DREAM in Action: A Distributed and Adaptive RDF System on the Cloud

Aisha Hasan and Mohammad Hammoud
Carnegie Mellon University in Qatar
Education City, Doha, Qatar
{aishah, mhhamoud}@cmu.edu

Reza Nouri and Sherif Sakr
University of New South Wales
Sydney, NSW 2052 Australia
{snouri, ssakr}@cse.unsw.edu.au

ABSTRACT

RDF and SPARQL query language are gaining wide popularity and acceptance. This demonstration paper presents DREAM, a hybrid RDF system, which combines the advantages and averts the disadvantages of the centralised and distributed RDF schemes. In particular, DREAM avoids partitioning RDF datasets and reversely partitions SPARQL queries. By not partitioning datasets, DREAM offers a general paradigm for different types of pattern matching queries and entirely precludes intermediate data shuffling (only auxiliary data are shuffled). By partitioning only queries, DREAM suggests an adaptive scheme, which runs queries on different numbers of machines depending on their complexities. DREAM achieves these goals and significantly outperforms related systems via employing a novel graph-based, rule-oriented query planner and a new cost model. This paper proposes demonstrating DREAM live over the cloud using a friendly graphical user interface (GUI). The GUI allows participants to execute and visualize pre-defined and user-defined (which can be written by participants on-the-fly) SPARQL queries over various real-world and synthetic RDF datasets. Furthermore, participants can empirically compare and contrast DREAM against three state-of-the-art RDF systems.

1. INTRODUCTION

RDF is designed to flexibly model schema-free information for the Semantic Web. Specifically, it structures data items as triples of the form \((S, P, O)\), where \(S\) stands for subject, \(P\) for predicate and \(O\) for object. A triple represents a relationship between \(S\) and \(O\) captured by \(P\). As such, a collection of triples can be modeled as a directed graph, with vertices denoting subjects and objects, and edges indicating predicates.

RDF triples can be stored using different storage organizations, including relational tables [6], bitmap matrices [4] and native graph formats [8], among others. In practice, all RDF repositories can be searched using SPARQL queries that are composed of triple patterns. A triple pattern is much like a triple, except that \(S\), \(P\) and/or \(O\) can be variables or literals \((S, P\) and \(O\) in triples are only literals). Similar to triples, triple patterns can be modeled as directed graphs. Accordingly, resolving a SPARQL query can be framed as a sub-graph pattern matching problem [11].

The wide adoption of the RDF data model calls for efficient and scalable RDF schemes. In response to this call, many systems were proposed, adopting either a centralised or a distributed paradigm. Centralized systems [2, 6, 12] store RDF datasets unsliced and do not partition SPARQL queries. Their fundamental merit is that they do not incur any network traffic. However, they are typically bound by the CPU and memory resources of a single machine. Yet, a single machine with a modern disk can still fit any current RDF dataset (i.e., a dataset with millions or billions of triples), but will result in severe thrashing to main memory and frequent accesses to disk [7]. Evidently, this can lead to unacceptable performance degradation.

In an attempt to overcome the problems of centralized schemes, distributed systems [11, 13, 14] were suggested. In particular, these systems partition input RDF datasets among clustered machines, thus benefiting from larger aggregate memories and higher CPU power. Nonetheless, due to data partitioning, they induce (high) communication overhead when satisfying (complex) SPARQL queries, especially if the queries span multiple disjoint partitions.

In this demonstration, we present DREAM [7], a Distributed RDF Engine with Adaptive query planner and Minimal communication. DREAM adopts a hybrid paradigm, which retains the benefits of the classical centralised and distributed schemes, and averts their drawbacks. More precisely, DREAM stores a given RDF dataset intact at each cluster machine (similar to centralized systems) and executes SPARQL queries across machines (similar to distributed systems), after applying a new query partitioning algorithm. By the virtue of this new paradigm, DREAM can: (1) totally eliminate data partitioning, which is theoretically NP-hard, and subsequently offer a one-size-fits-all model for different pattern matching queries (e.g., star-like and chained), (2) considerably reduce network traffic by avoiding data shuffling and communicating only auxiliary data across machines, and (3) adaptively run any SPARQL query in a centralized or a distributed fashion, depending on its complexity. This flexibility is inherently provided by the unsliced data kept at each machine, which enables centralized execution when needed. Furthermore, it is effectively realized through a novel I/O-aware, rule-based query planner.

