
StarrySky: A Practical System to Track Millions of
High-Precision Query Intents

Qi Ye
yeqi@sogou-inc.com

Feng Wang
wangfeng@sogou-

inc.com

Bo Li
libo202442@sogou-

inc.com
Sogou Inc.

Beijing, China

ABSTRACT
Query intent mining is a critical problem in various real-
world search applications. In the past few years we have
witnessed dramatic advances in the field of query intent
mining area. In this paper, we present a practical system—
StarrySky for identifying and inferring millions of query
intents in daily sponsored search with high precision and
acceptable coverage. We have already achieved great ad-
vantages by deploying this system in Sogou sponsored search
engine1. The general architecture of StarrySky consists of
three stages. First, we detect millions of fine-grained query
clusters from two years of click logs which can represent dif-
ferent query intents. Second, we refine the qualities of query
clusters with a series of well-designed operations, and cal-
l the final refined clusters as concepts. Third and foremost,
we build a flexible real-time inference algorithm for assigning
query intents to the detected concepts with high precision.
Beyond the description of the system, we employ several ex-
periments to evaluate its performance and flexibility. Our
inference algorithm achieves up to 96% precision and 68%
coverage on daily search requests. We believe StarrySky is
a practical and valuable system for tracking query intents.

Keywords
Query Intent; Search Log Mining; Community Detection;
Large-scale Multi-class Query Classification

1. INTRODUCTION
Understanding search query intent is critically important

for satisfying users’ search needs, especially in tail query un-
derstanding, query suggestion, sponsored search and other
vertical search applications. In these tasks, search queries
might be only partially matched with search results based
on terms, and query intents may possibly be misunderstood,

1http://www.sogou.com

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890588 .

which would cause major relevance issues in search applica-
tions and hurt user experience. The situation can be high-
ly improved by introducing a well-developed query inten-
t tracking system which can precisely infer the intents of
queries.

In this paper, we propose a practical system StarrySky
for identifying and inferring millions of query intents in dai-
ly sponsored search with high precision and acceptable cov-
erage. We use concepts to present different query intents
found in our system. The concepts are just like stars shin-
ing in the sky of query intents, which is where the name
StarrySky comes from. As traditional clustering methods
tend to find coarse-grained clusters which are not easily cap-
ture various fine-grained query intents, in our system we first
detect millions of fine-grained query intent clusters from two
years click logs. Then, we employ a series of post-processing
operations to refine the detected clusters and get the highly
consistent concepts each of which contains the same intent
queries in one concept. Finally, we build an inference al-
gorithm to track the intents of head and tail queries, and
assign them to the identified concepts with high precision
and acceptable coverage. Although we mainly focus on how
to track query intents in sponsored search, our approach can
also be commonly used to enhance user experience in other
search tasks and recommendation systems.

The main contributions of StarrySky are as follows:

• Detecting millions of fine-grained and highly consis-
tent intent concepts in a massive query co-click graph
created from 2 years real-world web search click logs.

• Developing an efficient and scalable inference algorith-
m to track query intents with high precision.

To the best of our knowledge, this is the first published
documentation of a real-time deployed system that infer-
s millions of query intents in real-world web search appli-
cations with high precision and acceptable recall. For re-
searchers working on web intelligence, people skilled in the
art would be able to create a similar system with the given
details in this paper. We address the query intent finding
problem as a fine-grained query intent detection and infer-
ence task, and propose an effective and practical system to
handle it. In the rest of the paper, we first review related
work in Section 2. Section 3 describes the overview of our
system and methods in detail. Section 4 presents the exper-
iments based on our system. Section 5 concludes the paper
and discusses the future directions.

961



2. RELATED WORK
To identify major intents of queries, various query cluster-

ing algorithms have been proposed. Sadikov et al. [14] model
user search behavior as a graph by combining document click
and session co-occurrence information, and perform multiple
random walks on the graph to cluster queries. Hu et al. [9]
present an unsupervised method for clustering queries with
similar intent based on the clicked URL features. Radlinski
et al. [13] use the BGLL community detection algorithm [2]
to find query clusters which present query intents in a query
graph. However, these clustering methods cannot be applied
to tail queries which are not in the clusters, due to the lack
of inference methods.
Another related work to intent finding in short text al-

