Towards embedded Markup of Learning Resources on the Web: An Initial Quantitative Analysis of LRMI Terms Usage

Davide Taibi
National Research Council of Italy
Institute for Educational Technologies
Via Ugo La Malfa 153 - 90146 Palermo, Italy
davide.taibi@itd.cnr.it

Stefan Dietze
L3S Research Center
Appelstraße 9A
30176 Hannover, Germany
dietze@l3s.de

ABSTRACT
Embedded markup of Web pages have emerged as a significant source of structured data on the Web. In this context, the LRMI initiative has provided a set of vocabulary terms, now part of the schema.org vocabulary, to enable the markup of resources of educational value. In this paper we present a preliminary analysis of the use of LRMI terms on the Web by assessing LRMI-based statements extracted from the Web Data Commons dataset.

General Terms
Design, Measurement, Experimentation

Keywords
Linked Data for Education, schema.org, LRMI, Web Data Commons

1. INTRODUCTION
Embedded markup languages enable the annotation of unstructured Web pages with structured facts through Microdata, RDFa and Microformats. Such annotations are used by major search engines to facilitate the interpretation of Web content, but at the same time, represent an unprecedented source of knowledge. Recent studies of the Web Data Commons1 dataset have shown that in 2014, 30% of all crawled Web pages (increased from 26% in 2013) already include embedded annotations, emphasising their significance and rising rate of adoption [1][2].

In particular the Schema.org initiative, driven by Google, Yahoo!, Yandex, and Bing, has led to an increasing adoption of embedded markup by providing a common vocabulary for describing a wide variety of entities.

In April 2013 the metadata schema developed by the Learning Resource Metadata Initiative (LRMI)2 to describe educational resources has been added to the Schema.org vocabulary and is currently under development by the LRMI task group of the Dublin Core Metadata Initiative (DCMI)3.

Gradually, the adoption of LRMI increased, forming a complementary source of knowledge to initiatives such as the LinkedUp Data Catalog4 which provide educational Linked Data [5][6].

The distinct nature of data extracted from markup, consisting of vast amounts of flat, disconnected and often redundant entity descriptions, as opposed to traditional Linked Data and knowledge graphs, thorough investigation are needed to understand the nature and characteristics of markup data.

While previous research has investigated the scope and coverage of educational data according to Linked Data principles [4][3][7], the contribution of this paper is to provide first insights about the adoption and characteristics of specifically LRMI markup on the Web. Since the Web Data Commons (WDC) represents the largest publicly available dataset of extracted markup so far, our investigation is based on WDC2013 and WDC2014 subsets, extracted by selecting statements involving LRMI types and predicates.

2. METHODOLOGY & DATASET
The work presented in this paper is based on the analysis of the Web Data Commons data containing all Microformat, Microdata and RDFa data from the Common Crawl web corpus. In particular, as the LRMI metadata schema has been included since 2013, we have considered the data extracted from the releases of November 2013 and December 2014 of the Common Crawl web corpus. The data is represented in N-Quads format, in which the forth element of each quad contains the URL of the webpage from which the data was extracted.

In particular, the following LRMI predicates for the description of educational characteristics of creative works (s:CreativeWork) of educational value are part of Schema.org and investigated here: educationalAlignment, educationalUse, timeRequired, typicalAgeRange, interactivityType, learningResourceType, isBasedOnUrl. In addition two classes have been defined into the Schema.org vocabulary: AlignmentObject and EducationalAudience. As stated in the specification an AlignmentObject is “an intangible item that describes an alignment between a learning resource and a node in an educational framework”. While an EducationalAudience object specializes the Schema.org/Audience object and is related to the educational target of the educational material.

1 http://webdatacommons.org
2 http://www.lrmi.net
4 http://data.linkededucation.org/linkedup/catalog/
We conducted a quantitative analysis into the following questions:

- Evolution of LRMI adoption over time: a quantitative overview of the LRMI terms detected in the 2013 and 2014 collections;
- Distribution of LRMI terms across PLDs (pay-level domains);
- Observed frequent errors in LRMI related statements.

Each analysis is presented in detail in the following sections. The preliminary analysis presented in this paper is based on the class-specific subsets of the Schema.org data contained in the 2013 and 2014 corpus, related to the CreativeWork class, since LRMI annotations always relate to specific CreativeWork instances. However, the use of only this class-specific dump excludes from this study all the subtypes of CreativeWork containing LRMI properties. The subsets under investigation contain respectively 51,601,696 (2013) and 50,901,532 (2014) quads. The total number of entities in 2013 is 10,469,565 while in 2014 there are 11,861,807 entities. Regarding documents, the dump under investigation contains 3,060,024 documents in 2013 and 4,343,951 in 2014.

3. ADOPTION OF LRMI PROPERTIES

Table 1 provides an overview of the distribution of LRMI properties in the years under investigation. In this table we reported for the classes CreativeWork, AlignmentObject and EducationalAudience the number of documents, entities and RDF quads in which LRMI predicates are used. A graphical representation of these data is reported on figure 1.