To this end, we propose demonstrating the full features of DREAM over cloud using a comprehensive, yet friendly graphical user interface (GUI). Through this GUI, participants will be able to test and validate DREAM via executing standard and new SPARQL queries over real-world and synthetic RDF datasets. In addition, they will be able to visualize in real-time how DREAM satisfies any partitioning a SPARQL query, \(Q\), we mean decomposing \(Q\) into multiple sub-queries and distributing them across clustered machines. Clearly, this is not an option for centralized systems. Auxiliary data denote minimal control messages and triple identifiers (i.e., not actual triples).
query, starting from receiving the query, generating a corresponding near-optimal plan, executing the plan, and outputting final actual and quantitative results. Lastly, they will have the opportunity to run three related centralized and distributed RDF systems [12, 11, 13], and compare their performance and network results versus DREAM. The details of the DREAM3 project can be found at [1]. We provide a brief overview of DREAM in Section 2 and discuss our proposed demonstration scenarios in Section 3.

2. DREAM

2.1 Architecture Overview

DREAM adopts a master-slave architecture, with a single machine acting as a master and multiple clustered machines serving as slaves. The master hosts the system’s intelligence (or the query planner). The query planner decides how the resolution of a query shall proceed. Each slave incorporates a centralized RDF store, which is responsible for maintaining an input RDF dataset and processing SPARQL (sub-)queries, as delegated by the master. Note that DREAM does not stipulate a specific RDF storage model (i.e., any centralized relational-based [2, 6] or graph-based [3, 5, 8] store can be utilized).

When a client submits a SPARQL query, \(Q \), the query planner first transforms \(Q \) into a query graph, \(G \). Next, the query planner produces a near-optimal graph plan, \(G_P \), as a set of sub-graphs \(\{SG_1, ..., SG_M\} \), where \(M \) is less than or equal to the number of slaves. Subsequently, the master delegates each sub-graph \(SG_i \), \(1 \leq i \leq M \) to a single slave, and all sub-graphs (if \(M > 1 \)) are run in parallel (if \(M \) evaluates to 1, only 1 machine is used). At a slave, a sub-graph can be further optimized by the RDF store’s query optimizer (if any). During execution, slaves exchange intermediate auxiliary data, join intermediate result sets and produce the final result. Next, we explain how the query planner produces a near-optimal graph plan.

2.2 An Adaptive Query Planner

2.2.1 Creating Query Graphs

The precursor step to partitioning a SPARQL query, \(Q \), in DREAM is to produce its corresponding query graph. More formally, the query planner models \(Q \) as a directed graph, \(G \). \(G \) is defined as \(G = (V, E) \), where \(V \) and \(E \) are the sets of vertices and edges, respectively. Vertices in \(V \) and edges in \(E \) represent subjects/objects and predicates of triple patterns, respectively. For example, Fig. 1 portrays a SPARQL query \(Q_1 \) and its corresponding directed graph \(G_1 \). \(Q_1 \) consists of five basic sub-queries \(\{q_1, q_2, q_3, q_4, q_5\} \), which are reflected in \(G_1 \) as basic sub-graphs \(\{g_1, g_2, g_3, g_4, g_5\} \). A basic sub-graph is a single triple pattern, or the smallest possible query structure. A basic sub-graph is the smallest possible graph structure, which corresponds to a basic sub-query. At the end of this step, the query planner begins the query graph partitioning stage.

2.2.2 Partitioning Query Graphs

In order to construct a near-optimal graph plan for a query graph \(G \), the query planner begins by locating the vertices in \(G \) with degrees greater than 1. For instance, the degree of vertex \(?Tournament \) in Fig. 1 (b) is 3 (i.e., out-degree is 2 and in-degree is 1). We call such a vertex a join vertex. After identifying join vertices, the query planner creates many empty sets \(S_{JV} \)S for every join vertex, \(JV \), and populates them with specific basic sub-graphs from \(G \), using a rule-based strategy (to be discussed shortly). Eventually, only one set, \(S_{JV} \), for each join vertex will be selected and executed at a slave.