so includes topic modeling such as Latent Dirichlet Allo-
cation (LDA) [1] and other weakly supervised algorithm-
s [19]. However, the traditional topic models are automat-
ically learned by unsupervised algorithms, and there is no
guarantee that the hidden topics will be aligned with pre-
defined taxonomy [8]. The topics will change if the models
are retrained over a different dataset. Guo et al. [7] argue
that query similarity should be defined upon query intents,
and they use a regularized PLSI topic model to learn the
potential intents of queries by using both the words from
search snippets and the regularization from query co-clicks.
However, recently it has also been found that topic modeling
techniques such as LDA and PLSI do not work well with the
short text like web search queries [17]. Jiang et al. [10] try to
capture the latent relations between search queries via the
URL, session and term dimensions to improves the perfor-
mance of query intent mining. In this paper, as we regard
that co-click relations reveal query intents more precisely,
we only focus on using click logs to extract the intents.
There are also many proposed algorithms for intent detec-

tion based on semantic classification of search queries. Mo-
tivated by the needs of search advertising, Broder et al. [3]
use a blind feedback technique and present a two-stage clas-
sifier to identify 6000 class labels with reasonable accuracy.
Simonet [16] presents a framework based on annotated se-
mantic entities for categorizing channels of videos in a the-
matic taxonomy with high precision and recall. Phan et
al. [12] present a framework to build classifiers for short and
sparse text by making use of the hidden topics discovered
by the LDA algorithm from huge web text data collections.
For short snippet sentiment and topic classification tasks,
Wang and Manning [18] show that the Naive Bayes classifi-
er actually does better than SVMs, and we adopt the Naive
Bayes algorithm in our inference framework.

3. METHODOLOGY
We define the query intent tracking task as the following:

given a search query, we infer its intent and try to assign it
to a proper pre-detected fine-grained query concept or make
a rejection. In this paper, the fine-grained query concepts
are found by an unsupervised algorithm and refined by a
series of refinement operations.
The main architecture of our idea of query concepts is

shown in Fig. 1. In simple terms, we divide the frequent
search queries into different fine-grained query clusters called
concepts to indicate the query intents, and the belonging
relations between queries and clusters and their words are
shown in plain links. The weighted edges between concept-

Figure 1: The architecture of StarrySky.

s reveal their relevant relations which are shown in doted
ones. After the intent concept graph has been construct-
ed, we build an inference system to assign query intent to
them. To make the intent inference process fast, robust and
reliable, for the head queries found in the concept detection
stage, we directly return their final concept labels. Other-
wise, for the unseen tail queries, we build a large-scale infer-
ence algorithm based on n-gram features to assign them to
appropriate intent concepts. We will discuss the algorithms
of our system in details in this Section.

The system is divided into offline training and online infer-
ence stages. In the offline training stage, StarrySky starts
from extracting the query co-click relations from web search
logs and form a query co-click graph. After that, to cap-
ture different query intents, we implement a well developed
community detection algorithm to find the fine-grained clus-
ters and employ a series of well-designed operations to refine
them to construct the final intent concepts. In the online in-
ference stage, we build a large-scale multi-class classifier to
infer the intent concept for a given query with two rejection
options. Each of these two options refuses to assign labels
to uncertain cases by fine tuned strategies.

3.1 Query Cluster Detection
We use web search click logs from the Sogou commercial

search engine to build a co-click graph for query intent min-
ing. The basic assumption is that if users click the same
web search results, the intents of queries they used should
probably be similar. We extract query-URL click informa-
tion from logs and transform the query-URL bipartite graph
into a query co-click graph. It is worth to point out that the
co-click query graph is formed with weighted edges based
on click co-occurrence counts. To leave reliable co-click re-
lations for the following intent mining algorithms, we set
a threshold to remove the low weighted edges. Finally, we
get a sparse and trustable query graph with query inten-
t relations. Similar approaches can also be found in other
query intent detection algorithms [13, 14]. Without loss of
generality, we use a graph clustering algorithm to discover
groups of queries with similar intents in the query graph. We
implement a well developed community detection algorithm
named MMO [20] which has nearly linear time complexity
and linear space complexity.

3.2 Concept Refinement
Due to the well known resolution limit issue of modulari-

ty [6] and the sparseness of clicks, there might still be some

962



giant inconsistent clusters with multiple intents and small
isolated ones with the same intents. To make the concepts
more semantically consistent, we need to refine the clusters
with considering query similarity measurements.

