Chains of Distrust: Towards Understanding Certificates
Used for Signing Malicious Applications

Omar Alrawi
QCRI - HBKU
oalrawi@qf.org.qa

ABSTRACT

Digital certificates are key component of trust used by many oper-
ating systems. Modern operating systems implement a form of dig-
ital signature verification for various applications, including kernel
driver installation, software execution, etc. Digital signatures rely
on digital certificates that authenticate the signature, which then
verify the validity of a given signature for a signed binary.

Malware attempts to subvert the chain of trust through several
techniques to achieve execution, evasion, and persistence. In this
paper, we examine a large corpus of malware (3.3 million sam-
ples) to extract digital signatures and their corresponding certifi-
cates. We examine several characteristics of the digital certificates
to study features in the process of malware authorship that will po-
tentially be used for characterizing and classifying malware. We
look at many features including the certificate’s chain length, the
issue and expiration year, the validity duration of a certificate, the
issuing country, validity, top issuing certificate authorities (CAs),
and others, highlighting potentially discriminatory features.

Keywords

Malware; Certificates; Authenticode

1. INTRODUCTION

A digital signature is a method to validate digital content like
software, data, and messages. They rely on digital certificates which
are virtual documents that bind the ownership of a signing key to a
real world entity. This virtual document is commonly used in pub-
lic key infrastructure to establish a base of trust. There are several
well known root certificate authorities, or CAs, that are used as the
trusted entities where all publishers relay their trustworthiness back
to one of the root CAs. Root CAs verify a publisher’s real entity
and issue a certificate stating that a given publisher is trustworthy
based on the criteria set by the CA. Once a publisher has a certifi-
cate linking them back to a trusted root CA, the publisher can then
sign digital content using digital signatures and attach their corre-
sponding certificate to the signature for the consumer to verify [11].

The main purpose of this system is to establish accountability
for digital content published to consumers. The consumer, before

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

WWW’16 Companion, April 11-15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2888610.

451

Aziz Mohaisen
SUNY Buffalo
mohaisen@buffalo.edu

executing the software, consuming data, or reading a message, will
check whether the publisher is indeed the publisher of the digital
content before consuming it. The certificate attached to the signed
digital content serves as means for the consumer to verify the trust-
worthiness of a certificate all the way up to a trusted root CA. There
can be more than one intermediate CA between the publisher and
the root CA. This certificate verification method is known as the
chain of trust. Each certificate is chained to a trusted certificate
ending up at the root CA or a common trusted CA between the
publisher and the consumer [8].

Digital signatures are widely used by software publishers for
signing software [9]. In this work, we focus specifically on Win-
dows binaries, and how certificates are used for them. Windows
operating systems implement a form of digital signature verifica-
tion known as Authenticode [16]. The purpose of this technology
is twofolds: to know the origin of the code to be executed and to
verify that the code has not been modified. The implementation of
digital signatures can have vulnerabilities that some malware au-
thors take advantage of to bypass protection within an operating
systems. One such vulnerability is MS13-098 [15], in which at-
tackers can exploit signed software to run malicious code via slack
space after the embedded signature. This allows the attacker to sign
a non malicious software and then attach malicious functionalities
to a later version via an update. The binary would still remain valid
since the function WinVerifyTrust, a Microsoft Windows API func-
tion used to verify the signed content with a digital certificate, will
only consider content before the signature. This vulnerability has
been fixed and no longer works on patched systems. Other types
of attacks include certificates compromise, where attackers steal a
valid certificate and use in high-profile attacks such as Flame [21].

In this work we examine a large corpus of malware and their
corresponding digital certificates. We then examined several fea-
tures in the certificates to identify trends within malicious signed
code. Our study took one months of data, with about 3.3 million
samples, and extracted certificates from signed malware, of about
800k samples. In each certificate, we examined features like the
size of the trust chain, the distribution of the issuing year, the valid-
ity duration of the certificate, country code of the subject certificate,
the common name used, and the number of CAs within a chain, and
highlight various interesting insights. In this work, our contribution
is the following. First, we process a large corpus of malware and
their certificates and give access to the metadata via an online por-
tal [6]. Second, we give high-level statistics for the features found
in the digital signatures. Third, we share our cleaned and processed
malware corpus with the community for future empirical studies
Organization. In the rest of this section we describe our our data
and system. In section 2 we describe the features captured from
our processing phase and high-light the importance of each feature.

