
Design and Implementation: the End User Development 
Ecosystem for Cross-platform Mobile Applications 

 
Zhongyi Zhai, Bo Cheng, Zhaoning Wang, Xuan Liu, Meng Niu, Junliang Chen 

State Key Laboratory of Networking and Switching Technology, 
Beijing University of Posts and Telecommunications, Beijing, China 

 [zhaizhongyi@126.com, chengbo@bupt.edu.cn] 
 

ABSTRACT 

In this paper, we present an ecosystem for mobile application 

development by end-users.  An advantage of this ecosystem is that 

the graphical user interface (GUI), as well as the application logic, 

can both be developed in a rapid and simple way. This ecosystem 

is mainly implemented through development and integration of 

two sub-systems, namely EasyApp and LSCE. EasyApp is 

responsible for developing the mobile app with the compatibility 

of multiple mobile platforms, while LSCE is in charge of creating 

the service process that can be invoked by mobile app directly. A 

case study is presented to illustrate the development process using 

this ecosystem. 

Categories and Subject Descriptors 

D.1.7[Programming Techniques]:visual programming; D2.2[Soft- 

ware Engineering]: design tools and techniques—user interfaces;  

Keywords 

Mobile application, end-user development, service mashup 

1. INTRODUCTION 
Mobile terminals have become the primary application and 

communication platform for people’s daily life. With the rise of 

App Store, more and more mobile users (called end-users in the 

paper) can download and install the applications, such as online 

meal ordering, to facilitate their life. However, in contrast to the 

widely available of mobile terminals, the mobile applications 

provided by App Store are insufficient for the user requirements.  

To address this problem, the end-user development (EUD) has 

been introduced to create mobile applications according to user’s 

own requirement with the aided tools.  

At present, there have some development tools that focus on the 

creation of mobile applications. For example, the MIT App 

Inventor [1] is a drag-and-drop development tool for designing 

and building fully functional mobile apps for Android. In this tool, 

the mobile development is divided into two parts:  the GUI, which 

can be developed using the Designer, and the application logic, 

which can be developed using the Block Editor. The Designer and 

Block Editor both provide a visual development interface, but the 

Block Editor can only be used by end-users equipped with 

programming skills. MicroApp[2] is another development tool to 

enable end-users to graphically develop the mobile applications 

directly on the mobile phone. In MicroApp, the mobile 

development is completed by composing services following a 

data-flow approach, and the GUI can be created automatically by 

integrating all of service interfaces in sequence. The applications 

developed by MicroApp can only run on mobile Android devices. 

Existing tools, such as MobiMash and AppCan, are similar to 

above two tools. There might be some defects for these tools: (i) 

the mobile development is just for specific platform; (ii) the 

application logic is executed on the mobile terminal, which is 

inappropriate for practical applications; (iii) some tasks in the 

mobile development are beyond the capability of end-users. 

To address above issues, we design and implement a EUD 

ecosystem for cross-platform mobile applications, including 

EasyApp and LSCE. EasyApp is a mobile development 

environment, which is developed based on OSGI framework and 

Web techniques, to support multiple mobile platforms. EasyApp is 

responsible for developing the mobile app as the GUI of the 

whole application. LSCE is a service mashup environment in a 

drag-and-drop mode, in which service processes (i.e application 

logic) can be developed following a dataflow approach. The 

service process developed by LSCE would be deployed in the 

execution environment, and its open interfaces would be 

published for the corresponding mobile app. 

2. ECOSYSTEM AND IMPLEMENTATION 
The overview of the ecosystem is shown in Fig.1. EasyApp 

allows end-users to design the GUI through a WYSIWYG (what 

you see is what you get) editor. Once a GUI is completely 

developed, the end-user can acquire expected installation package 

of mobile app (such as .apk, .ipa) by a one-click way. When 

designing a GUI, the end-user may need to bind a composite 

functionality to an element in it. In such case, the end-user should 

also develop and deploy the composite functionality using LSCE, 

and then, publish its interface (such as RESTful) for the 

corresponding app.  

2.1 EasyApp 
Fig.1(a) shows the development interface of EasyApp. On the 

left of this interface is a widget library, including UI elements, 

mobile device services (SMS, Bluetooth) and user interaction 

services (Google Map).  Utilizing the library, mobile app can be 

developed on the visual mobile phone interface, considering the 

page layout and page forwarding. On the left of the interface is the 

setting, including properties of page, page event handing and 

remote service binding. The remote service can be an atomic 

service, and can also be a composite service developed by LSCE.  

The EasyApp was developed based on OSGI framework and 

mobile web techniques. Also, the library adopted by EasyApp is 

compatible with most WebKit browsers, so that the mobile app 

can be directly executed via the mobile browser. Furthermore, the 

EasyApp introduces the PhoneGap plug-in, so that it can call 

device functionalities through JS API. In next work, we aim to 

design a widget recommendation approach for GUI development.  

