
LODVader: An Interface to LOD Visualization, Analytics
and DiscovERy in Real-time

Ciro Baron Neto Kay Müller Martin Brümmer
Dimitris Kontokostas Sebastian Hellmann

Leipzig University, AKSW, http://aksw.org
Leipzig (Germany)

(cbaron|kay.mueller|bruemmer|kontokostas|hellmann)@informatik.uni-leipzig.de

ABSTRACT
The Linked Open Data (LOD) cloud is in danger of becom-
ing a black box. Simple questions such as ”What kind of
datasets are in the LOD cloud?”, ”In what way(s) are these
datasets connected?” – albeit frequently asked – are at the
moment still difficult to answer due to the lack of proper
tooling support. The infrequent update of the static LOD
cloud diagram adds to the current dilemma, since there is
neither reliable nor timely-updated information to perform
an interactive search, analysis or in particular visualization
in order to gain insight into the current state of Linked
Open Data. In this paper, we propose a new hybrid system
which combines LOD Visualisation, Analytics and Discov-
ERy (LODVader) to aid in answering the above questions.
LODVader is equipped with (1) a multi-layer LOD cloud vi-
sualization component comprising datasets, subsets and vo-
cabularies, (2) dataset analysis components that extend the
state of the art with new similarity measures and efficient
link extracting techniques and (3) a fast search index that is
an entry point for dataset discovery. At its core, LODVader
employs a timely-updated index using a complex cluster of
Bloom filters as a fast search index with low memory foot-
print. This BF cluster is able to efficiently perform analysis
on link and dataset similarities based on stored predicate
and object information, which – once inverted – can be em-
ployed to discover invalid links by displaying the Dark LOD
Cloud. By combining all these features, we allow for an up-
to-date, multi-dimensional LOD cloud analysis, which – to
the best of our knowledge – was not possible before.

Keywords
Linked Open Data, Linksets, Bloom filter, RDF diagram

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890545 .

1. INTRODUCTION
The amount of datasets published on the Web – partic-

ularly on the Linked Open Data (LOD) cloud – has grown
significantly in the last couple of years.1 This increase in
available linked data creates the following interconnected
research challenges:

• Exploration - find, download and index data using
scalable algorithms and data structures for efficient re-
trieval.

• Analysis - develop metrics to measure similarity, qual-
ity and search rankings of datasets in order to structure
the web of data.

• Visualisation - allow end users to discover, access and
evaluate datasets.

Furthermore, a crucial problem which encases our research
questions is that searching for datasets in terms of used
vocabularies, tuples, or available resources requires solu-
tions that most part of the time, imply downloading large
amounts of datasets. Due to the growing number of avail-
able datasets this use-case will become more common for
many linked data applications.

2. LODVADER ARCHITECTURE
In order to address the problems pointed out, we created

a framework that is light and extensible. The framework
creates a central index for Linked Data datasets, allowing
to perform basic queries, link discovery, analytical data re-
trieval and visualization. The framework is called LOD-
Vader, and holds the implementation of the proposed fea-
tures. Figure 1 describes the framework architecture and
consists of the following components: Manager, RDF Stream-
ing Module, Plugins module, Index Engine, MongoDB2 and
the REST API module. The proposed approach was imple-
mented in Java and uses the Apache Jena[3] library to parse
and write RDF data. MongoDB is used as a back end stor-
age service for storing non-RDF data such as analytics data
and distribution namespaces. Bloom filters (BF)[1] contain
the indexes of the datasets and are stored using GridFS3.
Internally, the API uses Java Spring MVC4, which handle
with the HTTP requests, and case there are some invalid
request (e.g. missing parameters), the Spring MVC will re-
turn an customized error message. To communicate with the

1http://lod-cloud.net/#history
2https://www.mongodb.org/
3https://docs.mongodb.org/v3.0/core/gridfs/
4https://spring.io/guides/gs/rest-service/

163

http://lod-cloud.net/#history
https://www.mongodb.org/
https://spring.io/guides/gs/rest-service/

Figure 1: LODVader Architecture

REST API, we created a front end using NodeJS5 which al-
lows the visualization of the diagrams using the Data Driven
Documents6 JavaScript library. One can try out LODVader
following this link http://lodvader.aksw.org. The imple-
mentation of the REST API and the front end are open
source and are available on GitHub. 7

