
Studiere Zukunft
Introduction to Neural 
Networks and Uses in 
EDM
http://gdac.uqam.ca/Tutorial@EDM23/ 

Agathe Merceron

http://gdac.uqam.ca/Tutorial@EDM23/


.

Berlin: about  12 flight hours from Bengaluru!

• A nice place to live! 
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Outline
• Artificial neuron
• Activation function
• Feedforward neural networks
• Forward calculation
• Loss function
• Backpropagation
• Use in EDM
� Application to predict dropout
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Neuron
• http://cs231n.github.io/neural-networks-1/ 
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Neural networks and Boolean operators
• The operator AND can be represented by a single neuron 
• Activation function: Heaviside function: 0 if the weighted sum is smaller than the 

number in the neuron (chosen in advance, here 1.2), 1 otherwise
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 Neural networks and Boolean operators
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x0 x1 AND Output
0 0 1*0+1*0 < 1.2 0
0 1 1*0+1*1 < 1.2 0
1 0 1*1+1*0 < 1.2 0
1 1 1*1+1*1 ≥ 1.2 1
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Neural networks and Boolean operators
• The operator XOR cannot be represented by a single neuron: A second neuron is 

needed
• Activation function: Heaviside function: 0 if the weighted sum is smaller as the 

number in the neuron, 1 otherwise
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 Neural networks and Boolean operators
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x0 x1 AND Output
0 0 1*0+1*0 < 1.2    0   1*0+-2*0+1*0 < 0.6 0
0 1 1*0+1*1 < 1.2    0    1*0+-2*0+1*1 ≥ 0.6 1
1 0 1*1+1*0 < 1.2    0    1*1+-2*0+1*0 ≥ 0.6 1
1 1 1*1+1*1 ≥ 1.2    1    1*1+-2*1+1*1 < 0.6 0
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   Activation functions
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Activation functions
• Rectified Linear Units (ReLu):

https://cs231n.github.io/neural-networks-1/#classifier
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Activation functions: squashing functions
  

https://cs231n.github.io/neural-networks-1/#classifier
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Feedforward neural networks
  

https://cs231n.github.io/neural-networks-1/#classifier
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Hands-on: forward calculation
  https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ note 
the bias (similar to the intercept b in the linear function ax+b) 
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Hands-on: forward calculation 1
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Hands-on: forward calculation 1
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Hands-on: forward calculation 1
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Hands-on: forward calculation 2
 

Agathe Merceron
Introduction to Neural Networks und Use in EDM  

17



.

Hands-on: forward calculation 2
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Hands-on: forward calculation 2
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Universal approximation theorem
“a feedforward network with a linear output layer and at least one hidden layer with 
any “squashing” activation function (such as the logistic sigmoid activation function) 
can approximate any Borel measurable function from one finite-dimensional space 
to another with any desired non-zero amount of error, provided that the network is 
given enough hidden units.... A neural network may also approximate any function 
mapping from any finite dimensional discrete space to another.“

Deep Learning; Ian Goodfellow, Yoshua Bengio, Aaaron Courville; MIT Press; 2016. P. 198

https://cs231n.github.io/neural-networks-1/#classifier
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Feedforward neural network
• Structure must be chosen:

• Number of inputs, of hidden layers, of neurons per hidden layers, 
activation function, output function, loss function etc. : the 
hyperparameters

• Training costly (also in energy)

• In the training, the weights and biases are learned (stochastic 
gradient descent, backpropagation algorithm)

https://cs231n.github.io/neural-networks-1/#classifier
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Training loop [Cholet p. 49]
• Draw a batch of training samples x with class T
• Run the network on x to obtain output O
• Compute the loss of the network, i.e. mismatch between O and T
• Compute the gradient of the loss 
• Update the weights and biases
• Repeat till termination condition: the errors do not change or the loss is small 

enough

https://cs231n.github.io/neural-networks-1/#classifier
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Hands-on: compute the loss (Mean Squared Error)
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Gradient of the loss: why?
• If the loss is not 0, how do we know whether we should increase or decrease a 

weight?
• We need to know whether our overall function is ascending (weight should be 

decreased) or descending (weight should be increased)
• For a simple function f: R → R, the derivative gives this information
• For a complex function f: Rn → Rm, the gradient gives this information

https://cs231n.github.io/neural-networks-1/#classifier
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Gradient of the loss: why?
• If. 

Mathematics of Machine Learning p.141
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Gradient of the loss: why?
• If.