Prior to discussing how the query planner populates each set \(S_{JV} \) with sub-graphs, we classify basic sub-graphs as either exclusive or shared. An exclusive basic sub-graph is a sub-graph with exactly one join vertex, while a shared basic sub-graph is a sub-graph with two join vertices (recall that any basic sub-graph has a maximum of two vertices). For example, \(g_1 \) in Fig. 1 (b) is an exclusive basic sub-graph, while \(g_2 \) is a shared one. The query planner walks through the directed graph \(G \) as if it is undirected (starting at a random vertex), locates exclusive and shared basic sub-graphs and assigns them to sets \(S_{JV} \)S according to the following four rules:

- **Rule 1**: A basic sub-graph, \(g_i \), can be assigned to a set \(S_{JV} \) if \(g_i \) is directly connected to the join vertex \(JV \). For instance, the exclusive basic sub-graph \(g_1 \) in Fig. 1 (b) can be assigned to \(S_{Country} \), but not to \(S_{Tournament} \), as it is directly connected to \(?Country \) but not to \(?Tournament \).

- **Rule 2**: An exclusive basic sub-graph, \(g_i \), which is directly connected to join vertex \(JV \), should be assigned to only set \(S_{JV} \). For example, the exclusive basic sub-graph \(g_1 \) in Fig. 1 (b) should be assigned to only set \(S_{Country} \) (hence, the name exclusive).

- **Rule 3**: A shared basic sub-graph, \(g_i \), which is directly connected to join vertices \(JV_1 \) and \(JV_2 \), should be assigned to only set \(S_{JV_1} \) or set \(S_{JV_2} \) or both. For instance, the shared basic sub-graph \(g_5 \) in Fig. 1 (b) should be assigned only to set \(S_{Country} \) or set \(S_{Tournament} \) or both (hence, the name shared).

- **Rule 4**: Any set \(S_{JV} \) should include at least two directly connected basic sub-graphs, referred to as TD-CONN. As an example of a TD-CONN, \(\{g_1, g_2\} \) in Fig. 1 (b) form a TD-CONN, while \(\{g_1, g_4\} \) do not.

For a discussion on the justifications and implications of these rules, please refer to [7]. To this end, Table 1 illustrates the resultant \(S_{JV} \)S of each \(JV \) in \(G_1 \) (shown in Fig. 1 (b)) after applying the above four rules.

Table 1: Possible sets of join vertices of \(G_1 \) (Fig. 1).

<table>
<thead>
<tr>
<th>Join Vertex</th>
<th>Possible Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>(S_{Country} = {g_1, g_2} \cup {g_3, g_4} \cup {g_5})</td>
</tr>
<tr>
<td>Tournament</td>
<td>(S_{Tournament} = {g_1, g_2} \cup {g_3, g_4} \cup {g_5})</td>
</tr>
<tr>
<td>Football</td>
<td>(S_{Football} = {g_1, g_2})</td>
</tr>
</tbody>
</table>

2.2.3 Generating Base Graph Plans

Having generated the sets, \(S_{JV} \)S, of every join vertex, \(JV \), in a given query graph, \(G \), the query planner is ready to enumerate all

3The complete source code of DREAM is publicly available on https://github.com/CMU-Q/DREAM.
possible graph plans, \(G_\text{Ps} \), of \(G \). As a first (and basic) step, we define a base graph plan, \(G_p \), as a directed graph consisting of exactly one \(S_j \) from the sets, \(S_j \), of every \(JV \) in \(G \). As such, \(G_p \) incorporates a number of vertices that is equal to the number of join vertices in \(G \). To exemplify, since \(G_1 \) in Fig. 1(b) has 3 join vertices, its \(G_p \) will also have 3 vertices, each selected from a row in Table 1. Fig. 2 depicts one such \(G_p \). Now, let us denote every \(S_j \) in \(G_p \) as \(v' \). Subsequently, any two vertices, \(v'_i \) and \(v'_j \), in \(G_p \), selected from the sets of join vertices \(JV_i \) and \(JV_j \) in \(G \), will be connected by an edge, \(e_{ij} \), which corresponds to the edge, \(e \), in \(G \) connecting \(JV_i \) and \(JV_j \). Therefore, \(G_p \) is structurally identical to \(G \) but semantically different.

After generating all possible base graph plans, \(G_\text{Ps} \), of \(G \), the natural question that follows is: which of these graph plans should the query planner choose? The query planner employs a new cost model to estimate the I/O cost of each enumerated graph plan and, subsequently, selects the lowest-cost graph plan, \(G^* \) (see [7] for details on our cost model). The ultimate goal of the query planner is to parallelize the execution of \(G \) by mapping each \(S_j \) of a \(JV \) to a dedicated slave machine.