In section 3 we discuss the high-level statistics collected from the
feature and elaborate on our findings. In section 4, we highlight
related work and in section 5 we provide a discussion. In section 6,
we provide concluding remarks.

1.1 Data

For our data, we collected one months worth of malware samples
from commercial feed, which is captured from two main regions,
the Americas and Europe/Asia. The capturing process for the mal-
ware samples is proprietary and for our experiment we used both
regions for the malware samples. We collected the malware sam-
ples over one months period (July 2015) and processed it through
our system. The total Windows binaries collected after the initial
filtering was roughly 3.3 million malware samples.

The 3.3 million samples were fed into our processing scripts to
extract and decode the authenticode signature format. Our pro-
cessing program is written in Python and it utilizes libraries like
pefile and asnl. We first use the pefile module to load the bi-
nary. If we encounter any errors we discard the sample and move
on to the next. We then look for the PKCS#7 [10] signature in the
"IMAGE_DIRECTORY_ ENTRY_SECURITY" found under the
PE directories entry, if it exists. If nothing was found, we again
discard the sample and move on. Then we parse the X509 [7] con-
tent to extract the certificate chain along with all the content of each
certificate in the chain. The resulting information is represented as
a JSON document that we write to file. After running this process
on our data we had about 800K samples with digital certificates,
which are summarized in Table 1.

Table 1: Dataset breakdown

Category Count Percentage
All Samples 3,331,161 | 100%

w/ certificates 804,834 24.16%

w/ certificates & AV labels | 794,753 23.86 %

The resulting JSON document is then augmented with VirusTotal
anti-virus detections. For each sample containing digital signature
we query VirusTotal for the anti-virus scan results. If results are
found from VirusTotal, we augment the scans to the certificates’
JSON file. We filter further based on VirusTotal’s results to only
samples that have 5 or more anti-virus detections. This filtering is
required to exclude false positive files that might not be malware
but have been captured by our feed provider. The resulting dataset
after applying the enrichment phase and further filtering contains
about 790K samples.

1.2 System Overview

In this section we will describe the system built for this work
and give an overview of the architecture along with the subcom-
ponents of our system. We describe the three major components
of the system, which are backend processing, signature verification
tools, and front-end web interface. Within each components there
are several subcomponents that supports the overall functionality.
Our system is comprised of two virtual machines running Ubuntu
14.04 and Windows 7. The Ubuntu server houses the front-end
and the back-end components of the system, while the Windows
7 virtual machine houses the signature verification tools. We used
a third machine as network file system (NFS) storage between the
Ubuntu and Windows 7 machine to pass malware samples. We did
not consider it in our system, since we used a generic NFS storage,
which is trivial to mount and use. We depict our system in Figure 1.

Our back-end component is comprised of the malware feed down-
loader/filterer, signature/certificate extractor, data enrichment (via
VirusTotal), and the NoSQL database storage. The order of opera-

452

NFS Storage

Mounted
Storage

Feed
Downloader

Mounted
Storage

I

NoSQL DB

Cert
Extractor

Python
Wraper
API

Request

Microsoft
SignTool

\ 4

Windows 7
VM

Ubuntu Server 14.04

Figure 1: System architecture.

tion is as follows. (1) Malware samples are downloaded from our
feed provider. (2) The feed file is extracted and filtered for Win-
dows binaries. (3) The resulting samples are fed into the certificate
extractor. (4) The certificate extractor queries the signtool.exe[17]
API on the Windows 7 machine to check the validity of signature.
(5) The certificate extractor queries the VirusTotal database, if the
above two steps are successful. (6) The results from the above pro-
cess is persisted to a NoSQL database. (7) A nightly batch process
is run to collect basic counts about the extracted data and the results
are persisted to another database document collection.

