
A Demonstration of the Solid Platform for Social Web
Applications

Essam Mansour1 Andrei Vlad Sambra2 Sandro Hawke2 Maged Zereba1

Sarven Capadisli2 Abdurrahman Ghanem1 Ashraf Aboulnaga1 Tim Berners-Lee2

1Qatar Computing Research Institute, HBKU
2Decentralized Information Group, MIT CSAIL

ABSTRACT
Solid is a decentralized platform for social Web applications.
In the Solid platform, users’ data is managed independently
of the applications that create and consume this data. Each
user stores their data in a Web-accessible personal online
datastore (or pod). Each user can have one or more pods
from different pod providers, and can easily switch between
providers. Applications access data in users’ pods using well
defined protocols, and a decentralized authentication and ac-
cess control mechanism guarantees the privacy of the data.
In this decentralized architecture, applications can operate
on users’ data wherever it is stored. Users control access
to their data, and have the option to switch between ap-
plications at any time. We will demonstrate the utility of
Solid and how it is experienced from the point of view of
end users and application developers. For this, we will use a
set of Solid servers and multiple Web applications that use
these servers. We believe that experience with a concrete
platform such as Solid is highly valuable in truly appreciat-
ing the power of a decentralized social Web.

1. INTRODUCTION
Social Web applications, such as Facebook, Twitter, Doo-

dle, Wikipedia, Craigslist, and many more store data in cen-
tralized repositories that can be thought of as “data silos”.
Each application (or set of applications based on one social
network platform) controls its own data and often has its
own authentication and access control mechanisms. As a re-
sult, users cannot easily switch between similar applications
that could allow reuse of their data, or switch from one data
storage service to a different one. Developers are restricted
to the data access APIs provided by a specific platform, and
cannot easily develop applications that can run on multi-
ple platforms. These and other problems of centralization
have been recognized for a long time, and there have been
many proposals for “re-decentralizing” the social Web such
as Diaspora1, Musubi [3], and WebBox [10], among others.
None of these proposals has been widely adopted yet, and

1https://diasporafoundation.org

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890529.

Bob’s pod server:
Bob’s data and

profile document
managed by, e.g.,

GOLD

Alice’s pod server:
Alice’s data and
profile document
managed by, e.g.,

Meccano

LDP,
SPARQL,

LF SPARQL Data to Web
application

LDP, SPARQL, notification request

Solid Applications

Server-to-server protocol

Application-to-server protocol

Figure 1: The Solid platform. A user stores their
data in a personal online datastore (pod) that re-
sides on a pod server. The user controls their iden-
tity using an RDF profile document stored in their
pod. To use a Solid application, the user loads the
application from an application provider. The ap-
plication obtains the user’s pod from the identity
profile. It then follows links from the profile to dis-
cover data on the user’s pod, as well as on other
pods, performing authentication when needed.

the technical details of the decentralization platform are still
a topic of investigation among researchers and practitioners.
For example, W3C has Social Web Working Group actively
investigating decentralization standards2.

Our current activity in this space centers around a plat-
form that we call Solid3 (for Social Linked Data) [7]. The
Solid platform supports decentralized social Web applica-
tions, relying as much as possible on W3C standards and
Semantic Web technologies to realize the architecture shown
in Figure 1. The platform specifies all the protocols required
in the figure, such as authentication, application-to-server
and server-to-server communications. This demonstration
showcases the Solid platform, focusing on the experience of
the end user and the application developer. In particular, we
demonstrate through a set of applications and servers sup-
porting these applications that Solid enables a high degree of
interoperability between applications, easy sharing of data
and the social graph between applications, and portability
of data between servers. These features are demonstrated
through standard applications such as maintaining the list
of contacts of a user, and more novel applications enabled
by Solid such as collaborative authoring of scholarly articles.

We are developing the Solid platform as part of our Cross-
cloud project4, which aims to address the research challenges

2https://www.w3.org/Social/WG
3https://github.com/solid/solid
4http://crosscloud.org

223

REST	 Service	

Resource Storage

N
on

-R
D

F

R
D

F

Container Hierarchy
Container

LDP
Support

ACL
Support

Notification
Support

Patch
Update

SPARQL Support Link Following Support

RDF-Based
Resources

(JSON-LD, Turtle)

Binary/Text
Resources

(image, PDF)

R
equired

O
ptional

Figure 2: Overview of a pod server. A pod stores
RDF and non-RDF resources. The server support
LDP, patching resources, access control, live up-
dates, and optionally SPARQL.

related to building a decentralized social Web. A good choice
of protocols on the wire is essential to Crosscloud, and Solid
provides such protocols. In addition to designing proto-
cols, the Crosscloud project must address several research
questions. For example, what are the data models and de-
sign patterns that applications should use to store data?
How can we ensure that applications agree on a vocabu-
lary for the concepts that they use, and how to integrate
data from different applications when needed? What is the
best way to support notifications from application to appli-
cation? An interesting topic of investigation is the extent
to which Web traversal and complex data retrieval can be
offloaded from client to server. Supporting application de-
velopers is also important to build momentum around the
Crosscloud ecosystem. In addition, suitable models for secu-
rity and privacy are essential for the social Web, and decen-
tralization makes the questions around these models more
complicated [1, 9]. This demonstration of Solid provides a
framework for appreciating these questions.