2.2.4 Generating Compact Graphs

As implied earlier, the number of join vertices in a query graph, \(G \), dictates the number of machines for a generated lowest-cost base graph-plan, \(G' \). However, some simple SPARQL queries might not need a distributed system whatsoever. In principle, what should dictate the number of machines for \(G' \) are the system resources (mainly memory) that \(G' \) requires, rather than \(G^* \)’s number of join vertices. Hence, to effectively execute \(G' \), we suggest examining the full continuum of potential numbers of machines, \(N \), where \(1 \leq N \leq \text{number of join vertices in } G' \), and select \(N \) that will expectedly result in the best performance.

We realize our proposal by gradually compacting \(G' \), all the way until a single join vertex is obtained. Specifically, if the number of join vertices in \(G' \) is greater than one, we re-feed it to the query planner. The query planner, in turn, compacts \(G' \) (i.e., merges two neighboring join vertices and their respective sub-graphs) to produce a compact graph plan. The compaction process continues until a graph plan with only a solo join vertex is attained. During this process, the query planner estimates the cost of every generated compact graph plan. Finally, the graph plan with the minimum estimated cost, say \(G^{**} \), is selected and executed. This way, DREAM adaptively elects either a centralized or a distributed system with potentially different numbers of machines for different SPARQL queries.

2.3 Execution

Once the near-optimal graph plan, \(G^{**} \), has been identified, the final task is to execute \(G^{**} \). To do so, the query planner maps the set (which consists of a TD-CONN and zero or more sub-graphs) of each join vertex to a single slave. Consequently, all slaves run their sub-graphs in parallel, communicate intermediate auxiliary data (as dictated by the directed edges of \(G^{**} \)) and join intermediate result sets. At any slave machine, the received auxiliary data is used to locate the relevant triples from its local RDF store to proceed with its join(s). The final result is produced by a single slave machine and communicated back to the master.

2.4 Evaluation

Due to page constraints, we briefly indicate that we evaluated DREAM [7] on private and public clouds, and compared it against two state-of-the-art distributed RDF systems, Huang et al. [11] and H2RDF+ [13]. As for workloads, we utilized the two standard benchmark suites, YAGO2 [9] and LUBM [10]. On average, DREAM outperformed Huang et al. and H2RDF+ by 81% and 91%, respectively. Besides, DREAM reduced network traffic by averages of 16% and 13.4% versus Huang et al. and H2RDF+, respectively. Finally, we studied the scalability of DREAM on Amazon EC2 using large-scale datasets varying from 3 billion (or 700 GB) to 7 billion (or 1.2 TB) triples. As an outcome, we observed that DREAM scales very well with huge datasets. For more details on these experiments as well as other investigational studies, please refer to [7].
planner to generate a near-optimal graph plan, G_P, of any G (see Section 2.2 for details).

3.2.2 Pane 2: Query Planning and Processing
After a participant selects or writes a SPARQL query, Q, she/he can submit Q to DREAM, wherein its query planner will be subsequently activated. Pane 2 illustrates the internal processing performed by the query planner. If the serial execution mode was selected, color-coded graph plans, generated by the query planner, will be displayed in real-time. The lowest-cost (or near-optimal) graph plan, G_P, will be then chosen using a novel cost model. Afterwards, G_P’s constituent sub-graph(s) will be placed at one or many slave machine(s) (i.e., run as either centralized or distributed), depending on the complexity of G_P. If DREAM is run as distributed, the participant will be able to observe and validate the communication pattern(s) between them, which should at least respect the directionnalities of edges in G_P. If the batch execution mode was selected, the mechanics of the specified job scheduler will be demonstrated, whereby the participant can view the query list, with queries getting enqueued and dequeued in real-time based on the scheduler’s policy (e.g., greedy).

3.2.3 Pane 3: Output
This pane displays the final result set(s), coupled with a runtime breakdown. The runtime breakdown encompasses the time spent by DREAM on each of its major tasks: query planning, execution, and communication. This will enable the audience to thoughtfully assess the performance and network results of DREAM.

3.3 Comparisons with Related Schemes
Finally, the audience will be able to execute multiple state-of-the-art centralized and distributed RDF systems, namely RDF-3X [12], Huang et al. [11], and H2RDF+ [13]. All these systems will be deployed on the same 11-VM cluster of DREAM (for centralized RDF-3X, only one machine will be utilized), allowing participants to compare and contrast all the schemes using the same SPARQL queries and RDF datasets.

Acknowledgements
This publication was made possible by NPRP grant # 7-1330-2-483 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

4. REFERENCES