The Windows 7 virtual machine (VM) is a single purpose serv-
ing to validate Windows binaries using the signtool.exe found in
the Windows Software Development Kit (SDK). There are sev-
eral approaches to validate Windows binaries, including using the

WINE [5] framework to validate on a Linux machine or using OpenSSL [4]

with several modifications. The major shortcoming of those tech-
niques is that they do not support 64-bit binaries. We built a Python
program to wrap the signtool.exe functionality and provide a web
API for our certificate extractor application.

The front-end of our system is a simple python web application
built using FLASK Framework [2]. The purpose of the front-end
is to provide a capability to explore and query the data stored in
our database. We are planning to add more search and analytical
features to our online portal to allow researchers to explore, ana-
lyze, and visualize the data. The python web application uses a
generic stack with nginx as the webserver, uWSGI as the middle-
ware gateway interface for python, and Flask as the web application
development framework.

2. FEATURES

In this section we describe the features captured from our pro-
cessing phase and highlight the importance of each discriminatory
feature. We limit our feature study to the certificate chain and its
content. The ultimate goal of this exploration of features is to high-
light their trends, and show their relevance as discriminatory fea-
tures for identifying the malware samples. Future work will include
static and dynamic features from binary files that can be further
used in attribution. In addition to the features found directly in the
chain, like the country code and common name of the subject, we
included few features that are derived from explicit fields in the cer-
tificate’s content. For example, the validity duration of a certificate
is derived from the issue and expiry dates found in each certificate.

Table 2: Classification of large, medium, and small CAs

Size Catagory | Certificate Authority Names
Large CAs comodo/utn-userfirst, globalsign, go daddy, mi-
crosoft, symantec/verisign/thawte
Medium CAs | certum, digicert, startcom, entrust
Small CAs addtrust, trustasia, starfield, wosign

2.1 Valid Signature

We consider the validity of the signature in each binary as an
important feature. Having a self-signed binary may pass the tech-
nical validity, but it is considered invalid since the chain of signers
does not extend to one of the well-known trusted CAs, shown in Ta-
ble 2. By default, operating systems come with a list of trusted CAs
mostly in the large and medium size CA categories. If the applica-
tion is signed by a publisher whose certificate is issued by a trusted
CA, then the operating system will consider it valid, assuming it is
not revoked. As mentioned earlier, we use a standalone tool found
in the Windows Software Development Kit to check the validity of
each file. This feature is noted in the final JSON document.

2.2 Issue, Expiry, and Validity Duration

The issue date is the date the CA or the publisher—if self-signed—
issued the certificate. The expiry date is the date set by the issuer
of the certificate to indicate that the certificate is after which is no
longer valid. Signed applications by an expired certificate will be
validated if the application is timestamped by a CA indicating that
the application indeed was signed during the validity period. The
validity duration is the time between the issue date and the expiry
date. This feature provides us with the average life of a certificate
for a given publisher. The duration can be extended using a times-
tamp signature extension. The duration granularity is in years.

2.3 Chain Length, CA Count, and TSA Count

The chain length refers to how many certificates are in the cer-
tificate store found in the digital signature. For example, if a binary
is signed by publisher whose certificate is issued by Symantec, then
we will have two certificates in the X509 store, one for the publisher
and one for Symantec, where the publisher’s certificate chains up to
the Symantec CA since they issued or signed the publisher’s certifi-
cate. The CA count is done by counting the number of CA certifi-
cates found in the certificate chain. Many CAs issue intermediary
certificate to distribute and manage their signature and issuing pro-
cess. We generate a list of known CAs from across the web and use
their name as a keyword to filter if the subject of the certificate is
one of the CA keywords found in our list. If the subject common
name or organization name is on the list of CA we count it as a CA
for that particular binary.

