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ABSTRACT
In graph theory, the δ-hyperbolicity is a global property
that shows how close a given graph’s structure is to the
tree’s structure metrically. It embeds multiple properties
that facilitate solving several problems that found to be
hard in the general graph form. Interestingly, not only
that δ-hyperbolicity provides an idea about the structure
of the graph, but also it explains how information navi-
gates throughout the network. Therefore, δ-hyperbolicity
has several applications in diverse applied fields. My PhD
dissertation focuses on analyzing and exploiting structural
properties of hyperbolic networks for different applications.
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1. INTRODUCTION
Using networks to describe systems that are composed of

elements and their interactions aids analyzing and under-
standing them. Therefore, networks in multiple disciplines
ranging from computer science and engineering to physics
and systems biology are being modeled as graphs. Using
graph-theoretical tools for analyzing complex networks to
characterize their structures has been the subject of much
research. Knowing that a given graph does not have a com-
pletely random structure improves the general understand-
ing of its different aspects. Therefore, identifying any struc-
tural properties that a graph may possess could indeed fa-
cilitate analyzing it.

The core-periphery structure has been widely recognized
in many network disciplines. It suggests partitioning the
graph into two parts: the core which is dense and cohe-
sive and the periphery which is sparse and disconnected.
Vertices in the periphery part interact through a series of
intermediate core vertices. This pattern of communication
(where traffic tends to concentrate on a specific subset of
the vertices) has been observed in trees where distant nodes
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communicate via the central node (or nodes) in the tree.
δ-Hyperbolicity, which is a measure that shows how close a
graph is to a tree, suggests that any shortest path between
any pair of vertices bends (to some extent) towards the core
of the graph. This phenomenon has been justified by the
global curvature of the network which (in case of graphs) can
be measured using hyperbolicity (sometimes called also the
negative curvature) [12]. Multiple complex networks such as
the Internet [15, 6], data networks at the IP layer [12], and
social and biological networks [2] show low δ-hyperbolicity
(low hyperbolicity suggests a structure that is close to a
tree structure). Also, it has been observed that networks
with this property have highly connected cores [12]. Gener-
ally, the core of a graph is specified according to one or more
centrality measures such as the degree, the betweenness, and
the eccentricity centrality measures.

1.1 The problem
The δ-hyperbolicity of graphs embeds multiple properties

that facilitate solving several problems that found to be dif-
ficult in the general graph form; for example, diameter es-
timation [4], distance and routing labeling [5], and several
routing problems [10]. My PhD dissertation focuses on ana-
lyzing and exploiting structural properties of real-world net-
works for various applications. Specifically, analyzing vertex
eccentricities in δ-hyperbolic graphs. In [3], we algorithmi-
cally analyze the δ-hyperbolicity property and we exploit
it to partition a graph into core and periphery parts. To
achieve this, we formalize the notion of the eccentricity lay-
ering of a graph and employ it to introduce a new property
that we find intrinsic to hyperbolic graphs: the eccentricity-
based bending property. Moreover, we investigate the essence
of the bending in shortest paths by studying its relationship
to the distance between vertex pairs. This part is summa-
rized in Section 4. Our current work involves investigating
another structural property of graphs that depends on the
unimodality of the eccentricity function (Section 5). We also
analyze using this property to identify the core vertices in a
given network (Section 5.1).

2. RELATED WORK
In the study of communication networks, the core is usu-

ally identified by the small dense part that carries out most
traffic under shortest path routing [12]. It is quite natural to
associate the concepts of the network’s core and its center.
The notion behind centrality is identifying vertices that are
high contributors. There are multiple centrality measures
in the literature. The betweenness centrality expresses how
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much effect each vertex has in the communication. The ec-
centricity centrality suggests that the center of the graph
includes the vertices that have the shortest distance to all
other vertices. In [14], Seidman proposes the k-core decom-
position as a tool to study the structural properties of large
networks focusing on subsets of increasing degree centrality.
It partitions the graph into subsets each of which is identi-
fied by removing vertices of degree smaller than k. Holme
[9] introduces a coefficient that measures if a network has a
clear core-periphery structure based on the closeness central-
ity. Leskovec et.al. [11] study community structures in large
networks. They identify the existence of multiple (smaller)
communities that are attached to the core of the network
with very few connections. They also observe that some
graphs have cores with a nested core-periphery structure.

