RECAP: Building Relatedness Explanations on the Web

Giuseppe Pirrò
ICAR-CNR
Rende (CS), Italy
pirro@icar.cnr.it

Alfredo Cuzzocrea
DIA Department
University of Trieste & ICAR-CNR
Italy
alfredo.cuzzocrea@dia.units.it

ABSTRACT
We describe RECAP, a tool that, given a pair of entities defined in some Knowledge Graph (KG), builds an explanation, that is, a graph (of manageable size) reflecting their relatedness. Explanations enable to discover new knowledge and browse toward other entities of interest. We discuss different kinds of explanations based on information theory and diversity. The KG-agnostic approach adopted by RECAP, which retrieves the necessary information via SPARQL queries, makes it readily usable on a variety of KGs.

Keywords
Relatedness Explanation, SPARQL, RDF, Path Ranking

1. INTRODUCTION

Knowledge graphs (KGs) are becoming a common support for browsing, searching and knowledge discovery activities on the Web. Search engines like Google, Yahoo! and Bing complement the classical search results with facts about entities in their KGs. Fig. 1 (a) (resp., (b)) show information provided the Google KG (resp., Yahoo! KG) when giving the entity F. Lang as input; facts can also include relationships with other entities (e.g., Vienna). Fig. 1 (c) depicts information about F. Lang taken from DBpedia. Note that both Google and Yahoo! KGs suggest entities like T. von Harbour was F. Lang’s ex-wife. DBpedia encodes this fact via the RDF triple (F. Lang, dbpo:spouse, T. von Harbour). However, one may wonder what is the relationship between F. Lang and other entities like P. Lorre? Indeed, P. Lorre is suggested as related to F. Lang both by Yahoo! and Google while no direct relationship is provided by DBpedia. The research question that we tackle is: what are the entities and relationships that can explain the relatedness between a given pair of entities?

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890533.
it is more easily understandable because of its visual representa-
tion; (ii) the visualization can be dynamically adjusted to include more/less information; (iii) it enables to discover
new entities like movie The Indian Tomb and its semantic
relationships with F. Lang and T von Harbou.

![Figure 2: A Relatedness Explanation.](image)

2. OVERVIEW OF THE APPROACH

Motivation. RECAP goes beyond existing KGs applica-
tions in terms of discovering and explaining knowledge on
the Web. One major issue toward exploiting KGs is that
either they provide limited querying capabilities (e.g., giv-
ing only one entity in input) or require knowledge of query
languages such as SPARQL and underlying data/schema.

Input. The input of our problem is a pair \((w_1, w_2)\) of enti-
ties defined in some knowledge graph \(G\). In particular, we
consider RDF knowledge bases \(K = (G, O, A)\) where \(G\) is a
knowledge graph, \(O\) is an ontology/schema used to structure
data in \(G\), and \(A\) is a query endpoint.

Assumptions. RECAP works on top of existing knowledge
bases; it retrieves data only via the query endpoint \(A\). This
has a significant advantage as it *neither requires* local avail-
ability of the data (e.g., by creating local copies) nor any
complex data processing (infrastructure) from the user side.
The computations performed by RECAP are reduced to the
problem of executing a set \(Q\) of queries against \(A\) plus some
algorithmic refinements. This makes RECAP knowledge-based
agnostic and readily available to be used in a variety KGs
about general knowledge (e.g., DBpedia, Freebase), enter-
tainment (e.g., LinkedMDB, Jamendo), bioinformatics (e.g.,
Bio2RDF), and so forth.

Output. Given a pair of entities \((w_1, w_2)\), the output is a
graph \(E(w_1, w_2) \subseteq G\), which explains their relatedness and
includes paths connecting \(w_1\) and \(w_2\) via semantic relation-
ship and other entities. We call such a graph the *relatedness
explanation*.

2.1 Building Relatedness Explanations

A relatedness explanation is a graph that provides a (con-
cise) representation of the relatedness between entities in
terms of RDF predicates (carrying a semantic meaning) and
other entities.

Definition 1. (Explanation). Given a knowledge base
\(K = (G, O, A)\) and a pair of entities \((w_1, w_2)\), where \(w_1, w_2 \in G\), an explanation is a tuple of the form \(E(w_1, w_2, G_e)\) such
that \(w_1, w_2 \in G_e\) and \(G_e \subseteq G\).