The rest of this document is organized as follows. We
present a brief overview of the Solid platform in Section 2.
Section 3 then discusses application development in Solid
and presents some of the Solid applications that will be used
in the demonstration. In Section 4, we describe some possi-
ble demonstration scenarios. Section 5 concludes.

2. OVERVIEW OF SOLID
In the Solid platform, each user stores their data in a

Web-accessible personal on-line datastore (or pod). Appli-
cations run as client-side Web applications in a browser or
as mobile applications. These applications use an authen-
tication protocol to discover the user’s identity and profile
data, as well as relevant links that point to the user’s pod,
which contains application data. Solid supports decentral-
ized authentication and access control, and it also supports
standardized data access mechanisms. We describe these
two aspects next.

Decentralized authentication, a global ID space, and global
single sign-on are a critical part of the Solid ecosystem. Solid
uses WebID [8] to provide these features, although other so-
lutions exist and can potentially interoperate with Solid. In
Solid, a user has to register with an identity provider, and
this identity provider stores the user’s WebID profile doc-
ument associated with a cryptographic key. In most cases,
a pod provider would also operate as an identity provider,
offering WebID “accounts” to its users.

Table 1: Pod servers. databox.me, meccano.io, and
rww.io act as public pod servers as well as identity
providers, allowing users to create WebIDs.

Name Platform Running Service
gold golang https://databox.me/
meccano Java+Jena https://meccano.io/
ldphp PHP https://rww.io/
ldnode node.js not public

Application data in Solid is stored in users’ pods and pods
are stored on pod servers. Data is managed in a RESTful
way, as defined by the Linked Data Platform (LDP) recom-
mendation [6]. LDP enables applications to manage data
items within hierarchical containers (which can also be called
collections or directories). Each data item and container has
a URI, and LDP defines the protocol for manipulating the
data items and containers through HTTP requests on their
URIs; for example, POST/PUT to create, PUT/PATCH to
update, and GET to retrieve. Items can be found through
their URIs, or by following links from other items. Solid
distinguishes between structured data, which is represented
in Solid using RDF [5], and unstructured data that can be
of any type, e.g., videos, images, Web pages. This allows
structured data to be parsed and serialized in various for-
mats such as Turtle or JSON-LD.

Additional to LDP support, pod servers may offer optional
SPARQL support. Servers that support SPARQL allow ap-
plications to express complex data retrieval operations, in-
cluding operations that require server-to-server communica-
tion via link-following SPARQL. This simplifies Solid appli-
cation development, since it enables a developer to delegate
complex, multi-pod data retrieval operations to the server.

Pod servers in Solid are application-agnostic, so that new
applications can be developed without having to modify the
servers. For example, even though LDP 1.0 contains nothing
specific to “social”, many of the W3C Social Web Working
Group user stories5 can be implemented in Solid, using only
LDP and application logic, with no changes to the server.

The requirements of a pod server are illustrated in Fig-
ure 2. A pod server needs to store RDF and non-RDF re-
sources, and it needs to support basic LDP access to these
resources, patching resources, access control lists (ACLs),
live updates, and optionally SPARQL. There are several
ways in which the underlying storage for RDF data can be
implemented in a pod server, e.g., using the file system, a
key-value store, a relational database system, or a graph
database system (i.e., a triple/quad store).

We have implemented several prototype servers, listed in
Table 1. Our ldphp6, gold7, and ldnode8 servers store
all their data in the file system. In this case, both RDF
and non-RDF resources are stored as files, including the
RDF resources representing ACLs and the metadata doc-
uments corresponding to non-RDF resources (all of which
are defined by LDP). Our meccano server stores RDF data
in a graph database system (currently we use Jena9), and
it stores non-RDF data in the file system. Meccano im-
plements all Solid operations via SPARQL queries, and it
also implements complex data retrieval using link-following

5http://www.w3.org/wiki/Socialwg/Social API/User stories
6https://github.com/linkeddata/ldphp
7https://github.com/linkeddata/gold
8https://github.com/linkeddata/ldnode
9http://jena.apache.org

224

SPARQL. Using an RDF database simplifies querying large
data sets, efficient data retrieval (i.e., subsets of graphs), as
well as patch operations.