3.2.1 Quality Evaluation
The first critical problem is that there are some giant clus-

ters which contain many small coherent sub-clusters. The
phenomenon indicates that the large cluster may contain
multiple intents. To reveal the problem in detected intent
clusters, we present a formal quality score r(c) for evaluat-
ing the quality of a given intent cluster c, which is defined
as:

r(c) =

∑
q,s∈c,q ̸=s f(q, s)

|c| × (|c| − 1)
, (1)

where f(q, s) ∈ [0, 1] is a pre-defined similarity score of a
query q and query s from the same cluster c. We calculate
the quality score r(c) in Eq. 1 for each cluster, and then set
an empirical threshold ts = 0.1 to find low quality ones. If
the relevance score r(c) of a cluster c is less than ts, i.e.,
r(c) < ts, the cluster c should be divided into smaller cohe-
sive sub-clusters. After the low quality cluster ci has been
found, the subgraphs Gci induced by ci will be split into
sub-clusters by the MMO algorithm. After the splitting op-
eration, we recursively check the qualities of sub-clusters and
divide them with the same splitting method if necessary.
Another critical problem of the intent clusters is caused by

the local nature of the clustering algorithm and the sparse
nature of the query co-click information. Thus, clusters ex-
tracted from local community detection algorithm may con-
tain many relevant small ones with the same intents. To
reveal the small cluster problem, we also define a relevance
score r(ci, cj) between two clusters ci and cj , which is de-
fined as:

r(ci, cj) =

∑
q∈ci,s∈cj

f(q, s)

|ci| × |cj |
, (2)

where f(q, s) is also the similarity score of two queries in
these clusters.
To combine these small clusters with the same intents and

speed up this process, we iteratively calculate r(ci, cj) for
each cluster pair ci and cj , if they are connected in the co-
click graph. We merge the cluster pair when its relevance
score is larger than a certain threshold td, i.e., r(ci, cj) >
td, where td equals 0.9 in our system. After merging high
relevant clusters, we drop small clusters which contain less
than 3 queries to make sure that clusters are nontrivial.
After the above refinement steps, we get qualified and con-

sistent query clusters called concepts in our system which
can represent different fine-grained query intents. Further-
more, we can naturally form a concept graph to reveal the
topological relations between different concepts. An edge
between two concepts ci and cj is weighted by r(ci, cj) and
is kept in the graph if its relevance score is larger than cer-
tain empirical threshold tr = 0.75.

3.2.2 Query Similarity
To define the above measures f(q, s) in Eq. 1 and Eq. 2,

we need to measure the similarity between queries first. The
query similarity task can be formalized as: given a pair of
queries q and s, the goal is to learn a probability binary
classifier f(q, s) → [0, 1]. f(qi, si) > f(qj , sj) indicates that

the pair (qi, si) is more relevant comparing with (qj , sj). In
this part, we present a practical and more precise ensem-
ble method to measure the similarity between queries. The
base classifiers of ensemble classifier are formed by the fol-
lowing methods. First, for the popular queries, we calcu-
late the point-wise mutual information (PMI) scores of the
co-occurrence queries in query click URL logs and sessions.
Second, we calculate the Jaccard sore and the Cosine score
of each query pair after removing the stop words in them.
Third, to add semantic based methods, we use the web-based
query expansion method [15] to get the Cosine similarity of
each query pair, and the LDA topic model based algorith-
m to calculate the topic divergence similarity between each
pair [1]. After building these base classifiers, we take the
outputs of these base classifiers as features of a linear logis-
tic regression model and use the liblinear library [4] to train
the model.

3.3 Large-Scale Query Intent Inference
Based on the detected large-scale intent concepts C, we

try to build an inference system to infer intents of online
queries with high precision and acceptable coverage. The
goal of query intent inference algorithm in StarrySky is to
find the most relevant concept label c for a given query q in
the candidate finding step, and to reject the uncertain case
in the rejection step.