For timestamp authority (TSA) we follow a similar process. We
generate a list of known TSAs from across the web and we check
if the common name or the organization name of the subject field
found in a certificate belongs to the entities in our list, then we
count it as a TSA for that particular binary. These fields can give
us insight into how malware authors run a signature heist to get a
valid signature on their malicious binary.

2.4 Issuing CAs, Country, and Common Name

The issuing CA is the CA that issued the publisher’s certificate
which the latter used to sign the software, binding the publisher’s
identity to the software. We count this feature for the malware
dataset to understand the ranking of the most abused CA systems.
For this count, we only considered the subset of samples that were
validated with a valid signature using the Window signtool.exe.

453

The country code is a field found in each certificate. When ex-
tracting this field we discard the TS and CA certificates and fo-
cused only on the publisher’s certificate. The aggregate numbers
are found in Table 5. We note that this field can be factious leav-
ing the verification burden on the certificate issuer; in this case the
CA. This field is important because it gives an indicator on where
the authors might be located and if the field is populated by an in-
correct country code, then we can use this information to further
understand what makes a particular country code more attractive.

The common name field is found in each certificate and can be
set to an empty string. Although most CAs would consider it as a
red flag if left unpopulated. In our study we did encounter several
empty string common names but they were insignificant. The field
existed in the certificate but was empty and the binary did not have a
valid signature. This field can link different publishers distributing
various kinds of malware and help in attribution.

There are other fields found in the certificate like the email, phys-
ical address, organization name, individual name, locality name,
domain name qualifier, and others. We did not consider those fields
because they are not found in the majority of our dataset and we
leave it for future work to explore their trends.

3. RESULTS

In this section we discuss the high-level counts collected from
the features discussed in the pervious section and elaborate on our
findings. We did a simple count of all the explicit features found in
the certificate and the derived features through several processes.
Derived features are issuing CA count, signature and certificate
chain validity, TS and CA counts, etc.

3.1 Chain Depth Characteristics

In Figure 2 we have several histograms showing the count for
some of the explicit and derived features. Starting with the top fig-
ure, we plotted a histogram of the number of TS certificates found
in each binary. As depicted in this figure, the majority of our sam-
ples do not have a TS certificate associated with them. The ones
that do, have two on average which represents a signing TS certifi-
cate and the root TS certificate. The root TS certificate is usually
the trusted authority or the TSA.

The next histogram shows a plot of the number of CA certificates
found in each binary. Note that we plotted the histogram for all the
dataset, including the binaries with invalid signatures. We see that
18% of our samples seem to be self-signed as they have no CA
certificate. The majority of our samples have at least one CA cer-
tificate. We had few binary files with four and five CA certificates
totaling 53 binaries. All of the binaries with five CA certificates
were invalid where the binaries with four CA certificates had 11 bi-
naries with valid signatures. The 11 binaries with valid signatures
had anti-virus labels for adware and potential unwanted programs
(PUP). The countries for those files were mostly China and the US.

The histogram plot for the chain length is in line with the number
of CAs found in the earlier figure. We observe just over 150k binary
samples having zero CA certificates and a depth of one, indicating
they are self-signed. The mean number of the binary samples have
a depth of two or three again aligning well with the figures observed
for the number of CAs. Also, just under 50% of the samples have
four or more chain depth, which aligns with the number of TS and
CA certificate counts found earlier. We expect one certificate for
the publisher, one or two for the CA, and one or two for the TSA
summing up to four or more certificates in the chain. We see a few
outlier programs that have 9 certificates in their chain attributing
their CA to VeriSign Inc., but the signatures on these binaries are

Timestamp Certificate Count

Certificate Authority Count

Certificate Chain Length

30 T T T T T T T T

0 1 2 3 4 -1 0
Number of TSAs
Issue Year Count

Number of CAs
Expiry Year Count

5 6 -1 0

1.2 3 4 5 6
Chain Length
Certificate Duration

T T T T T T

I T N R
I Y T Y N

0 14

&

2 4 6 8 10 12
Years (2000)

15

20

* Years (2000)

5 10 15 20 25 30

Number of Years

25 30

0

Figure 2: High-level counts for certificate features.

corrupt which causes the signtool.exe to consider the files to have
no signatures.

