the architecture of our implemented pro-

totype system, which could be applied to other topic mod-
els [16] and the other framework [31] in large scale machine
learning. We implemented these algorithms on Hadoop3,
where each processor corresponds to a data node with a

3ApacheTMHadoop R⃝: http://hadoop.apache.org/

Algorithm 2 Function: RemoveCustomer (w,u,k)

if |u|=0 then
decrement Ck

∅w·
else

remove a customer from l− th table from u with prob-
abilities proportional to Ck

uwl and decrement Ck
uwl

if as a result the l−th table becomes unoccupied then
Call Remove customer (w,u\,k)

end if
end if

Algorithm 3 Function: AddCustomer (w,u,k)

if |u|=0 then
increment Ck

∅w·
else

sit a customer at the l − th table in u with probability
proportional to max(0, Ck

uwl−d|u|) and increment Ck
uwl

sit a customer at a new table lnew serving w in u with

probability proportional to (γ|u| + d|u|t
k
u·)p

u\
k (w) using

Eq (8) and increment tkuw, and set Ck
uwlnew

= 1
Call AddCustomer (w,u\,k)

end if

task tracker, each sampling step is performed by a mapper,
and each synchronization step is performed by a reducer.
Additionally, we used Memcached 4, to store and broad-
cast ml,p,c,ml,p,·, C

k
uwl, t

k
uw across the Hadoop cluster. This

leads all programs can access and read any parameters from
any nodes in the cluster. Although we require Memcached
to accelerate the I/O performance in the system build on
Hadoop, we would not use it in the the system build on
Spark.

In practice, the update process requires much time and
memory, because this process consists of a series of compu-
tationally expensive task that merges local counts embedded
in topic and the corresponding word hierarchies. In fact, we
added these functions in the map phase, and verified that
this introduction has minimal influence on the results. After
processor x updates zx by sweeping through its local data,
it sends the modified count to the master node. Although
mj

l,p,c,x is the count of mj
l,p,c stored in processor x and then

is the local count, ml,p,c,x is a local copy of ml,p,c in x, that
should be shared among all nodes and updated after every
step.

In the synchronization step, the node aggregates the lo-
cal counts from each processor to create a hierarchy, like
building a suffix tree, and updates a single set of globally-
consistent counts and related parameters. This process is
repeated for either a fixed number of iterations or until the
algorithm has converged.

5. EXPERIMENTS

5.1 Data sets
We focus here on the extraction of topics, its structure,

and corresponding N -grams. The following data sets were
used in comparative quantitative evaluations against previ-
ous topic models.

4Memcached: http://memcached.org/
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Algorithm 4 Map Phase for D-NOC

// Initialization
// Input
<Key,Value>:=<document ID j, document content wj>
// Approximated Gibbs Sampling
for iteration=1 to Niteration do

for each processor x in Parallel P do
Read from Memcached
for i = 1 to Nj for j = 1 to Dx do

ml,p,c,x -= 1; ml,p,·,x -= 1; mj
l,p,c -= 1; mj

l,p,· -= 1;
draw zji using equations (9).
if k is a new child of T (Tj) then

add a new child into T (Tj)
end if
ml,p,c,x+=1; ml,p,·,x+=1; mj

l,p,c+=1 ; mj
l,p,·+=1;

if |u| > 0 then
u = u+ wji

end if
Send <Key,Value>:=<k : wji(u,ml,p,c,x)> to the
reducer

end for
update βj and δ1,2

end for
end for

ACM papers: 8 years (2001-2008) of research papers in
the proceedings of ACM CIKM, SIGIR, KDD, and WWW5.
Preprocessing was applied to Data1. This yielded a total set
of 3078 documents and 20286 unique words.
Amazon review data6 (Amazon(s)): This is one of the

biggest publicly available text data sets currently in text
analysis research [13]. This data consists of 5,686,344 re-
views and 3,784,413 unique words. We split strings using
all wisp’s characters and non-word characters as delimiters,
removed numbers, and the words that appeared less than
five times in the corpus, as a preprocessing step.
Amazon review data7 (Amazon(l)): This is also the biggest

public available corpus and is used in [19]. This data con-
sists of 34,686,770 reviews. We conducted the same prepro-
cessing step as done in Amazon(s).
Twitter data8: We selected tweets from 30/08/2012 to