The above definition is very general; it only states that
two entities are connected via nodes and edges in a graph
\(G_e\), which is a subgraph of the knowledge graph \(G\), and has
an arbitrary structure. The challenging aspect is how to un-
cover the structure of \(G_e\) by accessing \(G\) *only* via queries on
the endpoint \(A\). To tackle this challenge, we shall charac-
terize the desired properties of \(G_e\). Consider the explanation
shown in Fig. 3 (a). \(G_e\) contains two types of nodes: nodes
such as \(n_1, n_3, n_4\) that belong to some path between \(w_1\) and
\(w_2\) and other nodes such as \(n_2\) that do not.

![Figure 3: Explanation (a); Minimal explanation (b).](image)

Although the edge \((n_2, p_1, n_3)\) can contribute to better
characterize \(n_3\), such edge is in a sense *non-necessary* as it
does not directly contribute to explain how \(w_1\) and \(w_2\) are
related. Hence, we introduce the notion of *essential edge*.

Definition 2. (Necessary Edge). An edge \((n_i, p_j, n_k) \in G\)
is necessary for an explanation \(E=(w_1, w_2, G_e)\) if it belongs
to a simple path (no node repetitions) between \(w_1\) and \(w_2\).

The necessary edge property enables to refine the notion of
explanation into that of *minimal explanation*.

Definition 3. (Minimal Explanation). Given a knowl-
edge base \(K = (G, A)\) and a pair of entities \((w_1, w_2)\) such that
\(w_1, w_2 \in G\), a minimal explanation \(E=(w_1, w_2, G_*\) requires
\(G_*\) to be the merge of all simple paths\(^1\) between \(w_1\) and \(w_2\).

Fig. 3 (b) shows a minimal explanation. Minimal explana-
tions enable to focus on nodes and edges that are in some
path between \(w_1\) and \(w_2\) only; hence, minimal explanations
preserve connectivity information only.

After defining what an explanation is, the challenging
question is how to retrieve it. Consider the minimal expla-
nation shown in Fig. 3 (b). It could be retrieved by matching
the *pattern graph* \(G_p\) shown in Fig. 4 (nodes and edges are
query variables) against \(G\). Hence, if the structure of \(G_p\)
were available one could easily find \(G_*\); however, such struc-
ture, that is, the right way of joining query variables repre-
senting nodes and edges in \(G_*\) is unknown before knowing
\(G_*\). Minimal explanations are built by considering (simple)
paths between \(w_1\) and \(w_2\); hence, the retrieval of such paths
is the first step toward building explanations.

![Figure 4: The Pattern Graph for the Minimal Explanation in Fig. 3 (b).](image)

Generally speaking, paths between entities can have an
arbitrary length. In practice it has been shown that for
KGs like Facebook the average distance between entities is
bound by a value \(k \leq 5\) [12]. The choice of considering paths
of length \(k\) in our approach is reasonable on the light of the
fact that we focus on providing explanations of *manageable
size* that can be visualized and interpreted by the user. An
overview of the algorithm to build relatedness explanations
is shown in Fig. 5.

\(^1\)A simple path does not allow node repetitions.
Algorithm 1: Building Explanations

Input: A pair \((w_s, w_t)\), an integer \(k\), the address of the query endpoint \(A\)

Output: A graph \(G_s\)

1. **Find paths:** retrieve paths between \(w_s\) and \(w_t\) of length \(k\) via SPARQL queries against the endpoint \(A\).
2. **Rank paths:** minimal explanations are constructed by merging all paths between \(w_s\) and \(w_t\). To control the amount of information into an explanation we defined different mechanisms to rank paths.
3. **Select and merge top-\(m\) paths:** we defined different ways of selecting ranked paths to build an explanation (see Table 1).

Figure 5: The explanation building algorithm.

In what follows, we provide an overview of the three main steps of the algorithm.

Finding Paths. A path is a sequence of edges (RDF triples) bound by a length value \(k\). The assumption of our approach is to access a KG only via the query endpoint \(A\).

Definition 4. (\(k\)-connectivity Pattern). Given a knowledge base \(K=(G, O, A)\) a pair of entities \((w_s, w_t)\), such that \(w_s, w_t \in G\) and an integer \(k\), a \(k\)-connectivity pattern is a tuple of the form \(\Pi=(w_s, w_t, Q, k)\) where \(Q\) is a set SPARQL queries composed by joining \(k\) triple patterns.

Fig. 6 shows the structure of the SPARQL queries in \(Q\); here, both nodes (but \(w_s\) and \(w_t\)) and edges represent query variables. To model the structure of a path, each of the \(k\) triple patterns in Fig. 6 is joined with the subsequent via a shared node. Note also that, in the Figure, edge directions are not reported; each edge has to be considered both as incoming and outgoing, which corresponds to join triple patterns in all possible ways. We emphasize that queries to retrieve paths are automatically generated in RECAP.