The Manager is the central controller of the service and
is responsible to serve the API calls and coordinate the pro-
cessing components. Once a user submits a dataset for pro-
cessing (using a description file), the Manager will fetch for
URL of distributions (usually described by dcat:downloadURL

or void:dataDump) and will dispatch the call to the RDF
streaming module responsible for stream and parse the distri-
butions. Distributions normally are dump files or SPARQL
endpoint. The output of this phase is an array of triples
< s, p, o > that is dispatched to the Index engine where the
indexes are created. The Manager is also connected to a set
of plugins. Plugins are modules with well defined functions
that allow our framework to be extended for different use
cases. As an example, the Analytics back end Plugin is re-
sponsible for determine the top N links between two datasets
and the Search Plugin queries Bloom Filters (BF) in order
to find subjects, predicates and objects. The plugins are all
connected to the REST API, making possible an integration
with a front end or even different frameworks.

A particular plugin that allows users to visualize the linked
datasets is the Visualization plugin. This plugin provides
JSON objects which characterize the current condition of
the links between the distributions. Hence, using the front
end provides a new visualization of the LOD-Cloud diagram
(which can be seen in Figure 2) using multiple layers of
data, i.e. distributions and subsets are within datasets and
are represented by different edges of the graph. In addition
to the classical view, where vertexes represents the amount
of links between datasets, the LODVader framework allows
different dataset visualizations which can help the user to
perform analysis operations on the imported LOD cloud.
For example it is possible to filter datasets based on their
similarities (using Jaccard coefficient based on rdf:type,
owl:Classes and general predicates), datasets and ontolo-
gies. Furthermore, subsets and distributions of a dataset are
shown and grouped as clusters of bubbles.

5https://nodejs.org/en/
6http://d3js.org/
7https://github.com/AKSW/lodvader

Figure 2: LODVader LOD cloud

Figure 3: LODVader Dark LOD cloud

The main difference between LODVader and lod-cloud8

is that instead of assuming that every distribution is in the
same pay-level domain or sub-domain, LODVader precisely
compare every object and subject for each source dataset
and target dataset.

Moreover, we propose the novel concept of the Dark LOD
diagram which can be seen in Figure 3. The Dark LOD
diagram, visualizes links between objects of a source distri-
bution which are not described as subjects in a target dis-
tribution.

Besides to be able to read and write RDF data (RDF is
generated on the fly by Apache JENA), LODVader doesn’t
use a triplestore. Instead, LODVader uses a MongoDB as
a database to store and fetch relevant data. MongoDB has
shown fast and scalable enough to be used with BF as a
central index for linked datasets.

3. LODVADER USAGE (DEMO PRESENTA-
TION)

The following subsections describe the usage of the four
current features of the LODVader Visualisation plugin and
Manager. The presentation in the Demo Track will go through
all of them showing the framework performance. For the
first three examples, we demonstrate how to use the REST
API (although all of them can be done using the font end),
using the base URL ”http://api.lodvader.aksw.org/”, and in
the fourth example we will demonstrate the usage of the
LOD diagram.

3.1 Adding a dataset to the framework
In order to visualise a dataset via LODVader, the user

can either create an entry at indexed repositories, such as
http://datahub.io or http://lov.okfn.org or she should

8http://lod-cloud.net/

164

http://lodvader.aksw.org
https://github.com/AKSW/lodvader
http://datahub.io
http://lov.okfn.org

Figure 4: Add a dataset manually

provide a description file which contains metadata describ-
ing the datasets to be streamed as shown in Figure 4. LOD-
Vader is capable of consuming RDF descriptions of datasets
according to DCAT 9, VoID10 and DataID [2] fetching for
URL described by dcat:downloadURL or void:dataDump.

The request parameters to the API are two: descrip-
tionFileURL which should contain the URL of the descrip-
tion file and format witch contains the serialization format
(available options are: ttl, nt, rdfxml or jsonld) of the
description file. The REST API returns an array of JSON
objects which contains a list of fetched distributions. Each
JSON object describes the status of the streaming process,
error messages and amount of triples read.