3.3.1 Candidate Finding
In this step, we focus on finding the most relevant concept

for a given query q. We use the frequent n-grams to repre-
sent the features of a query. A query q with n n-grams can
be represented as a feature vector xq = ⟨x1, x2, · · · , xn⟩. For
the sake of precision and efficiency, we only use 2-gram and
3-gram here as features of each query, and use the sophis-
ticated Laplace smoothing technique to estimate the condi-
tional probability p(x|c) of certain n-gram x given the con-
cept label c. Each feature vector xq is defined to be an
one-hot encoding sparse vector, that is the value of xi is one
if query q hits n-gram xi otherwise it is zero. These n-gram
features live in a very high dimension space (i.e., about 20
million features).

Given the n-gram feature vector xq of a query q, the most
likely concept c∗ can be inferred by the following equation
by taking a Bayes-optimal approach:

c∗ = argmax
c∈C

p(c|xq) ∝ argmax
c∈C

p(xq|c)× p(c)

∝ argmax
c∈C

n∑
i=1

log p(xi|c) + log p(c).
(3)

The process of Eq. 3 can be greatly sped-up by building an
inverted index of the n-gram set as the non-zero features
of each query are very sparse. We also use the following
equation:

y(c|xq) =
n∑

i=1

log p(xi|c) + log p(c), (4)

to indicate the likelihood score of between the concept c and
the given query q.

3.3.2 Rejection Options
After the candidate finding step, we get a list of candidate

concepts Ccand = {ci|1 ≤ i ≤ k} sorted by their likelihood

963



scores with Eq. 4 in descending order, and choose the most
likely one c1 = c∗ with the largest likelihood score to be
the predicted concept. However, even the concept with the
largest likelihood score may not satisfy the requirement of
relevance. A simple global threshold may help but will hurt
the coverage of the algorithm. To improve the accuracy and
robustness of the inference algorithm, we take two rejection
options after the candidate finding step.
The first rejection option (Option 1) is straight-forward:

we propose a significance test strategy based on the likeli-
hood scores to reject the un-trustful c1. The significance s-

core r(c1, c2|xq) is defined as the ratio r(c1, c2|xq) =
y(c1|xq)

y(c2|xq)

between the maximal likelihood score y(c1|xq) and the sec-
ond biggest one y(c2|xq). As these likelihood scores are both
negative, the smaller the ratio r(c1, c2|xq) is, the more trust-
ful the candidate label c1 is. In our system, we set an em-
pirical threshold λr = 0.80 to reject the uncertain cases.
Another acceptable choice is that when c1 and c2 are highly
relevant in the concept graph, i.e., there is an edge between
c1 and c2 in the concept graph, we will return the concept
label c1 directly to avoid being falsely rejected by the λr.
In the second rejection option (Option 2), we cast it as

a relevance problem in traditional IR. By considering each
concept as a document, both queries and concepts are p-
resented by TF-IDF weighted vectors here. The rejection
strategy is based on the following two similarity scores: the
query side similarity score sq(vq, c) and the concept side
similarity score sc(vq, c).
Let us begin from the notations. vq is the feature vector

of the query q, that is vq = ⟨TF-IDF(x1), · · · ,TF-IDF(xn)⟩,
where TF-IDF(xi) is the TF-IDF weight of n-gram xi. We
use vq(xi) to denote the weighted feature of xi in vq. For
a concept c which has k n-gram features can also be repre-
sented in the same way as a TF-IDF weighted vector vc =
⟨TF-IDF(x1), · · · ,TF-IDF(xk)⟩.
The value sq(vq, c) of the query q and the concept c is

defined as query side similarity score:

sq(vq, c) =

∑
xi∈xq,xc

vq(xi)∑
xi∈xq

vq(xi)
, (5)

which shows the ratio of common feature weights in query.
To keep a reliable precision, we set an empirical threshold
λq = 0.6 to reject the cases whose similarity scores are less
than the threshold λq.
We also define the concept similarity score sc(vq, c) in the

same manner:

sc(vq, c) =

∑
xi∈xq,xc

vc(xi)∑
xi∈xc

vc(xi)
∝

∑
xi∈xq,xc

vc(xi). (6)

As it is hard to set a common threshold for all the concept-
s, we use the following method to calculate a local threshold
λc for each concept c, which is defined as:

λc =

∑
q∈c sc(vq, c)

|c| ∝
∑

q∈c

∑
xi∈xq,xc

vc(xi)

|c| , (7)

which indicates the average query similarity of concept c. As
the threshold λc is only based on concept c, to speed up the
rejection process in practise, we omit the identical denomi-
nator