3. PRELIMINARIES ON GRAPH THEORY
A simple undirected graph G = (V,E) naturally defines

a metric space (V, d) on its vertex set V . The distance
d(u, v) is defined as the number of edges in a shortest path
ρ(u, v) that connects two vertices u and v. The diameter
of the graph diam(G) is the length of the longest shortest
path between any two vertices u and v in the graph, i.e.,
diam(G) = maxu,v∈V {d(u, v)}. Obviously, when the graph
is disconnected, the value of the diameter is undefined. The
eccentricity of a vertex u is ecc(u) = maxv∈V {d(u, v)}, i.e.,
the distance between u and any of its farthest neighbors
v. The minimum value of the eccentricity represents the
graph’s radius: rad(G) = minu∈V {ecc(u)}. The center of
the graph is defined as C(G) = {u ∈ V : ecc(u) = rad(G)}.
For each integer r ≥ 0, let Nr(u) denotes the neighbor-
hood of distance at most r centered at u, i.e., Nr(u) =
{v ∈ V : d(u, v) ≤ r}. Accordingly, N1(u) has all vertices
that are adjacent to u.

δ-Hyperbolicity.
In smooth geometry, hyperbolicity captures the notion of

negative curvature which can be generalized as δ-hyperbolicity
in more abstract concept of metric spaces including graphs.
The presence of hyperbolic networks in a variety of applica-
tions attracted researchers to investigate the negative cur-
vature of different types of graphs. The δ-hyperbolicity
measure of a metric space measures how close the metric
structure is to the tree structure [8]. There are multiple
equivalent definitions (up to constant factors [4]) for hy-
perbolicity. In our work, we use the following four-point
condition definition. Given a graph G = (V,E), x, y, u,
and v ∈ V are four distinct vertices, and the three sums:
d(x, y)+d(u, v), d(x, u)+d(y, v), and d(x, v)+d(y, u) sorted
in a non-increasing order, the hyperbolicity of the quadruple
x, y, u, v denoted as δ(x, y, u, v) is defined as: δ(x, y, u, v) =
((d(x, y)+d(u, v))−(d(x, u)+d(y, v)))/2. The δ-hyperbolicity
of the graph G denoted as δ(G) (or simply δ) is δ(G) =
maxx,y,u,v∈G δ(x, y, u, v). Trees are 0-hyperbolic (δ(G) = 0),
cliques are also 0-hyperbolic, and chordal graphs are at most
1-hyperbolic. Generally, the smaller the value of δ the closer
the graph is to a tree (metrically).

Eccentricity layering of a graph.
The eccentricity layering of a graph G = (V,E) (EL(G))

partitions its vertices into concentric circles or layers `r(G),
r = 0, 1, ... . Each layer r is defined as `r(G) = {u ∈ V :
ecc(u) − rad(G) = r}. Here r represents the index of the

Figure 1: Eccentricity Layering of a graph.

layer. The inner-most layer (layer 0) encloses the graph’s
center C(G); this layer has index r = 0. Then the first layer
includes all vertices who have their eccentricities equal to
rad(G) + 1, and so on. The vertices in the last layer have
eccentricities equal to the diameter of the graph. See Figure
1. Any vertex v ∈ `r(G) has level (or layer) level(v) = r.

4. EARLIER WORK
It was suggested in [12] that the highly congested cores

in many communication networks can be due to their nega-
tive curvature. Those cores are represented by vertices that
belong to most shortest paths and (or) have minimum dis-
tances to all other vertices. It was also observed that the
negative curvature causes most of the shortest paths to bend
making the peak of the arc formed by a shortest path to
pass through the core. In [3], we formalized this notion of
bending in shortest paths by introducing an important prop-
erty that is intrinsic to δ-hyperbolic graphs (the eccentricity-
based bending property). Then we used this property to
partition a graph into core and periphery parts.

