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ABSTRACT
Drug-Drug Interactions (DDIs) are a major cause of pre-
ventable adverse drug reactions and a huge burden on public
health and the healthcare system. On the other hand, there
is a large amount of drug-related (open) data published on
the Web, describing various properties of drugs and their re-
lationships to other drugs, genes, diseases, and related con-
cepts and entities. In this demonstration, we describe an
end-to-end system we have designed to take in various Web
data sources as input and provide as output a prediction of
DDIs along with an explanation of why two drugs may inter-
act. The system first creates a knowledge graph out of input
data sources through large-scale semantic integration, and
then performs link prediction among drug entities in the
graph through large-scale similarity analysis and machine
learning. The link prediction is performed using a logistic
regression model over several similarity matrices built us-
ing different drug similarity measures. We present both the
efficient link prediction framework implemented in Apache
Spark, and our APIs and Web interface for predicting DDIs
and exploring their potential causes and nature.
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1. INTRODUCTION
Adverse drug reactions (ADRs) are a major cause of seri-

ous health complications and a major burden on the health-
care system. Drug-Drug Interactions (DDIs) are among the
leading causes of “preventable” ADRs, in part due to the
extreme difficulty of identifying potential DDIs early in the
drug design process and through clinical studies. On the
other hand, there is a wealth of information on the Web
related to drugs, with several sources publishing structured
and semi-structured data on the Web. A recent study has
shown that none of the existing public sources that contain
DDI information provide a reasonable coverage of all the
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known interactions [2], and most sources are either incom-
plete or too conservative by listing a large number of insignif-
icant DDIs. Furthermore, existing sources rarely provide an
evidence or an explanation for a DDI. As a result, a simple
integration of all the public sources would be far from usable
in real clinical and pharmaceutical settings.

In this paper, we present Tiresias, a system that takes in as
input a variety of drug-related data sources from the Web,
including a (small) set of known DDIs, and provides as out-
put a list of potential (unknown) DDIs along with an expla-
nation for each DDI. The system first performs a semantic
integration of the input data, building a knowledge graph
describing drugs and connecting them to various related en-
tities such as enzymes, chemical structures, and pathways.
Similar to content-based recommender systems, the predic-
tion an interaction between a candidate pair of drugs is per-
formed by comparing it against known interacting pairs of
drugs. A large number of robust similarity measures taking
into account the properties of various sources are calculated
and then used to build a linear regression learning model,
all in a highly scalable way implemented in Apache Spark.

In what follows, we describe the overall architecture of
the system along with a brief summary of various novel so-
lutions implemented in the system to perform semantic in-
tegration, feature engineering, and large-scale learning suit-
able for sparse features gathered from various information
sources on the Web. We then present a summary of our
demonstration plan.

2. SYSTEM OVERVIEW
The overall architecture of our similarity-based DDI pre-

diction approach is illustrated in Figure 1. In what follows,
we briefly describe each of the components

2.1 Knowledge Curation
We construct a knowledge graph by ingesting data from

variety of sources (including XML, relational, and CSV for-
mats) from the Web. As partially shown in Figure 2, our
data comes from variety of sources such as DrugBank [11]
that offers data about known drugs and diseases, Compar-
ative Toxicogenomics Database [7] that provides informa-
tion about gene interaction, Uniprot [1] that provides de-
tails about the functions and structure of genes, BioGRID
database that collects genetic and protein interactions [6],
Unified Medical Language System that one is the largest
repository of biomedical vocabularies including NCBI tax-
onomy, Gene Ontology (GO), the Medical Subject Headings
(MeSH) [3], and the National Drug File - Reference Termi-
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Figure 1: Tiresias System Architecture.

nology (NDF-RT) that classifies drug with a multi-category
reference models such as cellular or molecular interactions
and therapeutic categories [4].

As part of our knowledge graph curation task, we identify
which attributes or columns refer to which real world enti-
ties (i.e., data instances). Therefore, our constructed knowl-
edge graph possess a clear notion of what the entities are,
and what relations exist for each instance in order to cap-
ture the data interconnectedness. These may be relations to
other entities, or the relations of the attributes of the entity
to data values. As an example, in our ingested and curated
data, we have a table for Drug, and have the columns Name,
Targets, Symptomatic Treatment. Our knowledge graph has
an identifier for a real world drug Methotrexate, and captures
its attributes such as Molecular Structure or Mechanism of
Actions, as well as relations to other entities including Genes
that Methotrexate targets (e.g., DHFR), and subsequently,
Conditions that it treats such as Osteosarcoma (bone cancer)
that are reachable through its target genes, as demonstrated
in Figure 2. Constructing a rich knowledge graph is a neces-
sary step before building our predication model as discussed
next.