3. APPLICATION DEVELOPMENT
In this section, we discuss application development in Solid

and give examples of the Solid applications that we have im-
plemented. The intention is to demonstrate the flexibility
of the underlying architecture of Solid and the benefits of
decentralization.

Solid application development is supported by a set of li-
braries and components. For example, all the applications
that we have developed use the rdflib.js library (the core li-
brary from Tabulator [2]) to handle RDF resources. Another
library is solid.js10, which simplifies the development of Solid
applications by abstracting some of the more complex oper-
ations. We have also provided modules for authentication11

and signup12 that are designed for reuse as Web Compo-
nents [4]. We are continuously growing the set of libraries
and components in the Solid ecosystem, and we expect this
to significantly accelerate the adoption of Solid.

We have developed several Solid applications for common
day-to-day tasks, listed in Table 2. Some of these appli-
cations use the AngularJS and jQuery frameworks, which
provides a proven set of features in terms of application in-
teractivity. For this demonstration, all applications were de-
veloped as responsive Web applications and tested in Firefox
and Chrome. Screenshots of the contacts and dokieli ap-
plications are shown in Figures 3 and 4. We describe these
two applications next.

The contacts application manages a list of contacts stored
on a user’s pod. In Solid, a user’s social graph is made up of
the contacts stored on their pod, the contacts of these con-
tacts, and so on, where each user is identified by a WebID.
Thus, contacts can be viewed as an interface for managing
a user’s distributed social graph. The contacts application
maintains a set of vCards for a user’s contacts using the
vCard ontology13. Each vCard is a resource with a unique
URI, and can contain the WebID of the user that it repre-
sents in addition to other fields such as name and e-mail. A
user may mark a vCard as public or allow a vCard to be
accessed by an individual or a group of people (identified by
WebIDs).

One of the interesting social features in our contacts ap-
plication, enabled by Solid, is the ability to search in the
“contacts of your contacts” using link-following SPARQL. A
user can search in their pod for a vCard matching search cri-
teria such as name, email, or address. In addition, the con-
tacts application can use a link-following SPARQL query to
search for a contact in the public contacts on pods that can
be reached from WebIDs in the user’s vCards (via link fol-
lowing). The user gets a list of vCards matching the search
criteria, and the URI of each answer vCard indicates the
source of this card. This search capability provides an ex-
ample of the innovative social features supported by a de-
centralized social platform such as Solid.

dokieli is a decentralized article authoring, annotation,
and social notifications application14. While it is a general
purpose tool to write and manage articles, it is compliant

10https://github.com/solid/solid.js
11https://github.com/linkeddata/webid-login
12https://github.com/linkeddata/webid-signup
13http://www.w3.org/2006/vCard
14https://github.com/linkeddata/dokieli

Figure 3: The contacts application maintains a set of
vCards using LDP and uses link-following SPARQL
to search for vCards in the user’s pod and pods
reached from WebIDs in these vCards.

Figure 4: dokieli is a general purpose authoring and
interaction tool among different pods.

with the Linked Research initiative15, and provides social
features and interactions for scholarly communication. Ar-
ticles can also be semantically annotated, anywhere from
a fragment in a sentence to descriptions, e.g., hypothesis,
workflows, evaluations, and have their own URIs to foster
discovery and reuse. All URIs can be dereferenced and have
their content representations in HTML and RDF.

dokieli employs the WebIDs and pods of authors, review-
ers, and commenters for instance to store the information
created by these participants and can assign them different
access controls. For example, annotations and social notifi-
cations like replies, peer-reviews, liking, resharing, can reside
in the contributor’s pod.

Our experience with Solid application development con-
firms that Solid provides a feature-rich platform that sup-
ports portability and interoperability. Applications can work
with multiple pod server implementations, and it is easy to
change the applications that use data without changing the
data (e.g., by forking and adding features).

Implementing social features in Solid applications is sim-
ple and requires a thin layer of reusable code. Applications
and pods interact with each other by taking advantage of
the HTTP/1.1 methods, which do the heavy-lifting.

Using SPARQL in Solid applications is also relatively sim-
ple. Developers can write SPARQL queries to express data
access features such as search, filtering, or fetching top re-
sults. Developers can also write link-following SPARQL
queries to follow links between pods.

4. DEMONSTRATION PLAN
Demonstration participants will be able to interact with

all the applications shown in Table 2, and will be able to

15https://github.com/csarven/linked-research

225

Table 2: Solid applications. An asterisk (*) indicates a third-party application, not developed by us.