29/01/2013, and gained 321,513,597 tweets.
We used the former two data sets that can be processed

in a conventional single server, and the latter three data
sets that require a scalable learning environment for parallel
processing.
The goal of NOC is to help our understanding of a given

corpus by representing the thematically and syntactically
inherent generative process of a given document set. There-
fore, we designed experiments to challenge NOC with the
following questions:

• Do N -grams depend on the hierarchical topic struc-
ture? Can NOC represent a given corpus more effi-
ciently than conventional topic models?: Subsection 5.2.1

5http://dl.acm.org/
6Amazon Product Review Data (Huge):
http://www.cs.uic.edu/˜liub/NBS/sentiment-analysis.html
7Amazon reviews: https://snap.stanford.edu/data/web-
Amazon.html
8Twitter: http://twitter.com

Algorithm 5 Reduce Phase for D-NOC

// Initialization
U = ∅, Clear all counts associated with k;
// Input
<Key,Value>
if Value = w(u) then

Sort w,u order by the length, alphabet
U = U ∪ w(u)
W = U
for each w,u in W do

Let the latest word of u as ul, and the rest as ur

Call AddCustomer (ul,ur,k) (Algorithm 3):
end for

else
ml,p,c ← ml,p,c +

∑
x(ml,p,c −ml,p,c,x)

end if
ml,p,· =

∑
c ml,p,c

update α, γ|u| and d|u|
Broadcast α, γ|u|, d|u|,ml,p,c,ml,p,·, C

∗
uwl, t

∗
uw via Mem-

cached

• Can NOC extract the thematic coherence structure
and complement human experts that lead to a practi-
cal application?: Subsection 5.2.2

• Can D-NOC be applied to a large data, and be an
approximated algorithm of NOC?: Subsection 5.2.3

• Can NOC capture the semantic structure between top-
ics and the syntactic?: Subsection 5.3

We ran the experiments on 1, 20, 30, and 40 PCs with
Dual Core 2.66 GHz Xeon processors and the number of
Gibbs sampling iterations was set to 2000, where each sam-
pler took the first 100 iterations to burn in. Here, the es-
timation or usage of hyper parameters with counterparts
followed the previous setting [12, 18].

5.2 Quantitative Evaluation

5.2.1 Test-set Perplexity
The purpose of this experiment is to show how well NOC

maintains the document’s structure, and how well NOC rep-
resents a given document corpus. To evaluate the ability of
generative models, we numerically compared the models by
computing test-set perplexity (PPX). Perplexity is a stan-
dard measure used in the language modeling community to
assess the predictive power of a model, is algebraically equiv-
alent to the inverse of the geometric mean per-word likeli-
hood. A lower score implies that word wji is less surprising
to the model and are better.

We computed perplexity as follows. First, we randomly
took 10% words wtest

j from each text (review, paper, tweet

text) to create a test part; the remainder wtrain
j was used as

the learning part. For every text, the test part was held out
to compute perplexity. Second, the learning part was used
for estimating the parameters by Gibbs sampling. Finally, a
single set of topic counts was saved when a sample was taken;
the log probability of test products that had never been
seen before was computed in the same way as the perplexity
computation of previous works [15]. The perplexity of wtest

ji

was computed for all algorithms using 100 samples from 2000
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Table 4: Benchmark of N-gram topic models
N -gram topic structure Power-law

HDP-LDA [28] × flat ×
NTSeg [12] ◦ flat ×
PDLDA [18] ◦ flat ◦
NOC(NOCd) ◦(◦) hierarchy ◦(×)

different chains, after the burn in period, using the following
standard practice of averaging over multiple chains;

PPX = exp(− 1

NW t

|Dtest|∑
j∈Dtest

|Nj |∑
wtest

ji ∈dj

log

∑R
r=1 pr(w

test
ji |wtrain

j ))

R
),

(10)

where NW t is the number of test words, R is the number of
samples (from R different chains), and the predictive proba-
bility of models is given by equations (7), (8). To discuss the
effect of topic order in each document, and PYP in N -gram,
we prepared NOCd, that differs NOC in using DP instead
of PYP to form N -gram. We applied the models to the data
sets, where all models had the constraint that no bigram is
allowed for stop words and sentence/paragraph boundaries.
Table 4 compares the characters of N -gram topic models
used in this experiment.
As shown in Figure 4, the perplexity comparisons, PDLDA,

and NTSeg were trained using various numbers of topics,
while NOC and NOCd define the number of topics. The
number of topics of HDP − LDA (NOCd, NOC) is 267
(253, 241) for ACM, while that of HDP − LDA (NOCd,
NOC) is 292 (271, 267) for Amazon(s). The outcome, that
NOC offers lower perplexity than NOCd, supports our idea
that 1) PYP reduces perplexity, 2) N -grams depends on the
topic structure, and 3) improve the explanation capability
of a given corpus. Although Amazon data consists mainly
of short texts that have only a few words and sentences, our
model best demonstrated its superiority on this data set.