2.2 Similarity Computation
In this phase, data originating from multiple sources that

are integrated in our knowledge graph are used to create var-
ious drug similarity measures (represented as blue tables in
Figure 1) and a known DDIs table. Similarity measures are
not necessarily complete in the sense that some drug pairs
may be missing from the similarity tables. The known DDIs
table, denoted KDDI, contains the set of 12,104 drug pairs
already known to interact in DrugBank. In the 10-fold cross
validation of our approach, KDDI is randomly split into
3 disjoint subsets: KDDItrain, KDDIval, and KDDItest
representing the set of positive examples respectively used
in the training, validation and testing (or prediction) phases.
Contrary to most prior work, which partition KDDI on the
DDI associations instead of on drugs, our partitioning sim-
ulates the scenario of the introduction of newly developed
drugs for which no interacting drugs are known. In particu-
lar, each pair (d1, d2) in KDDItest is such that either d1 or
d2 does not appear in KDDItrain or KDDval.

Due to space limitation, we describe here only 4 of the 13
similarity measures used to compare two drugs. The other
similarity metrics are presented in detail in [8], including
physiological effect based similarity, side effect based sim-
ilarity, two metabolizing enzyme based similarities, three
drug target based similarities, chemical structure similar-
ity, MeSH based similarity. Note that the similarity compu-
tation using all the measures over all the possible pairs of

drugs is quite expensive, and so we utilize Apache Spark for
an efficient parallel similarity computation.

• Chemical-Protein Interactome (CPI) Profile
based Similarity: The Chemical-Protein Interac-
tome (CPI) profile of a drug d, denoted cpi(d), is
a vector indicating how well its chemical structure
docks or binds with about 611 human Protein Data
Bank (PDB) structures associated with DDIs [12]. The
CPI profile based similarity of two drugs d1 and d2 is
computed as the cosine similarity between the mean-
centered versions of vectors cpi(d1) and cpi(d2).

• Mechanism of Action based Similarity: For a
drug d, we collect all its mechanisms of action ob-
tained from NDF-RT. To discount popular terms, In-
verse Document Frequency (IDF) is used to assign
more weight to relatively rare mechanism of actions:

IDF (t,Drugs) = log |Drugs|+1
DF (t,Drugs)+1

where Drugs is

the set of all drugs, t is a mechanism of action, and
DF (t,Drugs) is the number of drugs with the mech-
anism of action t. The IDF-weighted mechanism of
action vector of a drug d is a vector moa(d) whose
components are mechanisms of action. The value of a
component t of moa(d), denoted moa(d)[t], is zero if
t is not a known mechanism of action of d; otherwise,
it is IDF (t,Drugs). The mechanism of action based
similarity measure of two drugs d1 and d2 is the cosine
similarity of the vectors moa(d1) and moa(d2).

• Pathways based Similarity: Information about
pathways affected by drugs is obtained from CTD
database. The pathways based similarity of two drugs
is defined as the cosine similarity between the IDF-
weighted pathways vectors of the two drugs, which are
computed in a similar way as IDF-weighted mechanism
of action vectors.

• Anatomical Therapeutic Chemical (ATC) Clas-
sification System based Similarity: ATC [13] is
a classification of the active ingredients of drugs ac-
cording to the organs that they affect as well as their
chemical, pharmacological and therapeutic character-
istics. The classification consists of multiple trees rep-
resenting different organs or systems affected by drugs,
and different therapeutical and chemical properties of
drugs. The ATC codes associated with each drug are
obtained from DrugBank. For a given drug, we collect
all its ATC code from DrugBank to build a ATC code
vector (the most specific ATC codes associated with
the drug -i.e., leaves of the classification tree- and also

176



Drug	Name	 Drug	Targets	(Genes)	 Symptoma5c		
Treatment	

Ibuprofen	 PTGS2	 Rheumatoid	Arthri8s	

Acetaminophen	 PTGS2	 Relief	Fever	

Methotrexate	 DHFR	 An8neoplas8c	An8-metabolite	

Warfarin	 TP53		 Embolism	(Blood	Clot)	

Gene	 Interac5on	

PTGS2	 TP53	(Gene)	

DrugBank:	Bioinforma5cs	&	Cheminforma5cs	Resource	

CTD:	Compara5ve	Toxicogenomics	Database	

Gene	 Func5on	

TP53	 Tumor	
Suppressor	

DHFR	 Limits	Cell	
Growth	

Uniprot:	
Universal	
Protein	
Resource	

Gene	 Disease	

TP53		 Osteosarcoma	

Chemical	 Pathways	 Linked	Data	Source	

Ibuprofen	 Metabolic	Pathways	 KEGG	

Acetaminophen	 Signal	Transduc8on	 Reactome	

Methotrexate	 Immune	System	 Reactome	

PTGS2	
(Gene)	inhibits	

TP53	
(Gene)	

Acetaminophen	
(Tylenol)	

Rheumatoid		
Arthri5s	

Osteosarcoma	
(Bone	Cancer)	

Relief	
Fever	

Ibuprofen	
(Advil)	

Disease	

	Immune		
System		

	Autoimmune	

Joint		
Diseases	

Sarcoma	

	Neoplasms	

Methotrexate	

DHFR	
(Gene)	

Chemical	

	Carboxylic		
Acids	 	Heterocyclic		

	Aminopterin	
	Phenylpro-	
pionates	

Arthri5s	

Approved	
Drugs	

Warfarin	
Embolism	
(Blood	Clot)	

Metabolic		
Pathways	

Signal		
Transduc5on	

Figure 2: Semantic Curation and Linkage of Data from Variety of Sources on the Web.

all the ancestor codes are included). The ATC simi-
larity of two drugs is defined as the cosine similarity
between the IDF-weighted ATC code vectors of the
two drugs, which are computed in a similar way as
IDF-weighted mechanism of action vectors.