4.1 Eccentricity-Based Bending Property of δ-
Hyperbolic Networks

Let G = (V,E) be a δ-hyperbolic graph, EL(G) be its
eccentricity layering, and C(G) be its center. In [4], the fol-
lowing property of δ-hyperbolic graphs was proven.

Lemma 1[4]. Let G be a δ-hyperbolic graph and x, y, v, u be
its four arbitrary vertices. If d(v, u) ≥ max{d(y, u), d(x, u)},
then d(x, y) ≤ max{d(v, x), d(v, y)}+ 2δ.

We use this property to establish the following.

Proposition 1. Let G be a δ-hyperbolic graph and x, y, s be
arbitrary vertices of G. If d(x, y) > 4δ + 1, then d(w, s) <
max{d(x, s), d(y, s)} for any middle vertex w of any shortest
(x, y)-path.

Proposition 2. Let G be a δ-hyperbolic graph and x, y be
arbitrary vertices of G. If d(x, y) > 4δ + 1, then on any
shortest (x, y)-path there is a vertex w with ecc(w) < max
{ecc(x), ecc(y)}.

We define the bend in shortest paths between two distinct
vertices u and v with d(u, v) ≥ 2 as follows: ∀ u, v ∈ V
bend(u, v) = min{level(z) : z ∈ V and d(u, z) + d(z, v) =
d(u, v)}. Here level(z) = r iff z ∈ `r(G). We say that
shortest paths between u and v bend if and only if a vertex
z with ecc(z) < max{ecc(u), ecc(v)} exists in a shortest path
between them. The parameter bend decides the extent (or
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the level) to which shortest paths between vertices u and v
curve towards the center (since we are always looking for a z
that belongs to a smaller layer according to the eccentricity
layering). Note that in some cases bend(u, v) will be assigned
either ecc(u) or ecc(v), whatever is smaller. For example, see
the shortest path ρ(u, v) in Figure 1.

4.2 Core Identification Using the Eccentricity-
Based Bending Property

A well-defined center of a graph is a good starting point for
locating its core. According to the pattern of data exchange
discussed earlier, we identify the core using the eccentric-
ity centrality measure. Even though the center contains all
vertices that are closer to other vertices, this subset is not
sufficient. More vertices should be added to the core accord-
ing to their participation in routing the traffic. We decide
the participation of each vertex based on its eccentricity and
whether or not it lies on a shortest path between a vertex
pair. Next we discuss two core-periphery separation models.

The Maximum-Peak Model. This model identifies a sep-
aration layer index p ≥ 0 and defines the core as the subset
of vertices formed by layers `0(G), `1(G), ..., `p(G). In light
of the eccentricity-based bending property, each bend(x, y)
for a pair of vertices x and y represents a peak for ρ(x, y).
Here we are locating the index of the lowest layer p over all
layers that vertex pairs bend to. Index p represents the sep-
aration point where the layers can be partitioned to a core
and a periphery. After identifying all peaks, the core will be
defined as core(G) =

⋃p
r=0 `r(G). Since the core according

to this model is defined using the layers, some vertices may
be added to the core that do not have real contribution (they
were added only for their location). This issue was resolved
in the second model.

The Minimum Cover Set Model. This model starts
with the core as an empty set and expand it to include ver-
tices which have smaller eccentricity, are closer to the center,
and participate in the traffic. This expansion should be or-
derly, first incorporating the vertices that have higher prior-
ity, and then vertices who are less eligible. For each vertex
v ∈ V , we define three parameters according to which we
prioritize the vertices.