3.2 Finding data within a dataset
LODVader uses Boom filters to store indexes of subject,

predicate and object. Thus, it’s possible to query whether a
dataset or a vocabulary contains a particular resource. The
parameters used are:

• searchSubject: Parameter used to find a particular
subject resource in a dataset

• searchProperty: Parameter used to find a particular
property resource in a dataset

• searchObject: Parameter used to find a particular
object in a dataset. Note that literals are not allowed
here.

• searchVocabulary: Boolean value that defines whether
to filter only vocabularies or datasets. Omitting it will
search both.

As an example, the URL11 would return an array of JSON
objects of all datasets which contains the DBpedia subject
Hawaii.

3.3 Retrieving VoID:linkset
We will also show in the presentation that LODVader also

allows to retrieve RDF data in the void:Linkset format.
Essentially two parameters are used: source and target
dataset. Both parameters should have a value if the user
wants to compare two specific datasets, otherwise only the
source is mandatory. The described RDF includes the URI
of the source dataset, target dataset, number of triples and
the provenance using the using the Prov-O ontology12. The
REST response should be a RDF represented using turtle
format as shown in Figure 5.

9http://www.w3.org/TR/vocab-dcat/
10http://www.w3.org/TR/void/
11http://api.lodvader.aksw.org/distribution/search?
searchSubject=http://dbpedia.org/resource/Hawaii

12http://www.w3.org/TR/prov-o/

Figure 6: Parameters for LOD Cloud diagram generation

3.4 Customized LOD Cloud graph
Next, we are going to show the visualization module (in-

cluded in the front end GUI) and capability of browsing
and creating customized LOD Cloud. The API allows to
retrieve a JSON object where links between datasets are
represented by edges and datasets are represented by ver-
texes. This structure is useful when a customized diagram
should be rendered. The parameters used are:

• dataset: The array of datasets that LODVader should
crawl. The returned JSON object will contain the rep-
resentation of the datasets consisting of the array plus
the datasets which contains indegree and outdegree
links.

• linkType: Describes the type of the retrieved links.
Should be showLinks, showSimilarities or show-
DarkLOD. Case the similarity option is chosen, two
parameters (from and to) are optional and represent
the similarity range (from 0 to 1).

Along with demonstrating the usage of the parameters,
we will show the creation of a graph similar to the Figure 2,
and demonstrate the usage of filters (e.g. how to filter vo-
cabularies from the diagram) and the behavior of the graph
when a dataset contains multiple subsets or distributions.
The last feature to be presented in the visualization mod-
ule is the Dark LOD Diagram and its features. We will
show and explain how we create a cloud which contains only
datasets with invalid links to debug the LOD Cloud. Fig-
ure 6 shows the above-mentioned options in the LODVader
interface. Note that we also index vocabularies and treat
a triple with rdf:type as a link between a dataset and its
schema in LODVader.

4. EVALUATION
In order to evaluate the performance of the LODVader,

we first compared indexing data using BF with HashMap
Search (HS) and Binary Search Tree (BST) w.r.t. memory
usage for each structure to index distributions. Secondly, we
compared LODVader with OpenLink Virtuoso13 w.r.t. time
to load and index triples, time to make searches, amount
of data on the storage. We are aware that LODVader is
not a triplestore, and do not store sufficient data do make
a complete SPARQL query. However, making complexes

13http://virtuoso.openlinksw.com/

165

http://www.w3.org/TR/vocab-dcat/
http://www.w3.org/TR/void/
http://api.lodvader.aksw.org/distribution/search?searchSubject=http://dbpedia.org/resource/Hawaii
http://api.lodvader.aksw.org/distribution/search?searchSubject=http://dbpedia.org/resource/Hawaii
http://www.w3.org/TR/prov-o/

1 <http ://api.lodvader.aksw.org/distribution/compare/rdf/? retrieveDataset&source=http :// dataset_example.org >
2 a void:Linkset ;
3 void:objectsTarget <http :// dataset_example.org#dataset > ;
4 void:subjectsTarget <http :// dbpedia.org/dataid.ttl#article -categories_en > ;
5 void:triples "15" ;
6 prov:wasGeneratedBy <api.lodvader.aksw.org/distribution/compare/rdf/> .