5.2.2 Evaluation of representative N-gram
We evaluate the ability to extract representative phrases

that are comparable to human labeled phrases from the
given data set. In order to generate a gold standard for these
phrases, we utilized both rating scores (Amazon), ACM
categories9 of papers (ACM) and human annotation. For
each score and the category, we aggregated candidate bi-
gram phrases and then provided 5 users with the most fre-
quent 100 bigrams/trigrams on the most popular items in
DVD, Music, and Book (Amazon). These users were asked
to select 10 phrases from them based on their clarity in
terms of positive (v=4 or 5)/negative (v=1 or 2) in Ama-
zon, I.2 ARTIFICIAL INTELLIGENCE /I.7 DOCUMENT
AND TEXT PROCESSING in ACM. After that, we judged
the top 20 phrases with the highest number of users to be the
gold standard set of positive/negative (Artificial/Document)
labels. This setting allowed us to treat each human gener-
ated gold standard phrase as “query”, q, for each label, and
documents returned in response to each query by each model
as “retrieved documents”, d, where documents that coincide
with the labels of query are “relevant documents”. NOC
(NTSeg, and PDLDA) presented top documents with the

9http://www.acm.org/about/class/ccs98-html
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Figure 4: Test-set perplexity on (upper) ACM, and
(lower) Amazon(s) on versus number of the topics

highest probability of generating the given query. In the
query likelihood model, the score of each document, relative
to query q for models can be computed as the probability
of q given d [30]. We compared these models using Preci-
sion and Recall of the returned documents whose probability
exceeded 0.5.

Table 5 shows that NOC provides the best results over
the various length, N . That is, NOC can complement hu-
man domain experts and existing knowledge, and so of-
fers rating/category-based document retrieval, even for N -
grams.

5.2.3 Scalability of NOC
The purpose of this experiment is to investigate how our

distributed NOC (D-NOC) algorithm performs relative to
the basic NOC algorithm designed for only a single node.
In all experiments, we set the number of mappers/reducers
to 2/1, and the memory limit for every mapper and reducer
instance to 2.0 GB on each processor. For running D-NOC,
the details of experiment parameters, and perplexity com-
putation are the same as stated in subsection 5.2.1.

We performed experiments to see whether the distributed
algorithm of D-NOC could scale over various numbers of
processors, P , and topics, while well approximating the per-
formance of NOC (P=1) on these settings. To systemat-
ically evaluate these algorithms, we varied the number of
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Figure 5: Convergence of PPX on (left) ACM, (center left) Amazon(s), (center right) Twitter, (right)
Amazon(l) versus number of processors (nodes): The number of parenthesis is the number of topics.

Table 6: Word distribution learned from the Twitter data set by NTSeg, and NOC: We list top 10 words
with high probability (bigram words) from NTSeg, and NOC.

NOC NTSeg
Gk(w) Gu

k(w) Gk′(w) Gu
k′(w) Pk′′(w) Pu

k′′(w)
iphone,
app, ipad,
apple,
4s, apps,
mac, ipod,
mobile,
download

iphone 4s, iphone
user, iphone ipad,
iphone android,
iphone app, iphone
apps, google play,
appstore, careerjet
maior, mobile app

developer, so-
cial, web, in-
stagram, pho-
tographer, ad-
dict, lover, fan,
proud,geek

social media, apple fan,
apple fanboy, graphic
designer, apple lover,
husband father, apple
enthusiast, web devel-
oper, distinguished ed-
ucator, tech geek

iphone, user,
de, android,
apps, clique,
vagas, team,
music, insta-
gram

iphone app, social me-
dia, ipod touch, iphone
apps, apple lover,
google play, iphone
android, android app,
apple fan, mobile app

Table 5: Evaluation of Representative Phrases Com-
parison of PDLDA, NTSeg and NOC: PDLDA, and
NTSeg were trained using the number of topics Z
that yielded the best performance in Figure 4. Re-
sults that differ significantly, t-test p < 0.01, from
NTSeg are marked with ’**’.