∑
xi∈xc

vc(xi) of the similarity score sc(vq, c) in Eq. 6
and the local threshold λc in Eq. 7 during the calculation.
If the concept side similarity score sc(vq, c) is less than the

10
0

10
5

10
0

10
2

10
4

10
6

Concept Size

C
o

n
c
e

p
t 

N
u

m
b

e
r

(a) Concept Size

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

4

Concept Quality Score

C
o
n
c
e
p
t 
N

u
m

b
e
r

(b) Concept Quality

Figure 2: The size and quality distributions of con-
cepts.

local threshold λc, the concept class c will be rejected in the
inference stage.

4. EXPERIMENTS
In this section, we conduct experiments to verify the per-

formance of StarrySky from different perspectives. We
show the precision of concepts in the system, and demon-
strate the effectiveness of our inference system.

4.1 Dataset
In the offline training stage, we extract web search query-

URL pairs from 2 years of anonymized click logs of the Sogou
search engine, and form a click-though bipartite graph. The
edges in graph are weighted by click counts. To eliminate
unstable clicks, we remove the noisy edges with the smallest
weights. After that, there are 13 million queries and 16.5
million URLs left in the graph. We get an one-mode query
co-click graph by connecting two queries with the same URL
in the bipartite graph by omitting the unstable links between
queries. Finally, we build a large-scale trusted query co-click
graph which contains about 13 million nodes and 800 million
edges.

4.2 Query Clustering Precision
First, we apply the MMO algorithm to find query cluster-

s in the co-click graph, and the trusted large-scale co-click
graph is un-weighted in the algorithm. To evaluate the clus-
ter qualities, we need to learn the query similarity model
f(q, s) in Eq. 1. We keep a team of annotators to label query
bid-words pairs for several years to track the qualities of our
search advertisements, and there are about several million-
s of labeled query bid-word pairs accumulated in our data
base. We sample about 1 million query bid-word pairs with
balanced binary class labels (i.e., relevant or not relevant)
as the training data of our ensemble classifier. We compare
our ensemble model with the query expansion [15] algorithm
and the LDA method [15] in a sampled test data set which
contains about 165 thousand query pairs with 110767 pos-
itive instances and 54236 negative instances. Moreover, we
also compare the model with some other well-known algo-
rithm, i.e., Word2Vec [11] in the test dataset. We train the
Word2Vec algorithm2 with the Skip-gram implementation
on a large search query corpus which contains 160 million
queries with the window size of 5. The learned vector rep-

2https://code.google.com/p/word2vec/

964



Table 1: Examples of query intent concepts in StarrySky.
ID Sampled Queries Head Query

265211 苹果批发价(wholesale price of apples), 苹果批发价格(the wholesale price of apple
fruit), 红富士批发价格(the wholesale price of red Fuji apples)

苹果批发价(wholesale price of ap-
ples)

195748 苹果配件批发(wholesales of apple accessories), 苹果手机配件批发(wholesales of the
accessories of iphones), 苹果手机配件批发网(wholesale web sites of apple accessories)

苹果手机配件批发网(wholesale web
sites of apple accessories)

403304 减肥抽脂(slimming liposuction), 抽脂手术(liposuction surgery), 吸脂减肥的价
格(liposuction prices), 吸脂整形(liposuction plastic surgery)

吸脂(liposuction)

1399473 1111购物狂欢节(1111 online shopping day), 双11天猫(double 11 Tmall), 11.11淘
宝(11.11 Taobao)

双十一(double 11)

resentations have 200 dimensions for words. We use two
methods to represent queries base on the vector represen-
tations of word vectors. One is simply averaging the word
vectors (Word2Vec-Avg) in a bag of words fashion. The
other one is combined the word vectors by their TF-IDF
weights (Word2Vec-Weighted). The AUC scores (Area Un-
der ROC Curve) are employed to evaluate the quality of
different query similarity algorithms. The AUC score got by
our method is 0.878, while the AUC scores got by the query
expansion, LDA, Word2Vec-Avg and Word2Vec-Weighted
algorithms are 0.785, 0.729, 0.693 and 0.731, respectively.
By considering the metrics of the AUC scores, our model is
substantially better than all the baseline methods.
We preform the MMO algorithm in the real-world co-click