Name Function Usable At
contacts Manage a list of contacts http://mzereba.github.io/contacts
contacts Manage a list of contacts http://linkeddata.github.io/contacts
calendar Event manager http://mzereba.github.io/calendar
dokieli Decentralized authoring, annotation, and social notifications https://dokie.li
pad Shared collaborative editing https://github.com/timbl/pad
profile-editor View and update a user’s profile http://linkeddata.github.io/profile-editor
warp Solid file browser http://linkeddata.github.io/warp
cimba Microblogging (cf. Twitter) http://cimba.co
zagel Instant messaging/group chat https://solid.github.io/solid-zagel
*webid.im Instant messaging/chat http://webid.im
*shamblokus Strategy game (cf. Blokus) http://deiu.github.io/Shamblokus

store data on two different pod servers: databox.me and
meccano.io. This section provides a specific demonstration
scenario using these servers.

The demonstration scenario involve two users, Alice and
Bob, using different pod servers. Alice will use the gold
server at databox.me, and Bob will use the meccano server
at meccano.io. We will show that although these are two
totally different servers, both users can use the same appli-
cations to access and maintain their data. This can be shown
using any of the applications in Table 2. An application will
be able to create, modify, delete, and retrieve resources in
the user’s pod. Demonstration participants can view these
resources using the warp file browser, and can also see the
client-server interaction involved.

Besides the basic Solid functionality, the demonstration
will turn to interoperability and access control. Interoper-
ability will be demonstrated through the dokieli applica-
tion enabling social interactions among users, and through
applications using link-following queries. For example, we
will demonstrate how Alice can use link-following queries in
the contacts application to search in the public contacts of
Bob. In addition to demonstrating interoperability, these ex-
amples will also demonstrate access control. They will also
demonstrate other featured of Solid such as delegation16 in
order to allow a pod to speak on behalf of its owner. As
before, demonstration participants can view the resources
being created, observe client-server interactions, and also
server-to-server interactions.

Another form of interoperability is having multiple appli-
cations use the same data. We will show that a user can use
two different contacts applications to manage the same set
of contacts. We will also demonstrate the portability pro-
vided by Solid by showing how Alice can easily migrate her
pod from databox.me to meccano.io. After this migration,
Alice needs to change her WebID profile to point to the new
storage, and her applications will be redirected to the new
pod.

5. CONCLUSION
Re-decentralizing the social Web is an important topic and

an active area of research. The Solid platform is a concrete
instance of a decentralized platform for social Web applica-
tions, providing decentralized authentication, decentralized
data management, developer support in the form of libraries
and web components, and a suite of running servers and ex-
ample applications. This demonstration will show how the

16https://github.com/solid/solid-spec#webid-delegated-
requests

Solid platform can enable social applications while allowing
each user to retain control of their pod. Demonstration par-
ticipants will experience Solid from a user and application
developer perspective. They will gain insights into the inter-
operability and portability features provided by Solid, the
rich social features that it can enable, and the client and
server machinery behind these features. A concrete appre-
ciation of such a platform is very valuable in the ongoing
discussion on re-decentralization.

6. REFERENCES
[1] L. M. Aiello and G. Ruffo. LotusNet: Tunable privacy

for distributed online social network services.
Computer Communications, 35(1), 2012.

[2] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,
R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets.
Tabulator: Exploring and analyzing linked data on the
semantic Web. In Proc. Int. Semantic Web User
Interaction, 2006.

[3] B. Dodson, I. Vo, T. J. Purtell, A. Cannon, and M. S.
Lam. Musubi: Disintermediated interctive social feeds
for mobile devices. In Proc. World Wide Web Conf.
(WWW), pages 211–220, 2012.

[4] D. Glazkov and H. Ito. Introduction to Web
components. W3C Working Group Note, 14, 2014.

[5] G. Klyne and J. J. Carroll. Resource description
framework (RDF): Concepts and abstract syntax.
2006.

[6] A. Malhotra, J. Arwe, and S. Speicher. Linked Data
Platform Specification. W3C Recommendation, 2015.
http://www.w3.org/TR/ldp/.

[7] A. Sambra, A. Guy, S. Capadisli, and N. Greco.
Building decentralized applications for the social Web.
Tutorial at the World Wide Web Conf. (WWW), 2016.

[8] A. V. Sambra, H. Story, and T. Berners-Lee. WebID
Specification. 2014.
http://www.w3.org/2005/Incubator/webid/spec/identity/.

[9] S. Schulz and T. Strufe. d2 deleting Diaspora:
Practical attacks for profile discovery and deletion. In
Proc. IEEE Int. Conf. on Communications (ICC),
2013.

[10] M. Van Kleek, D. A. Smith, N. R. Shadbolt, and
mc schraefel. A decentralized architecture for
consolidating personal information ecosystems: The
WebBox. In Proc. Workshop on Personal Information
Management (PIM), 2012.

226