Figure 6: Query to Find k-length Paths.

Example 5. (Example of \(k\)-connectivity Pattern). The 2-connectivity pattern between F. Lang (FL) and T. von Harbou (TvH) contains the following set of queries \(Q:\)

```
SELECT DISTINCT ?p1 ?p2
WHERE{FL ?p1 ?n1. ?n1 ?p2 ?TvH}
```

```
SELECT DISTINCT ?p1 ?p2
WHERE{FL ?p1 ?n1. ?n1 ?p2 :TvH}
```

Ranking Paths. We outline three path-ranking strategies available in RECAP (see [10] for further details).

- **Path informativeness:** it is estimated by investigating the informativeness of RDF predicates in a path via the notion of Predicate Frequency Inverse Triple Frequency (PfITF) [9].
- **Path pattern informativeness:** a path pattern generalizes a path by replacing nodes with variables. Pattern informativeness is computed by counting the number of paths sharing a certain path pattern.
- **Path diversity:** it takes into account the variety of predicates in a set of paths; diversity guarantees to rank high paths that contain rare predicates.

Selecting and Merging Paths. Table 1 describes the last components of Algorithm 1, that is, different strategies to select a subset of ranked paths and merge them to build an explanation.

<table>
<thead>
<tr>
<th>Path selection strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meaning</td>
</tr>
<tr>
<td>(E^r)</td>
</tr>
<tr>
<td>(E^m_r)</td>
</tr>
<tr>
<td>(E^m_m)</td>
</tr>
<tr>
<td>(E^s)</td>
</tr>
<tr>
<td>(E^{s,s})</td>
</tr>
<tr>
<td>(E^{m,s})</td>
</tr>
<tr>
<td>(F)</td>
</tr>
</tbody>
</table>

2.2 The RECAP tool

RECAP has been implemented Java-based tool. RECAP leverages the Jena2 framework to handle RDF data and JavaFX3 for the GUIs; this allows the tool to be accessible across different platforms. SPARQL queries are sent to the query endpoint by using the HTTP protocol. Generally, the tool makes usage of SELECT SPARQL queries with the path ranking component also requiring the usage of COUNT. The implementation of our framework leverages multi-threading to execute the set of queries necessary to retrieve paths between entities; this reduces the overall running time to a few seconds. An extensive experimental evaluation is available in [10].

3. OVERVIEW OF THE TOOL

The GUI of the RECAP tool is shown in Fig. 7. It provides an intuitive way of selecting entities for which one wants to find a relatedness explanation. The auto completion function in Fig. 7 (a) enables to find the correct URI of the entities of interest; in particular, the Wikipedia infobox corresponding to each entity is loaded thus giving some quick information about the entities considered. The interface also enables to chose the maximum path distance (Fig. 7 (b)) to be considered; users can experiment with different path length thus having an idea of how the amount of retrieved information and the running time change.

After retrieving paths about the entities, users have the possibility to construct and visualize several types of explanations. Fig. 7 (c) shows the explanation build when considering the top-15 most informative paths; the type of explanation is also shown in the GUI (Fig. 7 (d)). The interface also provides statistics about the explanation building process such as number of paths and execution time (Fig. 7 (e)). When clicking on a node in an explanation, the user can visualize information about such node in Wikipedia (Fig. 7 (k)). When clicking on an edge information about the edge

2http://jena.apache.org

3http://docs.oracle.com/javafx
will be also visualized (Fig. 7 (g)). The visualization can be adjusted via the panel in Fig. 7 (f). Part (i) in Fig. 7 allows to filter an explanation according to certain types of RDF predicates. The portion of the interface that controls the explanation building process is shown in Fig. 7 (h); here it is possible to select the set of paths to be considered on the basis of path (resp., pattern) informativeness or diversity. Another portion of the RECAP GUI, shown in Fig. 8, allows to explore paths, patterns and visualize connectivity information by using these (without merging).

During the demo we will showcase examples of relatedness explanations in different domains including cinema, music and bibliography networks. We will provide a list of examples in such domains and help users in getting familiar with the RECAP tool. As an example we will consider pairs like (D. Knuth, L. Lamport), (A. Lincoln, J. Washington). Users can explore different ways of building relatedness explanations thus possibly discovering interesting things like the fact that T. von Harbou besides being F. Lang’s former spouse co-directed with him 11 movies.

Our primary goal is to show how RECAP is flexible and can be applied to different knowledge domain without any data preprocessing. Indeed, data will be accessed online via SPARQL endpoints. We will also provide a local SPARQL endpoint with an excerpt of the Yago KG to tackle the possibility that some KGs maybe temporary offline.

4. REFERENCES