3.2 Certificate dates

The next aspect we analyzed was the issue year, expiry year,
and the duration of the validity of the certificate. We observed, as
shown in the histogram, that the issue year clusters around 2013,
2014, and 2015 and the expiry dates cluster around 2015 and 2016.
This observation aligns correctly with the certificate duration plot,
which shows the majority of the certificates having one year valid-
ity period. We see that there are a few outliers where the expiry
year is between 2028 and 2040. We observe the same outliers in
the duration plot having 30 or more years of validity.

Table 3: The output of signtool.exe for all of the 800K malware
samples used in this study.

[Count | % [Error Code [Error Message I

1 0.0% 0x80096002 The certificate for the signer of the mes-
sage is invalid or not found.

2 0.0% The signing certificate is not valid for the
requested usage.

50 0.0% 0x80096005 The timestamp signature and/or certifi-
cate could not be verified or is mal-
formed.

55 0.0% 0x80096003 One of the counter signatures was in-
valid.

189 0.0% 0x80096004 The signature of the certificate cannot be
verified.

1,405 0.18% A certificate chain processed, but termi-
nated in a root

2,153 0.27% 0x800BO10A | A certificate chain could not be built to a
trusted root authority.

3,767 0.47% 0x80096010 | The digital signature of the object did not
verify.

42,548 | 5.36% No signature found.

145,273 | 18.32% | 0x800B0O101 A required certificate is not within its va-
lidity period when verifying against the
current system clock or the timestamp in
the signed file.

206,322 [26.02% | 0x800BO10C | A certificate was explicitly revoked by its
issuer.

403,069 | 50.82% valid

3.3 Signature and Certificate Validity

In Table 3 we showcase the results of the signtool with the error
message mapping. Just over 50% of our dataset has a valid sig-
nature, which is interesting since we expected the validity of the

454

signatures to be lower for malicious software. Nonetheless, our re-
sults aligns with pervious work [12] with slight skewness due to the
difference in data sources and period of observation. From the total
binaries in dataset, 26% of them were revoked by the issuer due to
several reasons like compromise, abuse, or violation of terms of the
issuer. The second largest category of invalid signatures is related
to the date validity of the certificate. Our Windows 7 VM was set to
the current date and had access to the Internet syncing the system
clock with Microsoft’s time server. Our timezone was set to East-
ern Standard Time, which leaves us to conclude that this category
of certificates are expired

The third largest category for invalid signatures processed by the
signtool reports no signature found. The tool did not find a signa-
ture on the binary but our tool parsed out certificates store found in
the binaries. The majority of these binaries are Trojans with fake
certificate appended to the PE file. When observed under a Win-
dows system, one can clearly see there are certificates attached to
the binary, but they have common names of large and trusted soft-
ware publishers like Adobe, Mozilla, Microsoft, 360.cn, Oracle,
Realtek, Intel, Nvidia, and Apple, among others. This type of cate-
gory is the most interesting to study since the majority of the files
are malware files containing fake certificates to be used as a decoy
for an inexperienced system user.

3.4 Issuer, Origin, and Common Names

Digging deeper into the binaries with valid signatures we catego-
rize the top issuing CAs for our dataset as in Table 4. The top issu-
ing CA is Symantec because they own VeriSign CA [1] and Thawte
CA, which both account for approximately 53% of the valid certifi-
cates. Trailing Symantec in certificate issuing is Comodo, which
covers just over 30% of the valid certificate subset. These two CAs
are the biggest market shareholders [23] and as classified by Ta-
ble 2. Note that this finding is alarming: both of those CAs are
popular, and those findings are just a counterexample for reducing
by relying on popular CAs.