graph. There are about 1.9 million concepts and 1.14 million
edges in the concept graph. Fig. 2(a) shows that the concept
sizes follow the ‘power-law’ distributions. This phenomenon
has also been found in many real-world networks [5]. There
still exist some huge concepts which contain more than 10000
queries, and all these largest concepts are related to porn in-
tents with quality scores above 0.5. Fig. 2(b) shows the con-
cept quality distributions. The concept quality scores centre
at 0.64, which indicates that most concepts are highly qual-
ified according to our concept quality metric. To improve
the qualities of concepts in StarrySky, we filter out 4213
concepts whose scores are less than 0.4.
We also evaluate the precision of concepts by human anno-

tation. For each concept, we randomly sample query pairs
for labeling. We conduct a manual annotating on 10000
query pairs randomly selected from the concepts. For each
query pair, annotators are asked to choose one of the follow-
ing options, i.e., ‘highly relevant’, ‘relevant’ or ‘not relevant’.
Each query pair is assigned to 3 annotators and finally be la-
beled by majority voting. The annotation result shows that
the ‘highly relevant’ rate is 83.7% and the ‘not relevant’ rate
is about 1.5%, while others are ‘relevant’. It clearly indicates
that the query clusters we got are very accurate (∼ 98.5%)
regarding both the highly relevant and the relevant ones as
correct in our system. Table 1 gives some examples of the
concepts including IDs, sampled queries and head queries
with the largest daily query counts. As most query clusters
of the concepts are in Chinese, we also give their English
explanations. As shown in Table 1, we can also distinguish
the lexical ambiguous intents such as ‘the wholesale of apple
fruit’ and ‘the wholesale of apple accessories’.

4.3 Inference Precision & Coverage
To evaluate the performance of the inference algorithm,

we infer the intents of queries in daily search traffic. Ta-
ble 2 shows the experiment comparisons of different rejec-

Table 2: Performance of different rejection options
in concept inference algorithm.

Rejection Pre1 Cov1 Pre2 Cov2

No Infer 99.1% 56.4% 98.8% 12.7%

Option 1 96.9% 68.2% 94.9% 31.3%

Option 2 97.4% 61.3% 96.6% 23.6%

No Reject 76.3% 87.9% 72.5% 65.5%

tion options. The metrics in Table 2 are precision (Pre)
and coverage (Cov). These metrics are either weighted by
daily query counts (i.e., Pre1 and Cov1) to show their per-
formance in real-world web search applications or without
query counts (Pre2 & Cov2) to show their performance for
unique queries. We randomly sample 30000 queries from
the daily search traffic to evaluate the performance, and ask
three annotators to judge the correctness.

The evaluation results of different algorithms are shown
in Table 2. The first row shows the performance of the al-
gorithm without taking any inference step (i.e., No Infer),
only considering the queries already existing in the concept-
s. This method is very accurate for the head queries, and
it can cover about 56.4% query counts with little mistakes.
However, it only covers 12.7% (Cov2) unique queries without
counts. The coverage (i.e., Cov2) got by the method with
rejection option 1 is larger than the score got by the method
with option 2. With option 1, we can infer 33% more u-
nique queries per day than with option 2. Finally, taking
the common used nearest-neighbor approach, we choose the
nearest concept induced by Eq. 4. The last row shows the
result of the method taking the nearest-neighbor approach
without any rejection option (No Reject). Although this
method can achieve considerably coverage, its precision val-
ues are too low to meet the requirements of online appli-
cations. The whole inference process only takes about 97
microseconds for each query on average. Overall, by consid-
ering query counts, our inference algorithm can achieve up
to 96% precision using either of these two rejection options
with above 61% coverage. These results suggest that the
online inference algorithm of StarrySky is potential use-
ful and effective, which can be used in real-time web-search
applications.