• The eccentricity ecc(v). Vertices with smaller eccentrici-
ties have higher priority to be in the graph’s core.
• The distance-to-center f(v) = d(v, C(G)). Vertices with

small f(v) have higher priority of being in the core.
• The betweenness b(v) which measures how many pairs of

distant vertices x and y have v in one of their shortest
paths (versus all shortest paths in the classic definition of
the betweennes). It quantifies the participation of a vertex
v in the traffic flow process, and we define it as: b(v) =
number of pairs x, y ∈ V with v 6= x, v 6= y, d(x, y) ≥

2 and d(x, v) + d(v, y) = d(x, y). According to the core-
periphery organization, the betweenness of a vertex should
increase as its eccentricity decreases.

Our goal is to identify the smallest subset of vertices that
participate in all traffic throughout the network. The al-
gorithm for this model comprises two stages. First, in a
priority list T we lexicographically sort the vertices accord-
ing to the three attributes: ecc(v), f(v), and b(v). T now
has the vertices in the order that they should be considered
to become part of the core. The goal is to ensure that there
exists at least one vertex v ∈ core(G) such that v ∈ ρ(x, y)

for each pair of vertices x, y ∈ V . In such case, we say that
a shortest path ρ(x, y) is covered by v. The second stage
starts with a vertex v at the head of T being removed from
T and added to an initially empty set core(G). This vertex
must cover at least one pair. After this initial step, the pro-
cess continues by repeatedly removing the vertex v at the
head of T and adding it to core(G) if and only if v covers
an uncovered yet pair x and y (when there is at least one
vertex v ∈ core(G) that covers a pair (x, y), then it becomes
covered). This step should run until all pairs are covered.
Now the vertices in set core(G) represent the core of the
graph while the remaining vertices represent the periphery.

We applied both models to a wide set of biological net-
works. For more details, the reader is referred to [3].

5. ONGOING RESEARCH
Even though vertices with smaller eccentricities are more

likely to be in the core (the eccentricity based property), not
all vertices with equal eccentricity values have the same qual-
ity. Our current work involves investigating the unimodality
of the eccentricity function in graphs and we analyze using
this property to identify the core vertices in a given network.

Let G = (V,E) be an unweighted graph, EL(G) be its
eccentricity layering, C(G) be its center, and ecc(u) be the
eccentricity function defined for every vertex u ∈ V . The
eccentricity function of G is unimodal when every non cen-
tral vertex u has a neighbor vertex v with less eccentricity.
Otherwise, the eccentricity function of G is non-unimodal.

Definition 1 [7]. Given a graph G = (V,E), its eccen-
tricity function ecc(u) = maxv∈V {d(u, v)} is unimodal if for
every vertex u ∈ V \ C(G) there exists at least one vertex
v ∈ N1(u) such that ecc(u) = ecc(v) + 1.

Figure 2(a) shows a graph with a unimodal eccentricity
function. When the eccentricity function of a graph is uni-
modal, the relationship between the eccentricity of a ver-
tex u ∈ V , its distance to the graph’s center, and the ra-
dius of the graph can be described as follows. ∀u ∈ V ,
ecc(u) = d(u, c) + rad(G) [7]. The name unimodal is due to
the fact that the local minimum (vertex with local minimum
eccentricity) and the global minimum (the graph’s center)
coincide. Starting at each vertex u and moving towards the
neighbor with less eccentricity (which always exists due to
the unimodality), we get to the center in d(u, c) hops, where
c ∈ C(G) and it is the closest to u. According to the graph’s
eccentricity function, those paths that connect every non
central vertex to the center are all monotonically decreas-
ing. Now we generalize the discussion to include graphs
with non-unimodal eccentricity functions. We concentrate
on the paths (possibly and preferably but not necessarily
the shortest) that connect each vertex with the center C(G)
since we are investigating the unimodality of the eccentricity
function.

Definition 2. Let c ∈ C(G) be a closest vertex in the
graph’s center to u and p(u, c) = v1, v2, ..., vm, where v1 = u
and vm = c, be a path between vertices u and c. The path
p(u, c) can be

1. Monotonically decreasing if ecc(vi) > ecc(vi+1) ∀ vi ∈
p(u, c), 1 ≤ i ≤ d(u, c) − 1. In this case, we say that
vertex u has a monotonically decreasing path to C(G).