The country codes found in each certificate are sorted in Table 5.
We observe the US, Israel, Spain, Ukraine, Russia, and Ireland
account for most of the certificate country codes. As mentioned
earlier, these country codes can be incorrect and the issuing CA
is responsible to verify this information. We assume the informa-
tion found in a given certificate is incorrect if the binary does not
have a valid signature and certificate chain. However, we note that

Table 4: Dataset breakdown

CA Name | Count Percentage
TrustAsia 103 0.03%
WoSign 1040 0.26%
Entrust 1271 0.32%
Go Daddy | 3306 0.82%
Starfield 3511 0.87 %
Symantec 6142 1.53%
Microsoft 12805 3.18%
DigiCert 13086 3.24%
Certum 29145 7.7%
GlobalSign | 31038 6.46%
AddTrust 49005 12.16%
Thawte 85221 21.14%
VeriSign 120139 | 29.81%
COMODO | 123811 | 30.72 %
Total 403,069 | 100%

Table 5: Dataset breakdown

Country Name Count | Percentage
Seychelles 1437 0.18%
Barbados 1515 0.19%
Germany 3293 0.42%
Panama 3776 0.48%
United Kingdom | 5631 0.71%
Belarus 5924 0.75%
Poland 6113 0.77%
Romania 6530 0.82%
France 6896 0,87%
Canada 9929 1.25%
Dominica 10279 1.30%
Cyprus 15585 1.97%
China 23835 3.01%
Ireland 53197 6.71%
Russia 59450 7.50%
Ukraine 107783 | 13.59%
Spain 125866 | 15.87%
Israel 150533 | 18.98%
United States 195512 | 24.65%
Total 793084 | 100%

those findings are in line with recent findings on understanding the
sources of malicious attacks [24].

Finally, Table 6 enumerates the top 20 most occurring common
names observed in our study. We notice the majority of the com-
mon names found in the dataset belong to individual names or
organizations that brand themselves as advertisement companies.
Studying the anti-virus labels for the top 20 common name we
found they are all classified as adware or potentially unwanted pro-
grams (PUP). We did not find any malware labels in the top 20 most
common names observed. We found that the majority of these com-
panies have multiple names and operate under various entities, but
distribute similar adware or PUP to generate revenue.

4. RELATED WORK

Starting in 2010, the first known malware certificate measure-
ment study was done in [22]. The work is a white paper highlight-
ing several aspects of the authenticode process and how a malicious
publisher can abuse it. Another work in this area is in [26], where
the author discusses the complexity of code signing and verifica-
tion outlining several ways a signature scheme can be subverted by
a malicious author. The work also provides some statistics about
the number of malware’s that have exploited those vulnerabilities.

Ladikov [13] looks at threats associated with signed files and
how malware can take on such role. He provides an overview of
the signing process and shows that malware authors are capable of
exploit the weaknesses and trust in the signature process. Finally,

455

Table 6: Top 20 common names

Common Name Count Percentage
daniel hareuveni 95,496 12.04 %
pigater system 31,517 3.97%
investena concept 23,137 2.92%
stepan rybin 13,281 1.67%
ivan kostin 10,857 1.37%
astori llc 10,299 1.3%
digital plugin sl 10,073 1.27%
give away software 9,923 1.25%
apps market abc 9,768 1.23%
popeler system 9,748 1.23%
app secure llc 9,537 1.20 %
artur kozak 8,041 1.01%
digit network 7,659 0.97 %
smart secure software s.1. | 7,494 0.94 %
global apps roi 7,078 0.89%
kaydar llc 6,983 0.88%
dmitry banak 6,859 0.86%
proekt 6,676 0.84%
air software 6,654 0.84%
normands 6,555 0.83%
total 793,084 | 100%

concurrent to our effort Kotzias et al. [12] did a thorough analy-
sis of certificate abuse for potentially unwanted programs (PUPs)
and malware based on 365K malware files collected during 2006
— 2015, where the authors look at several features within the cer-
tificate chain, the signature, and static artifacts of the malware to
classify and cluster the samples.