5. CONCLUSION AND DISCUSSION
The ability to automatically detect query intents is a key

step to enhance query understanding in modern search en-
gines and to improve user experience. To track large-scale
query intents with high precision, we introduce a practical

965



system, StarrySky, which includes offline training stage to
discover fine-grained query intent concepts and online infer-
ence stage to assign queries to these found concepts. First,
we cluster queries into fine-grained clusters from a query
co-click graph with 13 million nodes and 800 million edges
which is extracted from two years click logs of Sogou search
engine and employ a set of operations to refine the intent
concepts derived from clusters. Furthermore, after millions
of intent concepts have been found, we build a high precision
inference algorithm to assign daily queries to the concepts
and try to infer their intents. To the best of our knowledge,
this is the first published documentation of a real-time de-
ployed system that infers millions of query intents in real-
world web search applications with high precision and ac-
ceptable coverage. The inference algorithm can achieve the
precision of 96% and the coverage of 68% considering query
counts in daily web search. This system is currently support-
ing the analysis of query intents in Sogou sponsored search
engine, and serving several real-world applications such as
ad bid-word retrieval and bad case recognition tasks.

Acknowledgments
The authors would like to thank Prof. Jie Tang from Ts-
inghua University for his valuable comments and discussions,
and all the members in ADRS (ADvertisement Research for
Sponsered search) group in Sogou Inc. especially Ruining
Wang for the help with parts of the data processing and
experiments.

6. REFERENCES
[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent

dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
Mar. 2003.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. J. Stat. Mech., page 10008, 9 October 2008.

[3] A. Z. Broder, M. Fontoura, and et al. Robust
classification of rare queries using web knowledge. In
Proceedings of the 30th Annual International ACM
SIGIR, pages 231–238, 2007.

[4] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[5] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3-5):75 – 174, 2010.

[6] S. Fortunato and M. Barthélemy. Resolution limit in
community detection. Proc. Natl. Acad. Sci.,
104:36–41, 2007.

[7] J. Guo, X. Cheng, G. Xu, and X. Zhu. Intent-aware
query similarity. In Proceedings of the 20th ACM
International Conference on Information and
Knowledge Management, CIKM ’11, pages 259–268,
New York, NY, USA, 2011. ACM.

[8] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity
recognition in query. In Proceedings of the 32Nd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’09,
pages 267–274, New York, NY, USA, 2009. ACM.

[9] Y. Hu, Y. Qian, H. Li, D. Jiang, J. Pei, and Q. Zheng.
Mining query subtopics from search log data. In

Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in
Information Retrieval, SIGIR ’12, pages 305–314, New
York, NY, USA, 2012. ACM.

[10] D. Jiang, K. W.-T. Leung, and W. Ng. Query intent
mining with multiple dimensions of web search data.
World Wide Web, pages 1–23, 19 March 2015.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781, 2013.

[12] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi.
Learning to classify short and sparse text & web with
hidden topics from large-scale data collections. In
Proceedings of the 17th International Conference on
World Wide Web, WWW ’08, pages 91–100, New
York, NY, USA, 2008. ACM.

[13] F. Radlinski, M. Szummer, and N. Craswell. Inferring
query intent from reformulations and clicks. In
Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 1171–1172, New
York, NY, USA, 2010. ACM.

[14] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy.
Clustering query refinements by user intent. In
Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 841–850, New
York, NY, USA, 2010. ACM.

[15] M. Sahami and T. D. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. In Proceedings of the 15th International
Conference on World Wide Web, WWW ’06, pages
377–386, New York, NY, USA, 2006. ACM.

[16] V. Simonet. Classifying youtube channels: A practical
system. In Proceedings of the 22Nd International
Conference on World Wide Web Companion, WWW
’13 Companion, pages 1295–1304, Republic and
Canton of Geneva, Switzerland, 2013. International
World Wide Web Conferences Steering Committee.

[17] J. Tang, Z. Meng, X. Nguyen, Q. Mei, and M. Zhang.
Understanding the limiting factors of topic modeling
via posterior contraction analysis. In Proceedings of
The 31st International Conference on Machine
Learning, pages 190–198, Beijing, 2014.

[18] S. I. Wang and C. D. Manning. Baselines and bigrams:
Simple, good sentiment and topic classification. In
Proceedings of the ACL, pages 90–94, 2012.

[19] S. Yang, A. Kolcz, A. Schlaikjer, and P. Gupta.
Large-scale high-precision topic modeling on twitter.
In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1907–1916, New York, NY, USA,
2014. ACM.

[20] Q. Ye, W. Bin, and W. Bai. The Influence of
Technology on Social Network Analysis and Mining,
volume 6, chapter 16 Detecting Communities in
Massive Networks Efficiently with Flexible Resolution,
pages 373–392. Springer, 2013.

966