2. Monotonically non-increasing if ecc(vi) ≥ ecc(vi+1) ∀
vi ∈ p(u, c), 1 ≤ i ≤ d(u, c) − 1. If such a path ex-
ists and no monotonically decreasing path to the center
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exists, then we say that the vertex has a monotonically
non-increasing path to the center.

3. Non-monotonic if ∃vi ∈ p(u, c) such that ecc(vi) < ecc(vi+1)
where 1 ≤ i ≤ d(u, c)− 1. A vertex has a non-monotonic
path to the center if no other monotonically decreasing or
monotonically non-increasing paths to the center exist.

In Figure 2(c), the path p(B,E), which connects vertex B
to C(G) = {E} is monotonically decreasing, path p(G,E)
is monotonically non-increasing, and path p(A,E) is a non-
monotonic path. One way to achieve this categorization is
by creating the eccentricity directed graph. The eccentricity

directed graph of a graph G = (V,E) is the graph
−→
G =

(V,E′) such that an edge euv ∈ E′ if ecc(u) < ecc(v) (the
eccentricities of u and v with respect to graph G). In the
case where ecc(u) = ecc(v), the edge euv will be bidirectional

in
−→
G . Algorithm 1 shows how

−→
G can be used to categorize

the vertices based on the monotonicity of their paths to the
graph’s center. Obviously, determining whether or not a
vertex has a monotonically decreasing path to the center is
straight forward. All we need is to compare the level (layer)
of the vertex with its distance to the center. The problem
of determining if a vertex has a non-increasing monotonic
path or a non-monotonic path can be solved as a reachability
problem.

The relationship that connects the eccentricity of a ver-
tex, its distance to the graph’s center, and the radius of the
graph provided earlier can be generalized as follows.

Lemma 2. Let G = (V,E) be an unweighted undirected
graph with the radius rad(G). The inequality ecc(u) ≤
d(u,C(G)) + rad(G) is true for every vertex u ∈ V .

According to those variations, we define the locality of a
non central vertex u as loc(u) = min{d(u, v) : v ∈ V and
ecc(u) = ecc(v) + 1}. The locality decides the number of
hops between u and its closest neighbor v such that ecc(v) =
ecc(u) − 1. If G has a unimodal eccentricity function, then
every non-central vertex u ∈ V has loc(u) = 1. However, if
such v does not exist in N1(u) (which may be the case if G
has a non-unimodal eccentricity function), a vertex with less
eccentricity may exist two or more hops away. For example,
consider vertex A in Figures 2(b) and 2(c). We define the
locality of any u ∈ C(G) as loc(u) = 1 since a vertex with
less eccentricity does not exist. Based on this description, it
is obvious that the eccentricity function of a tree is always
unimodal. Also, for some graphs, it has been shown that
vertices with locality > 1 only exist in lower layers according
to the eccentricity layering of a graph (layers that are close
to the graph’s center) [13].

5.1 Vertex Locality and the Graph’s Core
If the problem in hand is about locating the site that min-

imizes the distance to every other location in the network,
then the problem becomes a centrality problem. A solu-
tion would be by identifying the core with the minimum
eccentricity centrality. In [3], we started the core set as the
vertices with the minimum eccentricity, then we expanded
this core by adding other vertices with smaller eccentrici-
ties and with high betweenness centrality. In this section,
we further investigate the nature of those core vertices with
respect to their locality. In graphs with unimodal eccentric-
ity functions, every local minimum is a global minimum. In
contrast, in graphs where the eccentricity function is non-
unimodal, some non central vertices are local minimums.

Algorithm 1. Categorizing vertices based on the monotonicity
of their paths to the graph’s center. For a vertex u, c is a vertex
in C(G) closest to u and level(u) = r if u ∈ `r(G).