Data Amazon(s) ACM
bigram (N=2)

Model Precision Recall Precision Recall
PDLDA 0.67 0.60 0.55 0.58
NTSeg 0.72 0.65 0.62 0.62
NOC 0.75 0.71∗ 0.71∗ 0.75∗∗

trigram (N=3)
PDLDA 0.46 0.42 0.38 0.33
NTSeg 0.57 0.55 0.47 0.44
NOC 0.65∗ 0.66∗∗ 0.61∗∗ 0.67∗∗

nodes P and topics, and measured their performance using
PPX; the results are shown in Figure 5.
This figure shows that PPX of D-NOC nearly matches

that of NOC on the same number of topics regardless of
processor number, and this tendency is observed for various
topics. We can see that D-NOC offers the same performance
as NOC on a single processor, and so is truly scalable in
terms of both speed and data size. These results prove that
D-NOC can scale to large data, since 1)the convergence rate
for D-NOC matched that of NOC, 2)D-NOC attains similar
PPX regardless of the number of P with the same number of
topics, and 3)the amount of processable data scales with the
number of data nodes on Hadoop. Although the overhead
requires about 50-60% of the runtime in each sampling iter-
ation, each iteration requires about 2 minutes regardless of
the number of nodes, and the computation time decreases
proportionally to the number of nodes. Consequently, D-
NOC can process large data sets while preserving full gener-

ative model performance, and offers the approximated Gibbs
Sampling of NOC.

5.3 Qualitative Evaluation
Table 6 provides an example of words of topics learned by

NTSeg, and NOC. For the selected topic k learned by NOC,
we picked the child topic of this topic, k′, and picked the
most similar topic k′′ from topic k learned by NOC, where
we measure similarity by KL divergence over words to select
the topic having the most similar word distribution with k.
We then chose one topic and the N -gram topic identified by
these picked topics k, k′, and k′′. For each topic, we list the
top 10 words in decreasing order of topic-specific probability,
where Gk(w) (Gu

k(w)) is 1-gram (2-gram) word distribution
on k learned by NOC, and pk(w) (puk(w)) is 1-gram (2-gram)
word distribution on k learned by NTSeg.

In NOC, the parent topic consisted of concatenated words
associated with “apple products”, and this child topic con-
sisted of concatenated words associated with “fan of these
products”. In NTSeg, these words and phrases are assigned
to the same topic, as NTSeg and the other N -gram topic
models neglect the hierarchical semantic relationships be-
tween topics. The other topic yields similar phenomena as
well. This supports the results shown in subsection 5.2.2
such that NOC can construct compact and semantic topic
structures that provide more syntactic information than the
other models.

6. DISCUSSION
The disadvantages of parallelized topic models can be par-

tially solved as follows: The difference between process-
ing time in each server can be alleviated by reducing the
block size in Hadoop. The time required for reading global
counts and parameters can be shortened by using Mem-
cached instead of HDFS in Hadoop. Additionally, Mem-
cached keeps the network load at O(1) per each server, and
restrains the memory required to store a given amount of
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topic-word/word counts O(P−1) over P servers. We showed
that Hadoop allows us to implement scalable topic mod-
els, and that their approximated algorithms work well like
previous algorithms for single node implementation. Con-
sequently, the shortcomings inherent in Gibbs sampling [32]
could be alleviated by 1)proposed approximated algorithm,
and 2)usage of Memcached. Because the existing topical
N -gram models seem to be special cases of NOC, this algo-
rithm has the flexibility to accommodate these models, and
can be applied to them.
As the average length of topic specific N -gram is 2.5 and

the number of unique topics included in each document is
5.7 over Amazon(l), we can image that each document has
relationships between topics and they show the semantic re-
lationship. As shown in subsection 5.2.1, and 5.3, modeling
both the topic hierarchy and N -grams helps each other to
learn, and thereby yields the more compact topic structure
with higher purity topic specific N -grams than the others.

7. CONCLUSION
This paper shows a N -gram topic model that employs a

semantic topic hierarchical structure as the thematic coher-
ence, and forms topic specific N -grams that can provide the
syntactic. Our contribution lies in capturing these linguistic
structures and showing its algorithm can be applied to a web
scale data. Future work is to extend NOC to be applicable
with streaming data.
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