










for learning purpose goes beyond hyper-links and traditional
metadata keywords. Consequently, we proposed an infor-
mation model in which contents are qualified regarding the
competencies they require and the competencies they pro-
vide. As latent factors, competencies are difficult to recog-
nize even by knowledge domain experts. For this purpose we
presented our results on automated competency extraction
providing methods to name them and evaluate competency
frameworks predictive quality. Among future developments,
we envision the extension of our work on competency frame-
works to multi-relational structures including the two types
of competencies defined in our information model (compe-
tencies gain and required) while taking care as discussed in
Section 4, of the scalability of proposed methods.
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