Input: An eccentricity directed graph
−→
G = (V,E).

Output: V1: set of vertices with monotonically decreasing paths,
V2: set of vertices with monotonically non-increasing paths, and
V3: set of vertices with non-monotonic paths.

V1 ← ∅, V2 ← ∅, V3 ← ∅
for each u ∈ V do

if level(u) = d(u, c) then
V1 ← V1 ∪ u

else
if d(u, c) 6= ∅ then
V2 ← V2 ∪ u

else
V3 ← V3 ∪ u

return V1, V2, V3

This set of vertices is represented by vertice of higher lo-
calities (locality > 1). This motivates investigating whether
those non local vertices represent cores for a different set of
vertices.

Consider a graph G = (V,E) and two non central and
non adjacent vertices u and v, a shortest path ρ(u, v) ei-
ther bends to the center of the graph or does not bend.
As shown in [3], this bend is highly affected by its length.
Longer shortest paths tend to bend more than shorter short-
est paths. It is natural to think that for some pairs of ver-
tices with equal eccentricities and who have a relatively short
shortest path between them to not bend to the center of the
graph. For example, consider ρ(G,H) that does not bend
and ρ(I,K) that only bends to `(G)1 in Figure 2(c).

What we plan to do next is to use the locality of the
vertices and the eccentricity centrality to identify the core
vertices. Given a graph, we define its core as

core(G) = C(G) ∪ {u : loc(u) > 1}.
The idea is that vertices in the core can be partitioned

into two subsets. The first subset has vertices that are on
shortest paths between bending vertex pairs (vertex pair
(x, y) that has a vertex u on a shortest path between x and
y and ecc(u) < max{ecc(x), ecc(y)}). Those vertices have
small localities. The second subset has vertices that are on
a shortest path between vertex pairs that do not bend to the
center of the graph. Those vertices are of a higher locality
(of locality greater than one).

As we observed when trying this algorithm on a set of
real-world networks, vertices in the graph’s center and ver-
tices with locality > 1 have the following two properties in
common. (1) They both represent local minimums accord-
ing to their eccentricities. (2) Generally, they have higher
betweenness values (when compared with other vertices in
the graph).

We applied this idea on a wide set of networks. Take a look
at Table 1 for a sample of three Autonomous System graphs.
The table shows the percent of vertices with a higher locality
(loc> 1) in each graph. They do not represent more than 3%
of vertices in the overall graph and they are located in lower
layers (close to the center). Table 1 also shows the percent
of vertices in the core defined as core(G) = C(G) ∪ {u :
loc(u) > 1} and the percent of shortest paths covered by at
least one vertex in this core.
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Figure 2: Three graphs with different eccentricity functions. The number next to each vertex indicates its
eccentricity. (a) A graph with a unimodal eccentricity function. (b) A graph with a non-unimodal eccentricity
function. (c) A graph with a non-unimodal eccentricity function.

Table 1: Results on Internet graphs (Networks are

available at[1]).

Network |V | diam(G)
% of vertices
with loc > 1

% of vertices
in core(G)

% of shortest paths
covered by core(G)

ASG-97 3015 9 1% 2% ≈ 94%
ASG-499 4885 11 2% 13% ≈ 99%
ASG-799 5357 9 2.7% 2.3% ≈ 80%

6. CONCLUSIONS AND FUTURE WORK
In this paper, two structural properties of hyperbolic net-

works were studied: the eccentricity-based bending property
and the unimodality of the eccentricity function. Moreover,
using both properties to identify the core vertices of a given
graph have been investigated. In [3], we have studied the
relationship between the hyperbolicity of a graph and the
conciseness of its core. We find that the more hyperbolic the
graph is (i.e., the closer its structure is to a tree’s structure),
the more it exhibits a clear-cut core periphery structure. For
the next stage, we plan to plan to continue investigating the
relationship between the δ-hyperbolicity of a graph and the
unimodality of its eccentricity function. We also plan to
investigate identifying central paths in a graph using the
locality of vertices.
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