The result of their system is to generate a blacklist of certificates
that are associated with malware and that are still valid. We believe
this work is the closest to our work and we differ in the following
points. 1) Our goal is to provide high-level statistics of malware
certificate along with the release of data for researchers. 2) Our
portal contains a continuos feed of data that is based on the most re-
cent captured malware. 3) We provide the malware samples, which
can be shared with verified researchers from the community. 4) Fi-
nally, we aggregate the high-level counts overtime as more data is
fed into our system to understand the change in certificate abuse.
We believe this will foster a collaborative environment and provide
clean data to researchers who are interested in this area of research.

S. DISCUSSION

In this section we discuss some of our findings and speculate on
trends found in our frequency analysis.

5.1 Features

We break down our data into two categories, malware with valid
signatures and ones without. The malware that contains a signa-
tures but it is not valid is shown in Table 3. The table highlights the
error messages accordingly for each category. We turn the readers
attention to the category with error message "No signature found,"
which we found to be the most interesting. Although, this category
of malware contains no signature, a user observing the certificate
store will see a list of certificate that look like they belong to a large
trusted authority like Microsoft, Apple, Mozilla, etc.

We speculate this is used to trick users in believing that the soft-
ware is distributed by a trusted authority. Signature verification is
prone to failure due to skewed system clock, old trusted certificates,
or corrupt file due to network transfer or external factors. Hence a
user is maybe more lenient with the signature verification process
believing that an error occurred for the aforementioned reasons.

There are several features observed in Figure 2, which give an

overall trend of what the majority of malware samples features look
like. For example, the number of TSAs for the majority of samples
is around zero, which indicate that malware authors understand the
digital signature system and use an opportunistic approach to ob-
tain a valid signature on their malware. TSAs are used to extend
the validity of digital good by vouching that the digital artifact was
signed during a valid period of the issued certificate. Hence, mal-
ware authors do not use TSAs much because their certificates are
revoked or blacklisted. This speculation can be verified by the is-
sue, expiry, and duration of a certificate used to sign malware.

5.2 Empirical methods

We used simple frequency analysis to understand the population
and find anomalies that can be analyzed in details. Our approach
aims to identify areas of interests where we can do a further in-
spection on subsets of the data to find insights. For example we
identified 45k samples that seem to not have a signatures associ-
ated with the binary, but contained certificates.

Our approach also aims to identify techniques and methods used
by malware authors to abuse the signature system. By looking for
anomalies that might be apparent in frequency analysis, we can ap-
ply a more rigorous and in-depth approach to find open vulnerabil-
ities in the current CA signing process; e.g., malware authors can
abuse the time-stamping feature in the signature process to keep
their malware valid even if revocation takes place [12].

The advantage of our approach is that it is simple, easy to ob-
serve, and gives a representation of the malware population (ab)use
of signing process. The disadvantages of our frequency approach is
that we miss finer details that are blinded by majority of the popula-
tion. We believe a hybrid analysis technique can help us find many
unique cases within the malware population that are still open to
abuse by malware authors.

In [12] the authors use a hybrid approach, but focus on the fi-
nancial aspect of a malware campaign. They calculate the cost of
a campaign based on the cost of obtaining a signature from a valid
CA. This approach is an in-depth analysis of the financial dimen-
sion to the certificate and signature problem. They also attempt to
generate a blacklist based on similar software.

6. CONCLUSION

In this study, we processed over 3 million malware samples to
understand their use of certificates. We gave high-level overview
for some features found in the certificates used by malware, and fi-
nally we built a portal to query the data and provide an interface to
explore the dataset. We found more than 50% of our malware sam-
ples that had anti-virus detection contained a valid digital signature
and the majority were branded as adware or PUPs. We observed
a unique set of malware that contains no binary signature but has
a certificate attached to the malware to decoy itself as a software
from prominent publishers like Apple and Adobe.

We will continue our collection and processing of the malware
samples and add more functionality to our online portal to allow
users to explore, analyze, and visualize the data. We plan to do
in depth study to explore how we can use the certificate features
to attribute malware to authors and identify polymorphic malware
samples through this process, building on our prior work in [25,
19, 18, 14, 20]. Our data will be published and is available for the
research community to further study this area. We want to provide
a data platform to enable in-depth empirical research of malware
abuse of digital signatures and certificates. With the rise of ini-
tiatives like Let’s Encrypt [3], we believe there will be interesting
trends in the area of malware and digital certificates.