2.2 LSCE  
The LSCE is a development and execution environment for 

service mashup. It consists of service creation environment (SCE) 

and service execution environment (SEE). Fig.1(b) shows the SCE, 

 

Copyright is held by the author/owner(s). 

WWW 2016 Companion, April 11-15, 2016, Montréal, Québec, Canada. 

ACM 978-1-4503-4144-8/16/04 

http://dx.doi.org/10.1145/2872518.2889366 

143



E
a

syA
p

p

 

Mobile Terminals

S
E

E

Service  library

Domain

1

Domain

2

Domain

n

Business library

Category

1

Category

2

Category

n

Repository

S
C

E
 

open 

service 

interface

Runtime  Server

Runtime Controller

Session  

Management
System Monitoring

Component 

Communication 

Mechinisum

Interface 

Management
Parser Engine

Event-driven 

Concurrent 

Mechanisum

executable 

JSO
N

 

scripts
Installation P

ackage 

(a) the development interface of EasyApp

(b) the development interface of SCE (c)  the architecture of SEE

Apps

„

„

Service library

Publish & Deploy Interface

Widget library

Setting

“One-click” 

   packaging

 

Fig.1. The overview of the development ecosystem for mobile applications.  

including service library, workspace and publish & deploy 

interface. On the left of SCE is the service library, which is 

divided into multiple communities according to the domain 

diversity, such as transportation and smart home. By utilizing 

SCE, the end-user can drag and drop services into a dataflow 

graph, i.e. application logic. To facilitate the execution of applica-

tion logic, a JSON-based notation is presented corresponding to 

the dataflow graph. Once a dataflow graph of application logic is 

completely developed, its interface would be published to the app, 

and its JSON script would be deployed into SEE. 

Fig.1(c) shows the architecture of SEE. It takes charge of the 

management of execution engine, and is developed based on 

Node.js platform. In which, we have implemented the execution 

engine to be able to parse the JSON script of dataflow graph. Thus, 

the application logic developed by SCE can be parsed and 

executed directly in SEE, without additional transformation. 

In the following work, we aim to design an incomplete 

information-oriented service mashup approach using AI planning 

techniques, to further facilitate end-user development. 

3. CASE STUDY AND EVALUTAION 
This section aims to demonstrate the mobile development of 

Smart Parking Lots (SPL), following the development approach 

of Fig.1. For the SPL application, we predefined three 

functionalities: (i) users can search nearby parking lots and 

navigate to the selected parking lot; (ii) the application should 

provide an interface for users to check their order information; (iii) 

the application should provide an e-wallet functionality, so as to 

pay for the bill automatically. 

According to the SPL requirements and the development 

paradigm of this ecosystem, the development of SPL was divided 

into two parts: 

(1) Developing user interfaces of SPL with EasyApp. The 

interfaces involve parking lot search and navigation 

interfaces (SNI), order inquiry interface (OII) and e-wallet 

recharge and management (ERMI). Furthermore, the page 

forwarding related to the search and navigation interfaces 

had also been designed in this part. 

(2) Developing application logics for SPL with LSCE. For the 

SNI, it involves a business of parking lot information in real-

time. Similarly, the OII involves a business of license plate 

recognition and charging, and the ERMI need to invoke a 

recharging and management business. All these three 

businesses were developed using LSCE.  

In order to understand the development of SPL more clearly, 

the design and implementation materials are available online 

(http://114.215.159.178/resources/).  

A questionnaire has been conducted on 20 recruits of Beijing 

University of Posts and Telecommunications to compare the 

effectiveness of the EUD ecosystem with the MIT App Inventor. 

The result (Fig.2) shows that the EUD ecosystem is more usable 

than the MIT App Inventor on the overall development and design 

of application logic. 

0

1

2

3

4

5

OI(Q) GUII(Q) ALI(Q)

App Inventor EUD ecosystem

a
ve

ra
g
e 

sc
o
re

 o
f 

q
u
es

ti
o
n
s

stronly

agree

 
Fig.2 The Reaction of recruits to the App Inventor and the 

EUD ecosystem.  

(Note: The OI represents the overall impression, GUII represents the 

impression of GUI development, ALI represents the impression of application 
logic development. The questions related to the experiment is shown 

online(http://114.215.159.178/resources/)) 

4. ACKNOWLEDGEMENT 
This work was supported by National Natural Science 

Foundation of China (61132001, 61262008), National Key 

Technology Research and Development Program of China 

"Research on the mobile community cultural service aggregation 

supporting technology" (2012BAH94F02). 

5. REFERENCES 
[1] Shaileen Crawford Pokress, Jose Juan Dominguez Veiga. 

MIT App Inventor：Enabling personal mobile computing. 

PROMOTO’13, October 26, 2013, Indianapolis, IN, USA. 

[2] Rita Francese, Michele Risi, Genoveffa Tortora and 

Maurizio Tucci. Visual Mobile Computing for Mobile End-

Users. IEEE Transactions on Mobile Computing, 2015.  

144