2.3 Feature Generation
Given a pair of drugs (d1, d2), we construct its machine

learning feature vector derived from the drug similarity mea-
sures and the set of DDIs known at training. Like previ-
ous similarity-based approaches, for a drug candidate pair
(d1, d2) and a drug-drug similarity measure sim1 ⊗ sim2,
we create a feature that indicates the similarity value of
the known pair of interacting drugs most similar to (d1, d2).
Unlike prior work, we introduce new calibration features to
address the issue of the incompleteness of the similarity mea-
sures and to provide more information about the distribution
of the similarity values between a drug candidate pair and
all known interacting drug pairs - not just the maximum
value.

2.4 Large-Scale Machine Learning
Our learning framework consists of three phases, all im-

plemented on top of Apache Spark for scalability:

• Model Validation Phase As a result of relying on
more data sources, using more similarity measures, and
introducing new calibration features, we have signifi-
cantly more features (1014) than prior work (e.g., [9]
uses only 49 features). Thus, there is an increased risk
of overfitting that we address by performing L2-model
regularization. Since the optimal regularization pa-
rameter is not known a-priori, in the model generation
phase, we build 8 different logistic regression models
using 8 different regularization values. To address is-
sues related to the skewed distribution of DDIs (for an
assumed prevalence DDIs lower than 17%), we make
some adjustments to logistic regression.

• Model Validation Phase The goals of this phase are
twofold. First, in this phase, we select the best of the
eight models (i.e., the best regularization parameter
value) built in the model generation phase by choosing
the model producing the best F-score on the validation
data. Second, we also select the optimal threshold as
the threshold at which the best F-score is obtained on
the validation data evaluated on the selected model.

• Prediction Phase Let f denote the logistic function
selected in the model validation phase and η the con-
fidence threshold selected in the same phase. In the
prediction phase, for each candidate drug pair (d1, d2),
we first get its feature vector v computed in the feature
construction phase. f(v) then indicates the probabil-
ity that the two drugs d1 and d2 interact, and the pair
(d1, d2) is labeled as interacting iff. f(v) ≥ η.

2.5 APIs & Web Interface
We provide the outcome of our similarity-based DDI pre-

diction through a set of APIs. These APIs not only provide
the predicted DDIs along with confidence scores and refer-
ences, but also provide access to the internals of the system
so the users can query and analyze the reason a DDI shows
up in the output. As a result, the outcome can be integrated
within existing Electronic Health Record (EHR) systems
along with features that would assist clinicians and health-
care professionals in not only providing up-to-date DDI in-
formation, but also analyzing the reason behind a particular
DDI and the associated risk. We have also designed a set of
Web interfaces over our APIs (e.g., see Figure 3).

3. DEMONSTRATION PLAN
Our plan is to demonstrate three aspects of Tiresias:

• Knowledge Graph Curation We allow the users to
navigate through our drug knowledge graph (cf. Figure
2) in RDF through the popular LodLive interface [5].
We use custom URIs that mark each predicate with
the source(s) of each fact and use that to show the
different coverage of various Web sources with respect
to different types of properties and relationships. This
portion of the demonstration would be of interest to
the general Semantic Web and Linked Data audience,
pointing out challenges in building healthcare applica-
tions using disparate Web sources and the shortcom-
ings of the existing sources published as Linked Data
on the Web [10].

• Similarity Analysis Component Through a Web
interface, users can select two drugs and see the sim-
ilarity computation results using all the 13 similarity
measures we have implemented in Tiresias. We use this
interface to show the usefulness of each the similar-
ity measures in capturing different types of similarities
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Figure 3: DDI Exploration Web Interface

across drugs that are useful for DDI prediction. We
also show how the results could be incomplete for cer-
tain DDIs due to the different coverage of the input
sources.

• DDI Predictions & Explanations The main part
of our demonstration will be showcasing the end result
of DDI predictions. First, we present a Web inter-
face to look up known and predicted interactions for
a given drug, and provide evidence and explanation
for each DDI as shown in Figure 3. The explanation
is based on the existing evidence for interaction be-
tween similar drugs. We then present the results of
retrospective analysis which relies on DDI information
from an older version of DrugBank to predict interac-
tions that were unknown at the time, verify some new
interactions that have been discovered since then, and
compare the explanation our system provides with the
new evidence supporting the existence of the DDI.

Our demonstration will be using a prototype cloud service
that is currently at Alpha stage. In addition to the above, we
will share the current technical documentation, API design,
business use cases, and our plan for commercial offering of
the solution.
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