456

.org/,2016.

(7]
(8]
(9]
(10]
(11]
[12]
[13]
[14]

[15]
[16]
(17]

(18]

[20]

[21]
[22]
(23]

[24]

fund (grant) from the University at Buffalo.
Symantec Closes. symc . 1y/10FHyXb, 2010.

(2]
—. Let’s Encrypt Initiative.

[5] — WINEHQ.bit.1ly/ 60RFE, 2016.
http://malcert.localhost.qga/, 2016.
RFC 5280, 2008.
matching of malware and malware creator-centric
Andro-dumpsys: anti-malware system based on the
B. Kaliski. PKCS #7: Cryptographic Message Syntax. RFC
Androtracker: Creator information based android malware
PUP: Abuse in Authenticode Code Signing. In ACM CCS,
Signed with Digital Certificates.
benign and malicious network events for accurate malware
Remote Code Execution. Microsoft Security Bulletin, 2014.
Microsoft Corp. SignTool (Windows).
and classification of malicious web contents. In /IEEE
behavior-based automated malware analysis and
Chatter: Classifying malware families using system event
MSRC Team. Microsoft releases Security Advisory —
Workshop, 2010.
2016.
Analysis. In IEEE DSN, 2015.

[25]

DIMVA, 2014.

Acknowledgement. This work was partly supported by a start-up
7. REFERENCES
[1] —. VeriSign’s Sale of Authentication Services Business to
—. Flask: web development, one drop at a time.
http://flask.pocoo.org/,2016.
(3]
https://letsencrypt.org/, 2016.
[4] —. OpenSSL. https:// openss
[6] O. Alrawi and A. Mohaisen. MalCert: Latest Malware
Samples with Certificates.
Cooper et al. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile.
J.-w. Jang, H. Kang, J. Woo, A. Mohaisen, and H. K. Kim.
Andro-autopsy: Anti-malware system based on similarity
information. Elsevier Digital Investigation Journal, 2015.
J.-w. Jang, H. Kang, J. Woo, A. Mohaisen, and H. K. Kim.
similarity of malware creator and malware centric
information. Computers & Security, 2016.
2315, 1998.
H. J. Kang, J.-w. Jang, A. Mohaisen, and H. K. Kim.
classification system. In WISA, 2014.
P. Kotzias, S. Matic, R. Rivera, and J. Caballero. Certified
2015.
A. Ladikov. Why You Shouldn’t Completely Trust Files
http://bit.ly/1Myc7hh, 2015.
H. Mekky, A. Mohaisen, and Z.-L. Zhang. Separation of
family classification. In JEEE CNS, 2015.
Microsoft Corp. Vulnerability in Windows Could Allow
Microsoft Corp. Authenticode (Windows).
http://bit.1ly/23HT6QU, 2016.
http://bit.ly/1GbEHI10, 2016.
A. Mohaisen. Towards automatic and lightweight detection
HotWeb, 2015.
[19] A. Mohaisen and O. Alrawi. Amal: High-fidelity,
classification. Elsevier Computers & Security, 2015.
A. Mohaisen, A. G. West, A. Mankin, and O. Alrawi.
ordering. In IEEE Conference on Communications and
Network Security, CNS 2014, pages 283-291, 2014.
2718704. bit . 1y/1NOPReP, 2012.
J. Niemela. It’s signed, therefore it’s clean, right? CARO
w3techs — Web Technology Surveys. Usage of SSL
certificate authorities for websites. bit .1y /1zePzg8,
A. Wang, A. Mohaisen, W. Chang, and S. Chen. Delving into
Internet DDoS Attacks by Botnets: Characterization and
A. West and A. Mohaisen. Metadata-driven threat
classification of network endpoints appearing in malware. In
[26] M. Wood. ‘want my autograph?’: the use and abuse of digital
signatures by malware. In Virus Bulletin, 2010.