Form the analysis of the numbers reported in Table 1 the following consideration arises:

- A generally positive trend of LRMI adoption can be observed.
- Not all predicates have seen increasing use from 2013 to 2014, both considering the number of documents and quads in which they occur.
- The educationalFramework property is not represented in either year.
- The property useRightsUrl is used even though this property has not been included into Schema.org since a property called license which encompasses the same function as useRightsUrl has been introduced in 2014.

Taking into account the significantly increasing adoption of embedded markup throughout the last years [1], the lack of a similar evolution for LRMI-related statements seems disappointing at first glance.

![Figure 1: Number of quads, documents and entities in 2013 and 2014](image)
However, several explanations have to be taken into account here, in order to put the results into perspective. First of all, since we currently use the CreativeWork-specific WDC subset, all subtypes of Creative Works are not considered in this study. Hence, a drop in quads in our data might as well be caused by certain key providers (see next Section) adopting a more fine-grain annotation strategy, preferring more specific types, such as s:Article or s:Book rather than the generic Creative Work type.

Another investigation is the lack of consistency between Common Crawls over the years, where a URL (or document) crawled in 2013 is not necessarily part of the 2014 crawl, despite that being the case for the majority of documents. As shown in the following section, for some key LRMI providers, the amount of documents overall in our investigated dataset has dropped significantly.

To understand the nature of annotated works, we also report the learning resource types indicated explicitly through the learningResourceType predicate (Figure 2). These include “Worksheet” (11.6% in 2013 and 12.2% in 2014), “Games” (9% in 2013 and 8.7% in 2014), Assessment (7.3% in 2013 and 7.5% in 2014), “PowerPoint presentation” (6.4% in 2013 and 6% in 2014) and “Quiz” (2.5% in 2013 and 2.3% in 2014). For a discussion of the Null values, please see Section 5.

Figure 2: Main learning resource types

4. DISTRIBUTION ACROSS PLDS

In the class-specific subset under investigation the total number of PLDs using LRMI properties in 2013 is 21, while in 2014 this number increase to 33, thus confirming a positive trend in the diffusion of LRMI properties amongst pay level domains (PLDs). Figure 3 provides an overview of the distribution of markup per PLD. For this figure all the LRMI properties related to the three classes CreativeWork, AlignmentObject and EducationalAudience have been taken into consideration.

As shown, a small number of PLDs contains the majority of markup related to LRMI properties. However, even though 5 PLDs include 99% of LRMI properties there are others PLDs that include relevant learning materials such as: teachersnotebook.com, senteacher.org, pomagalo.com, thegateway.org and bbc.co.uk.

The claz.org web site appears in the list due to the frequent use of the property isBasedOnUrl, even if it is not a website specialized in educational content.

More details about the properties used by the main PLDs related to educational content are reported on Table 4.

The analysis of WhoIs records of the PLDs has revealed that in 2013 the majority of PLDs is registered in the US (12) and the UK (5). While in 2014, PLDs registered in US and UK are 18 and 7, in addition a more diverse set of countries such as Brasil, France, Russia, Latvia are also represented (Table 2).

<table>
<thead>
<tr>
<th>PLD</th>
<th>#quads</th>
<th>#docs</th>
<th>#quads</th>
<th>#docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>brainpop.com</td>
<td>513090</td>
<td>15062</td>
<td>559992</td>
<td>6829</td>
</tr>
<tr>
<td>claz.org</td>
<td>439102</td>
<td>24434</td>
<td>469600</td>
<td>23850</td>
</tr>
<tr>
<td>merlot.org</td>
<td>218466</td>
<td>10641</td>
<td>171770</td>
<td>8464</td>
</tr>
<tr>
<td>teacherspayteachers.com</td>
<td>55755</td>
<td>18322</td>
<td>52995</td>
<td>17216</td>
</tr>
<tr>
<td>curriki.org</td>
<td>11444</td>
<td>322</td>
<td>13115</td>
<td>376</td>
</tr>
<tr>
<td>teachersnotebook.com</td>
<td>-</td>
<td>-</td>
<td>550</td>
<td>272</td>
</tr>
<tr>
<td>thegateway.org</td>
<td>668</td>
<td>66</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pomagalo.com</td>
<td>118</td>
<td>38</td>
<td>216</td>
<td>68</td>
</tr>
<tr>
<td>senteacher.org</td>
<td>84</td>
<td>20</td>
<td>264</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 3: Total number of documents and number of quads using LRMI properties across PLDs
Table 3 provides useful insights to understand the shape of our dataset and the evolution of quads from 2013 to 2014. In fact, for the most representative PLDs the total numbers of documents included in the dump decreased between the two years. In the case of brainpop.com even if the number of crawled documents has decreased by more than 50%, the number of quads including LRMI properties increased. In other cases, the reduction of crawled documents has led to a drastic reduction of the quads related to LRMI properties.

These decreasing number of documents might be explained by the inconsistency of the Common Crawl over the years (as described in the previous section) or the adoption of more specific subtypes by the Website provider, what would lead to the documents not showing up in our type-specific subset.