•  

Mathematics of Machine Learning p.141
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Backpropagation
• Uses partial derivatives and the chain rule to calculate the change for each weight 

and bias efficiently
• Starts with the derivative of the loss function and propagates the calculations 

backward
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 Hands-On - Backpropagation
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 Hands-On: Backpropagation
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 Hands-On: Backpropagation
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 Hands-On: Backpropagation
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 Hands-On: Backpropagation
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 Hands-On: Backpropagation
• W‘5=0.3582  (before 0.4)

• O‘1= 0.7467 (before 0.7514)

• Loss‘o1= 1/2(0.01-0.4467)2= 0.2714

• Losso1 before: 0.275 > 0.2714
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 Training and Backpropagation

• Possible problem: weight decay
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 Feed Forward Neural Networks 
• Compact graphical representation: W is the 

weights-matrix. Deep Learning; Ian Goodfellow, Yoshua 
Bengio, Aaaron Courville; MIT Press; 2016. P. 170
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 Feedforward Neural Networks 
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 Another Loss Function: Binary Cross Entropy  

38

0.751 1 -0.124 -0.604 1*-0.124 + (1-1)*-0.604 -0.124
0.773 0 -0.113 -0.644 0*-0.113 + (1-0)*-0.644 -0.644
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Neural Networks and Deep Learning
• Well-known types of neural networks:

• Convolutional Neural Networks (CNN): reduce full connectedness through the 
use of a convolutional operator. 

• Long Short Term Memory (LSTM): recurrent topology

• Deep Learning: Hidden layers extract abstract features from the data. 
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Feed Forward NN in EDM
• Common application: Predicting dropout  

• Next hands-on. 
• “Model the influence of co-taken courses on student’s grade on a course” Z. Ren, 

X. Ning, A. Lan, and H. Rangwala, EDM 2019
• “To automatically assess the design of a program and provide personalized 

feedback to guide students” J. Walker Orr and Nathaniel Russell, EDM 2021

 

Mathematics of Machine Learning p.141
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Feed Forward NN to Predict Dropout in a Degree 
Program• Wagner et al. Which Approach Best Predicts Dropouts in Higher Education? 2023
• Data from a medium size German university
• Three degree programs Architecture (AR), Computer Science and Media (CM), 

Print and Media Technology (PT); all six-semesters bachelor
• Data from 2012 till 2019:

• Enrollment date in the degree program
• Courses enrolled with marks and semester
• Graduation date or exmatriculation date
• Gender
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Feed Forward NN to Predict Dropout in a Degree 
Program• Data from 2012 till 2019:

• Enrollment date in the degree program,
• Courses enrolled with marks and semester,
• Graduation date or exmatriculation date,

• LF - Local features: marks in courses; features are specific to a degree program:
• One model per study program.

• GF - Global features: features must be engineered – mean mark, number of 
failed courses etc; features are common across degree programs:
� One global model for all study programs may be built.
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Feed Forward NN to Predict Dropout in a Degree 
Program• Many calculated features. Feature selection to predict dropout at the end of the 1st 

semester: 
• P_Postponed: Proportion of the number of postponed courses
• P_Not_Enrolled: Proportion of the number of courses without enrolment
• Mean_O_Gr: Mean grade of all courses
• MAD_O_Gr: Mean absolute deviation of all courses
� Data standardized
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Feed Forward NN to Predict Dropout in a Degree 
Program• Global feature set: Is the global model fair w.r.t. study programs?
� Slicing Analysis, Gardner et al. 2019

• Training set: 80% data from all three programs
• Test separately for each study program
• Test set: 20% of the newest data 
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Feed Forward NN to Predict Dropout in a Degree 
Program• Results with five classifiers: AdaBoost (AB), Decision Trees (DT), K-Nearest 

Neighbors (KNN), Logistic Regression (LR), Random Forests (RF):

• What with Neural Networks? Let us try it out!
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Feed Forward NN to Predict Dropout in a Degree 
Program• See: 

https://colab.research.google.com/drive/1RrsN3ojUv_byjgmq-Zfwn3txltyTiZP8?usp
=sharing

Mathematics of Machine Learning p.141
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Feed Forward NN to Predict Dropout in a Degree 
Program• NN also good at predicting dropout, differences between study programs
� need some work to check better

• What do we do with this knowledge?
� Recommender system specifically to support students at risk of dropping out in 

their enrollment: Wagner et al. Can the Paths of Successful Students Help Other 
Students With Their Course Enrollments? EDM 2024.
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