Listing 1: void:linkset example

2 4 6 8

0

200

400

600

Structure size (millions of subjects)

M
em

o
ry

(M
B

) HS

BST

BF

Figure 7: Memory usage per indexed resource

Parameter Virtuoso LODVader Performance
Load time 24:02:36h 06:32:01h 3.67x faster
Disk usage 84,28Gb 4,03Gb 95.2% less pace

Table 1: Triple load time and disk usage of LODVader com-
pared to Virtuoso. Virtuoso outperforms LODVader

queries is out of the scope of our approach. All experiments
were made using a Intel(R) Core(TM) i7-5600U @ 2.6GHz,
16GB DDR3 and SSD drive. The results (Figure 7) show
main advantages of using BF w.r.t. the memory usage while
varying the number of resources for each structure. The
difference from HS and BST to BF is notable. Storing 8
million resources HS, and BST use over 0.5 GB of RAM
memory. Considering that a regular dataset can easily have
more than this number of triples, the usage of HS and BST
is unfeasible. It is important to stress that Figure 7 shows
the memory usage for loading only one structure. However,
usually a dataset is compared with not only one, but mul-
tiple datasets, and memory efficiency is fundamental when
multiple BF are loaded at the same time. BF fulfills its
function using less then 34MB of memory, performing on
average 12 times better than HS and 10 times better than
BST.

Apart from measuring the precision of BFs, we used Open-
Link Virtuoso to compare the performance in other aspects.
We are aware that LODVader is not a triplestore, and do
not store sufficient data do make a SPARQL query. Parsing
complexes queries is out of the scope of our approach. More-
over, considering the huge gain in the matter of performance
of making simples searches, and storage space, LODVader is
appropriate to index and search large amount of RDF data.

To compare the efficiency of LODVader with OpenLink
Virtuoso, we loaded 491 datasets with a total of 1,092,182,333
triples. There is a slightly difference between the number
of loaded triples on LODVader and Virtuoso. LODVader
loaded 1,092,182,333 triples and Virtuoso 1,034,808,229. This
difference is due the fact that LODVader stores triples re-
gardless whether they are repeated or not, dealing with all
triples as unique. On the other hand, triplestores will not

store the same triple twice, considering that it’s a graph
structure. The problem is emphasized since each framework
deals differently with erroneous data. For example, a bad
RDF structure might be accepted by a particular frame-
work, but completely ignored by others. Hence, when we
deal with large amount of triples, it’s difficult to have the
exact number of resources in different frameworks.

Table 1 shows the results w.r.t for loading and indexing
triples and the total space used in the hard drive. Open-
Link Virtuoso loaded triples in 24:02:23, while LODVader
06:32:01, making the execution 3.67 times faster. The amount
of data stored was 84,28Gb for OpenLink Virtuoso and 4,03Gb
for LODVader.

5. ACKNOWLEDGEMENTS
This paper’s research activities were funded by grants

from the FP7 & H2020 EU projects ALIGNED (GA-644055),
LIDER (GA-610782), FREME (GA-644771), Smart Data
Web (GA-01MD15010B) and CAPES foundation (Ministry
of Education of Brazil) for the given scholarship (13204/13-
0).

6. REFERENCES
[1] B. H. Bloom. Space/Time Trade-offs in Hash Coding

with Allowable Errors. Commun. ACM, 13(7):422–426,
July 1970.

[2] M. Brümmer, C. Baron, I. Ermilov, M. Freudenberg,
D. Kontokostas, and S. Hellmann. DataID: Towards
Semantically Rich Metadata for Complex Datasets. In
Proceedings of the 10th International Conference on
Semantic Systems, SEM ’14, pages 84–91. ACM, 2014.

[3] M. Grobe. RDF, Jena, SparQL and the ’Semantic
Web’. In Proceedings of the 37th Annual ACM
SIGUCCS Fall Conference, SIGUCCS ’09, pages
131–138, New York, NY, USA, 2009. ACM.

166

	Introduction
	LODVader Architecture
	LODVader Usage (Demo presentation)
	Adding a dataset to the framework
	Finding data within a dataset
	Retrieving VoID:linkset
	Customized LOD Cloud graph

	Evaluation
	Acknowledgements
	References