5. OBSERVED ERRORS IN LRMI STATEMENTS

The numbers reported in Table 1 paint a promising picture of the use of LRMI properties. However, the analysis of the actual statements, i.e. the values associated with these properties reveals significant issues. While a number of predicates seem to be used in a meaningful way, for instance, the typicalAgeRange property is involved in seemingly correct statements and only shows null values for 2% of the statements in both years, other predicates seem to be not used in the correct and intended way. Specifically, the occurrence of null values is dominant in some cases.

Regarding the learningResourceType property the percentage of null values is very low (9.7% in 2013 and 11.2% in 2014), but still reasonable high if compared with other values.

The observed values for the educationalUse property in 2014 reveal that Null values are the most used (93%). The analysis of the values undertaken for other properties reveal a similar state. The values for the interactivityType properties in 2014 are divided as follows: 96.8% Null, 3.1% active, 0.1% mixed.

In WDC2013 and WDC2014, the timeRequired property has been valorized with zero in 80.5% and 80.1% of the RDF quads.

The recommended value for the alignmentType property are: ‘assessed’, ‘teaches’, ‘requires’, ‘textComplexity’, ‘readingLevel’, ‘educationalSubject’, and ‘educationLevel’, but the analysis of the data has revelead that only ‘educationalSubject’ has been used in both years.

Moreover, some frequent errors related to schema violations have been observed:

- the typicalAgeRange property reported in the table in both years often (77% in 2013 and 80% in 2014) refers to instances of the class AlignmentObject, while the valid range is defined as instances of the CreativeWork class only.
- We detected capitalization errors (e.g. EducationalUse and educationaluse respectively in 5 and 3 quads) for the educationalUse property in 2014, while no errors detected in the 2013 collection.
- The alignmentType where the valid domain is instances of the AlignmentObject class, also is used (only in 4 quads, though) with the Schema.org/CompetencyObject which is not defined as part of Schema.org.

Table 4: The main PLDs related to educational content with LRMI property markup

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>educationalAlignment</td>
<td>83975</td>
<td>51276</td>
<td>40276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>educationalUse</td>
<td></td>
<td>2011</td>
<td>2282</td>
<td>38</td>
<td>68</td>
<td>28</td>
<td>88</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timeRequired</td>
<td></td>
<td>18585</td>
<td>17665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>typicalAgeRange</td>
<td>83975</td>
<td>51276</td>
<td>40276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interactivityType</td>
<td></td>
<td>2011</td>
<td>2282</td>
<td>38</td>
<td>68</td>
<td>28</td>
<td>88</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>learningResourceType</td>
<td></td>
<td>18585</td>
<td>17665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isBasedOnUrl</td>
<td>163300</td>
<td>162035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>useRightsURL</td>
<td>13890</td>
<td>2585</td>
<td>9</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alignmentType</td>
<td>83975</td>
<td>51276</td>
<td>40276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>targetDescription</td>
<td>83975</td>
<td>51276</td>
<td>40276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>targetName</td>
<td>83975</td>
<td>51276</td>
<td>40276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>targetUrl</td>
<td>51276</td>
<td>40276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>educationalRole</td>
<td>10777</td>
<td>8540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The PDL http://thegateway.org is present only in 2013 since it has been closed.
6. CONCLUSIONS
In this study, we have assessed the adoption of LRMI vocabulary terms on the Web. While a significant amount of Web pages (2.01 billion pages) and PLDs (2.72 million) in the Common Crawl contain embedded markup, the proportion of LRMI statements is comparably small. However, as our current investigation was limited to the CreativeWork subset of the WDC, this approach did not consider any CreativeWork subtypes, potentially missing a significant amount of LRMI data. Our study also finds that a large proportion of statements are of limited usage so far. With respect to growth, within the scope of the Common Crawl, minor growth of LRMI statements is detected (2.15% percent increase) from 2013 to 2014. While some terms even have seen a drop in adoption, this might be explained with the variance of the crawled URLs between both years. A more controlled study of continuously recrawling a focused set of URLs for a longer period of time would help in further investigating the evolution. In addition, it is also worthwhile to note that learning-related resources are annotated with a number of non-LRMI terms from the schema.org vocabulary, for instance, CollegeOrUniversity, EducationalOrganization, School, Museum, Article, Book.

On the other hand, significant growth has been detected by the number of LRMI adopters (PLDs) over time, which increased by nearly 50% from 2013 to 2014. Therefore, the current investigation suggests that a targeted crawl of potential LRMI providers would surface a significant amount of embedded markup that will emerge into an unprecedented source of knowledge about educational resources on the Web. Spreading awareness about LRMI and its use seems among the key aims of current working groups such as the LRMI DCMI Task Force and related W3C Community Groups.

7. ACKNOWLEDGMENTS
This work has been partially supported by the H2020 programme of the European Union under grant agreement No 687916 – AFEL project (http://afel-project.eu/) and COST Action KEYSTONE (IC1302).

8. REFERENCES